1
|
Gao W, Bai Y, Yang Y, Jia L, Mi Y, Cui W, Liu D, Shakoor A, Zhao L, Li J, Luo T, Sun D, Jiang Z. Intelligent sensing for the autonomous manipulation of microrobots toward minimally invasive cell surgery. APPLIED PHYSICS REVIEWS 2024; 11. [DOI: 10.1063/5.0211141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
The physiology and pathogenesis of biological cells have drawn enormous research interest. Benefiting from the rapid development of microfabrication and microelectronics, miniaturized robots with a tool size below micrometers have widely been studied for manipulating biological cells in vitro and in vivo. Traditionally, the complex physiological environment and biological fragility require human labor interference to fulfill these tasks, resulting in high risks of irreversible structural or functional damage and even clinical risk. Intelligent sensing devices and approaches have been recently integrated within robotic systems for environment visualization and interaction force control. As a consequence, microrobots can be autonomously manipulated with visual and interaction force feedback, greatly improving accuracy, efficiency, and damage regulation for minimally invasive cell surgery. This review first explores advanced tactile sensing in the aspects of sensing principles, design methodologies, and underlying physics. It also comprehensively discusses recent progress on visual sensing, where the imaging instruments and processing methods are summarized and analyzed. It then introduces autonomous micromanipulation practices utilizing visual and tactile sensing feedback and their corresponding applications in minimally invasive surgery. Finally, this work highlights and discusses the remaining challenges of current robotic micromanipulation and their future directions in clinical trials, providing valuable references about this field.
Collapse
Affiliation(s)
- Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yunfei Bai
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Yujie Yang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Lanlan Jia
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Yingbiao Mi
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Wenji Cui
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Dehua Liu
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Adnan Shakoor
- Department of Control and Instrumentation Engineering, King Fahd University of Petroleum and Minerals 3 , Dhahran 31261,
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| | - Junyang Li
- Department of Electronic Engineering, Ocean University of China 2 , Qingdao 266400,
| | - Tao Luo
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University 4 , Xiamen 361102,
| | - Dong Sun
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
- Department of Biomedical Engineering, City University of Hong Kong 5 , Hong Kong 999099,
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, Overseas Expertise Introduction Center for Micro/Nano Manufacturing and Nano Measurement Technologies Discipline Innovation, Xi'an Jiaotong University (Yantai) Research Institute for Intelligent Sensing Technology and System, School of Instrument Science and Technology, Xi'an Jiaotong University 1 , Xi'an 710049,
| |
Collapse
|
2
|
Pan P, Zhang P, Premachandran S, Peng R, Wang S, Fan Q, Sun Y, Calarco JA, Liu X. High-Resolution Imaging and Morphological Phenotyping of C. elegans through Stable Robotic Sample Rotation and Artificial Intelligence-Based 3-Dimensional Reconstruction. RESEARCH (WASHINGTON, D.C.) 2024; 7:0513. [PMID: 39479356 PMCID: PMC11522223 DOI: 10.34133/research.0513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024]
Abstract
Accurate visualization and 3-dimensional (3D) morphological profiling of small model organisms can provide quantitative phenotypes benefiting genetic analysis and modeling of human diseases in tractable organisms. However, in the highly studied nematode Caenorhabditis elegans, accurate morphological phenotyping remains challenging because of notable decrease in image resolution of distant signal under high magnification and complexity in the 3D reconstruction of microscale samples with irregular shapes. Here, we develop a robust robotic system that enables the contactless, stable, and uniform rotation of C. elegans for multi-view fluorescent imaging and 3D morphological phenotyping via the precise reconstruction of 3D models. Contactless animal rotation accommodates a variety of body shapes and sizes found at different developmental stages and in mutant strains. Through controlled rotation, high-resolution fluorescent imaging of C. elegans structures is obtained by overcoming the limitations inherent in both widefield and confocal microscopy. Combining our robotic system with machine learning, we create, for the first time, precise 3D reconstructions of C. elegans at the embryonic and adult stages, enabling 3D morphological phenotyping of mutant strains in an accurate and comprehensive fashion. Intriguingly, our morphological phenotyping discovered a genetic interaction between 2 RNA binding proteins (UNC-75/CELF and MBL-1/MBNL), which are highly conserved between C. elegans and humans and implicated in neurological and muscular disorders. Our system can thus generate quantitative morphological readouts facilitating the investigation of genetic variations and disease mechanisms. More broadly, our method will also be amenable for 3D phenotypic analysis of other biological samples, like zebrafish and Drosophila larvae.
Collapse
Affiliation(s)
- Peng Pan
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Pengsong Zhang
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Sharanja Premachandran
- Department of Cell & Systems Biology,
University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Ran Peng
- College of Marine Engineering,
Dalian Maritime University, Dalian 116026, China
| | - Shaojia Wang
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - Qigao Fan
- School of Internet of Things Engineering,
Jiangnan University, Wuxi 214122, China
| | - Yu Sun
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - John A. Calarco
- Department of Cell & Systems Biology,
University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Xinyu Liu
- Department of Mechanical and Industrial Engineering,
University of Toronto, Toronto, Ontario M5S 3G8, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
3
|
Wang Y, Zhou S, Quan Y, Liu Y, Zhou B, Chen X, Ma Z, Zhou Y. Label-free spatiotemporal decoding of single-cell fate via acoustic driven 3D tomography. Mater Today Bio 2024; 28:101201. [PMID: 39221213 PMCID: PMC11364901 DOI: 10.1016/j.mtbio.2024.101201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Label-free three-dimensional imaging plays a crucial role in unraveling the complexities of cellular functions and interactions in biomedical research. Conventional single-cell optical tomography techniques offer affordability and the convenience of bypassing laborious cell labelling protocols. However, these methods are encumbered by restricted illumination scanning ranges on abaxial plane, resulting in the loss of intricate cellular imaging details. The ability to fully control cellular rotation across all angles has emerged as an optimal solution for capturing comprehensive structural details of cells. Here, we introduce a label-free, cost-effective, and readily fabricated contactless acoustic-induced vibration system, specifically designed to enable multi-degree-of-freedom rotation of cells, ultimately attaining stable in-situ rotation. Furthermore, by integrating this system with advanced deep learning technologies, we perform 3D reconstruction and morphological analysis on diverse cell types, thus validating groups of high-precision cell identification. Notably, long-term observation of cells reveals distinct features associated with drug-induced apoptosis in both cancerous and normal cells populations. This methodology, based on deep learning-enabled cell 3D reconstruction, charts a novel trajectory for groups of real-time cellular visualization, offering promising advancements in the realms of drug screening and post-single-cell analysis, thereby addressing potential clinical requisites.
Collapse
Affiliation(s)
- Yuxin Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Shizheng Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yue Quan
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Yu Liu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai, 200240, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau, 999078, China
| |
Collapse
|
4
|
Wang J, Wang Y, Zhong L, Yan F, Zheng H. Nanoscale contrast agents: A promising tool for ultrasound imaging and therapy. Adv Drug Deliv Rev 2024; 207:115200. [PMID: 38364906 DOI: 10.1016/j.addr.2024.115200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Nanoscale contrast agents have emerged as a versatile platform in the field of biomedical research, offering great potential for ultrasound imaging and therapy. Various kinds of nanoscale contrast agents have been extensively investigated in preclinical experiments to satisfy diverse biomedical applications. This paper provides a comprehensive review of the structure and composition of various nanoscale contrast agents, as well as their preparation and functionalization, encompassing both chemosynthetic and biosynthetic strategies. Subsequently, we delve into recent advances in the utilization of nanoscale contrast agents in various biomedical applications, including ultrasound molecular imaging, ultrasound-mediated drug delivery, and cell acoustic manipulation. Finally, the challenges and prospects of nanoscale contrast agents are also discussed to promote the development of this innovative nanoplatform in the field of biomedicine.
Collapse
Affiliation(s)
- Jieqiong Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 201206, China
| | - Yuanyuan Wang
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Lin Zhong
- School of public health, Nanchang University, Nanchang, Jiangxi, 330019, China
| | - Fei Yan
- Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Hairong Zheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Kvåle Løvmo M, Deng S, Moser S, Leitgeb R, Drexler W, Ritsch-Marte M. Ultrasound-induced reorientation for multi-angle optical coherence tomography. Nat Commun 2024; 15:2391. [PMID: 38493195 PMCID: PMC10944478 DOI: 10.1038/s41467-024-46506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/29/2024] [Indexed: 03/18/2024] Open
Abstract
Organoid and spheroid technology provide valuable insights into developmental biology and oncology. Optical coherence tomography (OCT) is a label-free technique that has emerged as an excellent tool for monitoring the structure and function of these samples. However, mature organoids are often too opaque for OCT. Access to multi-angle views is highly desirable to overcome this limitation, preferably with non-contact sample handling. To fulfil these requirements, we present an ultrasound-induced reorientation method for multi-angle-OCT, which employs a 3D-printed acoustic trap inserted into an OCT imaging system, to levitate and reorient zebrafish larvae and tumor spheroids in a controlled and reproducible manner. A model-based algorithm was developed for the physically consistent fusion of multi-angle data from a priori unknown angles. We demonstrate enhanced penetration depth in the joint 3D-recovery of reflectivity, attenuation, refractive index, and position registration for zebrafish larvae, creating an enabling tool for future applications in volumetric imaging.
Collapse
Affiliation(s)
- Mia Kvåle Løvmo
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Shiyu Deng
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Simon Moser
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria
| | - Rainer Leitgeb
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Drexler
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Monika Ritsch-Marte
- Institute of Biomedical Physics, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
6
|
Wang S, Zhang Z, Ma X, Yue Y, Li K, Meng Y, Wu Y. Bidirectional and Stepwise Rotation of Cells and Particles Using Induced Charge Electroosmosis Vortexes. BIOSENSORS 2024; 14:112. [PMID: 38534219 PMCID: PMC10968096 DOI: 10.3390/bios14030112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
The rotation of cells is of significant importance in various applications including bioimaging, biophysical analysis and microsurgery. Current methods usually require complicated fabrication processes. Herein, we proposed an induced charged electroosmosis (ICEO) based on a chip manipulation method for rotating cells. Under an AC electric field, symmetric ICEO flow microvortexes formed above the electrode surface can be used to trap and rotate cells. We have discussed the impact of ICEO and dielectrophoresis (DEP) under the experimental conditions. The capabilities of our method have been tested by investigating the precise rotation of yeast cells and K562 cells in a controllable manner. By adjusting the position of cells, the rotation direction can be changed based on the asymmetric ICEO microvortexes via applying a gate voltage to the gate electrode. Additionally, by applying a pulsed signal instead of a continuous signal, we can also precisely and flexibly rotate cells in a stepwise way. Our ICEO-based rotational manipulation method is an easy to use, biocompatible and low-cost technique, allowing rotation regardless of optical, magnetic or acoustic properties of the sample.
Collapse
Affiliation(s)
- Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Macau, China
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yingqi Meng
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
| | - Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi’an 710072, China; (S.W.); (Z.Z.); (X.M.); (K.L.); (Y.M.)
- Research & Development Institute, Northwestern Polytechnical University, Shenzhen 518000, China
- Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, China
| |
Collapse
|
7
|
Zhang Z, Cao Y, Caviglia S, Agrawal P, Neuhauss SCF, Ahmed D. A vibrating capillary for ultrasound rotation manipulation of zebrafish larvae. LAB ON A CHIP 2024; 24:764-775. [PMID: 38193588 PMCID: PMC10863645 DOI: 10.1039/d3lc00817g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/18/2023] [Indexed: 01/10/2024]
Abstract
Multifunctional micromanipulation systems have garnered significant attention due to the growing interest in biological and medical research involving model organisms like zebrafish (Danio rerio). Here, we report a novel acoustofluidic rotational micromanipulation system that offers rapid trapping, high-speed rotation, multi-angle imaging, and 3D model reconstruction of zebrafish larvae. An ultrasound-activated oscillatory glass capillary is used to trap and rotate a zebrafish larva. Simulation and experimental results demonstrate that both the vibrating mode and geometric placement of the capillary contribute to the developed polarized vortices along the long axis of the capillary. Given its capacities for easy-to-operate, stable rotation, avoiding overheating, and high-throughput manipulation, our system poses the potential to accelerate zebrafish-directed biomedical research.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| | - Yilin Cao
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| | - Sara Caviglia
- Neuhauss Laboratory, Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Prajwal Agrawal
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| | - Stephan C F Neuhauss
- Neuhauss Laboratory, Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Laboratory, Institute of Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Säumerstrasse 4, CH-8803 Zurich, Switzerland.
| |
Collapse
|
8
|
Wu Y, Yue Y, Zhang H, Ma X, Zhang Z, Li K, Meng Y, Wang S, Wang X, Huang W. Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field. LAB ON A CHIP 2024; 24:933-945. [PMID: 38273814 DOI: 10.1039/d3lc00882g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Three-dimensional rotation of cells is imperative in a variety of applications such as biology, medicine, and chemistry. We report for the first time a versatile approach for executing controllable 3D rotation of cells or particles at a bipolar electrode (BPE) array using a rotating electric field. The versatility of this method is demonstrated by 3D rotating various cells including yeast cells and K562 cells and the cells can be rotated to a desired orientation and immobilized for further operations. Our results demonstrate how electrorotation torque, induced charge electroosmosis (ICEO) flow and dielectrophoresis can be exerted on certain cells for modulating the rotation axis, speed, and direction. ICEO-based out-of-plane rotation is capable of rotating various cells in a vertical plane regardless of their shape and size. It can realize cell orientation by rotating cells toward a specific angle and enable cell rotation by steadily rotating multiple cells at a controllable speed. The rotation spectrum for in-plane rotation is further used to extract the cellular dielectric properties. This work offers a flexible method for controllable, contactless and precise rotation of different cells or particles, offering a rapid, high-throughput, and nondestructive rotation method for cell analysis and drug discovery.
Collapse
Affiliation(s)
- Yupan Wu
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 518000, PR China
- Yangtze River Delta Research Institute of NPU, Taicang, 215400, PR China
| | - Yuanbo Yue
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Haohao Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xun Ma
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Zhexin Zhang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Kemu Li
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Yingqi Meng
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Shaoxi Wang
- School of Microelectronics, Northwestern Polytechnical University, Xi'an, 710072, PR China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China.
| |
Collapse
|
9
|
Liu D, Xuanyuan T, Liu X, Fu W, Liu W. Massive and efficient encapsulation of single cells in monodisperse droplets and collagen-alginate microgels using a microfluidic device. Front Bioeng Biotechnol 2023; 11:1281375. [PMID: 38033813 PMCID: PMC10684782 DOI: 10.3389/fbioe.2023.1281375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Single-cell manipulation is the key foundation of life exploration at individual cell resolution. Constructing easy-to-use, high-throughput, and biomimetic manipulative tools for efficient single-cell operation is quite necessary. In this study, a facile and efficient encapsulation of single cells relying on the massive and controllable production of droplets and collagen-alginate microgels using a microfluidic device is presented. High monodispersity and geometric homogeneity of both droplet and microgel generation were experimentally demonstrated based on the well-investigated microfluidic fabricating procedure. The reliability of the microfluidic platform for controllable, high-throughput, and improved single-cell encapsulation in monodisperse droplets and microgels was also confirmed. A single-cell encapsulation rate of up to 33.6% was achieved based on the established microfluidic operation. The introduction of stromal material in droplets/microgels for encapsulation provided single cells an in vivo simulated microenvironment. The single-cell operation achievement offers a methodological approach for developing simple and miniaturized devices to perform single-cell manipulation and analysis in a high-throughput and microenvironment-biomimetic manner. We believe that it holds great potential for applications in precision medicine, cell microengineering, drug discovery, and biosensing.
Collapse
Affiliation(s)
| | | | | | | | - Wenming Liu
- Departments of Biomedical Engineering and Pathology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Janiak J, Li Y, Ferry Y, Doinikov AA, Ahmed D. Acoustic microbubble propulsion, train-like assembly and cargo transport. Nat Commun 2023; 14:4705. [PMID: 37543657 PMCID: PMC10404234 DOI: 10.1038/s41467-023-40387-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 07/20/2023] [Indexed: 08/07/2023] Open
Abstract
Achieving controlled mobility of microparticles in viscous fluids can become pivotal in biologics, biotechniques, and biomedical applications. The self-assembly, trapping, and transport of microparticles are being explored in active matter, micro and nanorobotics, and microfluidics; however, little work has been done in acoustics, particularly in active matter and robotics. This study reports the discovery and characterization of microbubble behaviors in a viscous gel that is confined to a slight opening between glass boundaries in an acoustic field. Where incident waves encounter a narrow slit, acoustic pressure is amplified, causing the microbubbles to nucleate and cavitate within it. Intermittent activation transforms microbubbles from spherical to ellipsoidal, allowing them to be trapped within the interstice. Continuous activation propels ellipsoidal microbubbles through shape and volume modes that is developed at their surfaces. Ensembles of microbubbles self-assemble into a train-like arrangement, which in turn capture, transport, and release microparticles.
Collapse
Affiliation(s)
- Jakub Janiak
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yuyang Li
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Yann Ferry
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Alexander A Doinikov
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab (ARSL), Institute of Robotics and Intelligent Systems, ETH Zurich, CH-8803, Rüschlikon, Switzerland.
| |
Collapse
|
11
|
Gautam D, Rao VK. Modulating the Mechanical Resonance of Huh-7 Cells Based on Elasticity of Adhesion Proteins. IEEE Trans Nanobioscience 2023; 22:664-672. [PMID: 37018553 DOI: 10.1109/tnb.2023.3235645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The atomic force microscope (AFM) has been used in cell biology for a decade. AFM is a unique tool for investigating the viscoelastic characteristics of live cells in culture and mapping the spatial distribution of mechanical properties, giving an indirect signal of the underlying cytoskeleton and cell organelles. Although several experimental and numerical studies were conducted to analyze the mechanical properties of the cells. We established the non-invasive Position Sensing Device (PSD) technique to evaluate the resonance behavior of the Huh-7 cells. This technique results in the natural frequency of the cells. Obtained experimental frequencies were compared with the numerical AFM modeling. Most of the numerical analysis were based on the assumed shape and geometry. In this study, we propose a new method for numerical AFM characterization of Huh-7 cells to estimate its mechanical behavior. We capture the actual image and geometry of the trypsinized Huh-7 cells. These real images are then used for numerical modeling. The natural frequency of the cells was evaluated and found to be in the range of 24 kHz. Furthermore, the impact of focal adhesion (FA's) stiffness on the fundamental frequency of the Huh-7 cells was investigated. There has been a 6.5 times increase in the natural frequency of the Huh-7 cells on increasing the FA's stiffness from 5 pN/nm to 500 pN/nm. This indicates that the mechanical behavior of FA's leads to change the resonance behavior of the Huh-7 cell. Hence FA's are the key element in controlling the dynamics of the cell. These measurements can enhance our understanding of normal and pathological cell mechanics and potentially improve disease etiology, diagnosis, and therapy choices. The proposed technique and numerical approach are further useful in selecting the target therapies parameters (frequency) and evaluating of mechanical properties of the cells.
Collapse
|
12
|
Wang C, Wu Y, Dong X, Armacki M, Sitti M. In situ sensing physiological properties of biological tissues using wireless miniature soft robots. SCIENCE ADVANCES 2023; 9:eadg3988. [PMID: 37285426 DOI: 10.1126/sciadv.adg3988] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
Implanted electronic sensors, compared with conventional medical imaging, allow monitoring of advanced physiological properties of soft biological tissues continuously, such as adhesion, pH, viscoelasticity, and biomarkers for disease diagnosis. However, they are typically invasive, requiring being deployed by surgery, and frequently cause inflammation. Here we propose a minimally invasive method of using wireless miniature soft robots to in situ sense the physiological properties of tissues. By controlling robot-tissue interaction using external magnetic fields, visualized by medical imaging, we can recover tissue properties precisely from the robot shape and magnetic fields. We demonstrate that the robot can traverse tissues with multimodal locomotion and sense the adhesion, pH, and viscoelasticity on porcine and mice gastrointestinal tissues ex vivo, tracked by x-ray or ultrasound imaging. With the unprecedented capability of sensing tissue physiological properties with minimal invasion and high resolution deep inside our body, this technology can potentially enable critical applications in both basic research and clinical practice.
Collapse
Affiliation(s)
- Chunxiang Wang
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich 8092, Switzerland
| | - Yingdan Wu
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
| | - Xiaoguang Dong
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | - Metin Sitti
- Physical Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart 70569, Germany
- Institute for Biomedical Engineering, ETH Zürich, Zürich 8092, Switzerland
- School of Medicine and College of Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
13
|
Liu Y, Yin Q, Luo Y, Huang Z, Cheng Q, Zhang W, Zhou B, Zhou Y, Ma Z. Manipulation with sound and vibration: A review on the micromanipulation system based on sub-MHz acoustic waves. ULTRASONICS SONOCHEMISTRY 2023; 96:106441. [PMID: 37216791 PMCID: PMC10213378 DOI: 10.1016/j.ultsonch.2023.106441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Manipulation of micro-objects have been playing an essential role in biochemical analysis or clinical diagnostics. Among the diverse technologies for micromanipulation, acoustic methods show the advantages of good biocompatibility, wide tunability, a label-free and contactless manner. Thus, acoustic micromanipulations have been widely exploited in micro-analysis systems. In this article, we reviewed the acoustic micromanipulation systems that were actuated by sub-MHz acoustic waves. In contrast to the high-frequency range, the acoustic microsystems operating at sub-MHz acoustic frequency are more accessible, whose acoustic sources are at low cost and even available from daily acoustic devices (e.g. buzzers, speakers, piezoelectric plates). The broad availability, with the addition of the advantages of acoustic micromanipulation, make sub-MHz microsystems promising for a variety of biomedical applications. Here, we review recent progresses in sub-MHz acoustic micromanipulation technologies, focusing on their applications in biomedical fields. These technologies are based on the basic acoustic phenomenon, such as cavitation, acoustic radiation force, and acoustic streaming. And categorized by their applications, we introduce these systems for mixing, pumping and droplet generation, separation and enrichment, patterning, rotation, propulsion and actuation. The diverse applications of these systems hold great promise for a wide range of enhancements in biomedicines and attract increasing interest for further investigation.
Collapse
Affiliation(s)
- Yu Liu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Qiu Yin
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yucheng Luo
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China
| | - Ziyu Huang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Wenming Zhang
- State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingpu Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China.
| | - Zhichao Ma
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, No.800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
14
|
Jiang R, Yoo P, Sudarshana AM, Pelegri-O'Day E, Chhabra S, Mock M, Lee AP. Microfluidic viscometer by acoustic streaming transducers. LAB ON A CHIP 2023; 23:2577-2585. [PMID: 37133350 DOI: 10.1039/d3lc00101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Measurement of fluid viscosity represents a huge need for many biomedical and materials processing applications. Sample fluids containing DNA, antibodies, protein-based drugs, and even cells have become important therapeutic options. The physical properties, including viscosity, of these biologics are critical factors in the optimization of the biomanufacturing processes and delivery of therapeutics to patients. Here we demonstrate an acoustic microstreaming platform termed as microfluidic viscometer by acoustic streaming transducers (μVAST) that induces fluid transport from second-order microstreaming to measure viscosity. Validation of our platform is achieved with different glycerol content mixtures to reflect different viscosities and shows that viscosity can be estimated based on the maximum speed of the second-order acoustic microstreaming. The μVAST platform requires only a small volume of fluid sample (∼1.2 μL), which is 16-30 times smaller than that of commercial viscometers. In addition, μVAST can be scaled up for ultra-high throughput measurements of viscosity. Here we demonstrate 16 samples within 3 seconds, which is an attractive feature for automating the process flows in drug development and materials manufacturing and production.
Collapse
Affiliation(s)
- Ruoyu Jiang
- Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | - Paul Yoo
- Biomedical Engineering, University of California, Irvine, CA 92697, USA
| | | | - Emma Pelegri-O'Day
- Amgen Research, Biologics Therapeutic Discovery, 1 Amgen Center Drive, Thousand Oaks, California 91320, USA
| | - Sandeep Chhabra
- Amgen Research, Biologics Therapeutic Discovery, 1 Amgen Center Drive, Thousand Oaks, California 91320, USA
| | - Marissa Mock
- Amgen Research, Biologics Therapeutic Discovery, 1 Amgen Center Drive, Thousand Oaks, California 91320, USA
| | - Abraham P Lee
- Biomedical Engineering, University of California, Irvine, CA 92697, USA
- Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
15
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
16
|
Kontomaris SV, Stylianou A, Georgakopoulos A, Malamou A. 3D AFM Nanomechanical Characterization of Biological Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:395. [PMID: 36770357 PMCID: PMC9920073 DOI: 10.3390/nano13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Atomic Force Microscopy (AFM) is a powerful tool enabling the mechanical characterization of biological materials at the nanoscale. Since biological materials are highly heterogeneous, their mechanical characterization is still considered to be a challenging procedure. In this paper, a new approach that leads to a 3-dimensional (3D) nanomechanical characterization is presented based on the average Young's modulus and the AFM indentation method. The proposed method can contribute to the clarification of the variability of the mechanical properties of biological samples in the 3-dimensional space (variability at the x-y plane and depth-dependent behavior). The method was applied to agarose gels, fibroblasts, and breast cancer cells. Moreover, new mathematical methods towards a quantitative mechanical characterization are also proposed. The presented approach is a step forward to a more accurate and complete characterization of biological materials and could contribute to an accurate user-independent diagnosis of various diseases such as cancer in the future.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- BioNanoTec Ltd., 2043 Nicosia, Cyprus
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, 2404 Nicosia, Cyprus
| | - Anastasios Georgakopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
17
|
Kontomaris SV, Stylianou A, Chliveros G, Malamou A. Determining Spatial Variability of Elastic Properties for Biological Samples Using AFM. MICROMACHINES 2023; 14:mi14010182. [PMID: 36677243 PMCID: PMC9862197 DOI: 10.3390/mi14010182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/26/2022] [Accepted: 01/09/2023] [Indexed: 05/29/2023]
Abstract
Measuring the mechanical properties (i.e., elasticity in terms of Young's modulus) of biological samples using Atomic Force Microscopy (AFM) indentation at the nanoscale has opened new horizons in studying and detecting various pathological conditions at early stages, including cancer and osteoarthritis. It is expected that AFM techniques will play a key role in the future in disease diagnosis and modeling using rigorous mathematical criteria (i.e., automated user-independent diagnosis). In this review, AFM techniques and mathematical models for determining the spatial variability of elastic properties of biological materials at the nanoscale are presented and discussed. Significant issues concerning the rationality of the elastic half-space assumption, the possibility of monitoring the depth-dependent mechanical properties, and the construction of 3D Young's modulus maps are also presented.
Collapse
Affiliation(s)
- Stylianos Vasileios Kontomaris
- BioNanoTec Ltd., Nicosia 2043, Cyprus
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Andreas Stylianou
- School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
| | - Georgios Chliveros
- Faculty of Engineering and Architecture, Metropolitan College, 15125 Athens, Greece
| | - Anna Malamou
- School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
18
|
Pan H, Mei D, Xu C, Weng W, Han S, Wang Y. Multifunctional Acoustofluidic Centrifuge Device Using Tri-Symmetrical Design for Particle Enrichment and Separation and Multiphase Microflow Mixing. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Clerc T, Boscq S, Attia R, Kaminski Schierle GS, Charrier B, Läubli NF. Cultivation and Imaging of S. latissima Embryo Monolayered Cell Sheets Inside Microfluidic Devices. Bioengineering (Basel) 2022; 9:bioengineering9110718. [PMID: 36421119 PMCID: PMC9687954 DOI: 10.3390/bioengineering9110718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
The culturing and investigation of individual marine specimens in lab environments is crucial to further our understanding of this highly complex ecosystem. However, the obtained results and their relevance are often limited by a lack of suitable experimental setups enabling controlled specimen growth in a natural environment while allowing for precise monitoring and in-depth observations. In this work, we explore the viability of a microfluidic device for the investigation of the growth of the alga Saccharina latissima to enable high-resolution imaging by confining the samples, which usually grow in 3D, to a single 2D plane. We evaluate the specimen’s health based on various factors such as its growth rate, cell shape, and major developmental steps with regard to the device’s operating parameters and flow conditions before demonstrating its compatibility with state-of-the-art microscopy imaging technologies such as the skeletonisation of the specimen through calcofluor white-based vital staining of its cell contours as well as the immunolocalisation of the specimen’s cell wall. Furthermore, by making use of the on-chip characterisation capabilities, we investigate the influence of altered environmental illuminations on the embryonic development using blue and red light. Finally, live tracking of fluorescent microspheres deposited on the surface of the embryo permits the quantitative characterisation of growth at various locations of the organism.
Collapse
Affiliation(s)
- Thomas Clerc
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Samuel Boscq
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Rafaele Attia
- Ecology of Marine Plankton, Laboratory of Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
| | - Gabriele S. Kaminski Schierle
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Bénédicte Charrier
- Morphogenesis of Macroalgae, Laboratory of Integrative Biology of Marine Models, Station Biologique de Roscoff, CNRS, Sorbonne University, 29680 Roscoff, France
- Correspondence: (B.C.); (N.F.L.)
| | - Nino F. Läubli
- Molecular Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
- Correspondence: (B.C.); (N.F.L.)
| |
Collapse
|
20
|
Durrer J, Agrawal P, Ozgul A, Neuhauss SCF, Nama N, Ahmed D. A robot-assisted acoustofluidic end effector. Nat Commun 2022; 13:6370. [PMID: 36289227 PMCID: PMC9605990 DOI: 10.1038/s41467-022-34167-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
Liquid manipulation is the foundation of most laboratory processes. For macroscale liquid handling, both do-it-yourself and commercial robotic systems are available; however, for microscale, reagents are expensive and sample preparation is difficult. Over the last decade, lab-on-a-chip (LOC) systems have come to serve for microscale liquid manipulation; however, lacking automation and multi-functionality. Despite their potential synergies, each has grown separately and no suitable interface yet exists to link macro-level robotics with micro-level LOC or microfluidic devices. Here, we present a robot-assisted acoustofluidic end effector (RAEE) system, comprising a robotic arm and an acoustofluidic end effector, that combines robotics and microfluidic functionalities. We further carried out fluid pumping, particle and zebrafish embryo trapping, and mobile mixing of complex viscous liquids. Finally, we pre-programmed the RAEE to perform automated mixing of viscous liquids in well plates, illustrating its versatility for the automatic execution of chemical processes.
Collapse
Affiliation(s)
- Jan Durrer
- Acoustic Robotics Systems Lab, Institute or Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Prajwal Agrawal
- Acoustic Robotics Systems Lab, Institute or Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Ali Ozgul
- Acoustic Robotics Systems Lab, Institute or Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Stephan C F Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Nitesh Nama
- Department of Mechanical & Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Daniel Ahmed
- Acoustic Robotics Systems Lab, Institute or Robotics and Intelligent Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Harshbarger CL, Gerlt MS, Ghadamian JA, Bernardoni DC, Snedeker JG, Dual J. Optical feedback control loop for the precise and robust acoustic focusing of cells, micro- and nanoparticles. LAB ON A CHIP 2022; 22:2810-2819. [PMID: 35843222 DOI: 10.1039/d2lc00376g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Despite a long history and the vast number of applications demonstrated, very few market products incorporate acoustophoresis. Because a human operator must run and control a device during an experiment, most devices are limited to proof of concepts. On top of a possible detuning due to temperature changes, the human operator introduces a bias which reduces the reproducibility, performance and reliability of devices. To mitigate some of these problems, we propose an optical feedback control loop that optimizes the excitation frequency. We investigate the improvements that can be expected when a human operator is replaced for acoustic micro- and nanometer particle focusing experiments. Three experiments previously conducted in our group were taken as a benchmark. In addition to being automatic, this resulted in the feedback control loop displaying a superior performance compared to an experienced scientist in 1) improving the particle focusing by at least a factor of two for 5 μm diameter PS particles, 2) increasing the range of flow rates in which 1 μm diameter PS particles could be focused and 3) was even capable of focusing 600 nm diameter PS particles at a frequency of 1.72075 MHz. Furthermore, the feedback control loop is capable of focusing biological cells in one and two pressure nodes. The requirements for the feedback control loop are: an optical setup, a run-of-the-mill computer and a computer controllable function generator. Thus resulting in a cost-effective, high-throughput and automated method to rapidly increase the efficiency of established systems. The code for the feedback control loop is openly accessible and the authors explicitly wish that the community uses and modifies the feedback control loop to their own needs.
Collapse
Affiliation(s)
- Cooper L Harshbarger
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Michael S Gerlt
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute for Chemical and Bioengineering, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jan A Ghadamian
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Davide C Bernardoni
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jess G Snedeker
- Department of Orthopedics, Balgrist University Hospital, University of Zurich, Zurich, Switzerland.
- Institute for Biomechanics, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Jürg Dual
- Institute for Mechanical Systems, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Vikrant KS, Jayanth GR. Diamagnetically levitated nanopositioners with large-range and multiple degrees of freedom. Nat Commun 2022; 13:3334. [PMID: 35680887 PMCID: PMC9184538 DOI: 10.1038/s41467-022-31046-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/31/2022] [Indexed: 11/20/2022] Open
Abstract
Precision positioning stages are often central to science and technology at the micrometer and nanometer length scales. Compact, multi-degree-of-freedom stages with large dynamic range are especially desirable, since they help to improve the throughput and versatility in manipulation without introducing spatial constraints. Here, we report compact diamagnetically levitated stages, which employ dual-sided actuation to achieve large-range, six degrees-of-freedom positioning. Dual-sided actuation is demonstrated to enable trapping a magnet array in 3D, with independent control of the trap stiffness about two axes, independent control of forces in 3D and torque about 2 axes. A simplified model is proposed to directly relate these physical quantities to the necessary actuation currents. Experimentally, we demonstrate six degrees-of-freedom positioning with low cross-axis motion, large range and nanometer-scale resolution. In particular, here we show linear motion range of 5 mm with positioning precision better than 1.88 nm, and angular motion range of 1.1 radian with a resolution of 50 micro-radian. With the volume of the stage being between 10-20 cm3, its utility as a compact nano-positioner is showcased by using it to automatically replace the tip of an atomic force microscope probe. Precision positioning stages are often central to science and technology at the micrometer and nanometer length scales. Here, the authors report compact, diamagnetically levitated positioning stages that achieve large-range, six degrees-of-freedom positioning with nanometer-scale precision.
Collapse
Affiliation(s)
- K S Vikrant
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India
| | - G R Jayanth
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore, 560012, India. .,Department of Mechanical Engineering, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
23
|
Shakoor A, Gao W, Zhao L, Jiang Z, Sun D. Advanced tools and methods for single-cell surgery. MICROSYSTEMS & NANOENGINEERING 2022; 8:47. [PMID: 35502330 PMCID: PMC9054775 DOI: 10.1038/s41378-022-00376-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Highly precise micromanipulation tools that can manipulate and interrogate cell organelles and components must be developed to support the rapid development of new cell-based medical therapies, thereby facilitating in-depth understanding of cell dynamics, cell component functions, and disease mechanisms. This paper presents a literature review on micro/nanomanipulation tools and their control methods for single-cell surgery. Micromanipulation methods specifically based on laser, microneedle, and untethered micro/nanotools are presented in detail. The limitations of these techniques are also discussed. The biological significance and clinical applications of single-cell surgery are also addressed in this paper.
Collapse
Affiliation(s)
- Adnan Shakoor
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Wendi Gao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Libo Zhao
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Zhuangde Jiang
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- State Key Laboratory for Manufacturing Systems Engineering, International Joint Laboratory for Micro/Nano Manufacturing and Measurement Technologies, The School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
24
|
Jooss VM, Bolten JS, Huwyler J, Ahmed D. In vivo acoustic manipulation of microparticles in zebrafish embryos. SCIENCE ADVANCES 2022; 8:eabm2785. [PMID: 35333569 PMCID: PMC8956268 DOI: 10.1126/sciadv.abm2785] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In vivo micromanipulation using ultrasound is an exciting technology with promises for cancer research, brain research, vasculature biology, diseases, and treatment development. In the present work, we demonstrate in vivo manipulation of gas-filled microparticles using zebrafish embryos as a vertebrate model system. Micromanipulation methods often are conducted in vitro, and they do not fully reflect the complex environment associated in vivo. Four piezoelectric actuators were positioned orthogonally to each other around an off-centered fluidic channel that allowed for two-dimensional manipulation of intravenously injected microbubbles. Selective manipulation of microbubbles inside a blood vessel with micrometer precision was achieved without interfering with circulating blood cells. Last, we studied the viability of zebrafish embryos subjected to the acoustic field. This successful high-precision, in vivo acoustic manipulation of intravenously injected microbubbles offers potentially promising therapeutic options.
Collapse
Affiliation(s)
- Viktor Manuel Jooss
- Acoustics Robotics Systems Lab (ARSL), ETH-Zürich, Rüschlikon CH-8803, Switzerland
| | - Jan Stephan Bolten
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel CH-4056, Switzerland
| | - Jörg Huwyler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Technology, University of Basel, Basel CH-4056, Switzerland
| | - Daniel Ahmed
- Acoustics Robotics Systems Lab (ARSL), ETH-Zürich, Rüschlikon CH-8803, Switzerland
- Corresponding author.
| |
Collapse
|
25
|
Athanassiadis AG, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P. Ultrasound-Responsive Systems as Components for Smart Materials. Chem Rev 2022; 122:5165-5208. [PMID: 34767350 PMCID: PMC8915171 DOI: 10.1021/acs.chemrev.1c00622] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Smart materials can respond to stimuli and adapt their responses based on external cues from their environments. Such behavior requires a way to transport energy efficiently and then convert it for use in applications such as actuation, sensing, or signaling. Ultrasound can carry energy safely and with low losses through complex and opaque media. It can be localized to small regions of space and couple to systems over a wide range of time scales. However, the same characteristics that allow ultrasound to propagate efficiently through materials make it difficult to convert acoustic energy into other useful forms. Recent work across diverse fields has begun to address this challenge, demonstrating ultrasonic effects that provide control over physical and chemical systems with surprisingly high specificity. Here, we review recent progress in ultrasound-matter interactions, focusing on effects that can be incorporated as components in smart materials. These techniques build on fundamental phenomena such as cavitation, microstreaming, scattering, and acoustic radiation forces to enable capabilities such as actuation, sensing, payload delivery, and the initiation of chemical or biological processes. The diversity of emerging techniques holds great promise for a wide range of smart capabilities supported by ultrasound and poses interesting questions for further investigations.
Collapse
Affiliation(s)
- Athanasios G. Athanassiadis
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Zhichao Ma
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Nicolas Moreno-Gomez
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Kai Melde
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Eunjin Choi
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Rahul Goyal
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
| | - Peer Fischer
- Micro,
Nano, and Molecular Systems Group, Max Planck
Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart, Germany
- Institute
of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
26
|
Schnitzler LG, Paeger A, Brugger MS, Schneider MF, Westerhausen C. Reversible single cell trapping of Paramecium caudatum to correlate swimming behavior and membrane state. BIOMICROFLUIDICS 2022; 16:024102. [PMID: 35282034 PMCID: PMC8896893 DOI: 10.1063/5.0084084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Single cell measurements with living specimen like, for example, the ciliated protozoan Paramecium caudatum can be a challenging task. We present here a microfluidic trapping mechanism for measurements with these micro-organisms that can be used, e.g., for optical measurements to correlate cellular functions with the phase state of the lipid membrane. Here, we reversibly trap single cells in small compartments. Furthermore, we track and analyze the swimming behavior of single cells over several minutes. Before and after reversible trapping the swimming speed is comparable, suggesting that trapping does not have a large effect on cell behavior. Last, we demonstrate the feasibility of membrane order measurements on living cells using the fluorescent dye 6-lauryl-2-dimethylaminonaphthalene (Laurdan).
Collapse
Affiliation(s)
| | - Anne Paeger
- Medical and Biological Physics, Technical University Dortmund, 44227 Dortmund, Germany
| | | | - Matthias F. Schneider
- Medical and Biological Physics, Technical University Dortmund, 44227 Dortmund, Germany
| | | |
Collapse
|
27
|
Liu X, Zhang W, Farooq U, Rong N, Shi J, Pang N, Xu L, Niu L, Meng L. Rapid cell pairing and fusion based on oscillating bubbles within an acoustofluidic device. LAB ON A CHIP 2022; 22:921-927. [PMID: 35137756 DOI: 10.1039/d1lc01074c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell fusion is an essential event in many biological processes and has gained increasing attention in the field of biotechnology. In this study, we demonstrate an effective and convenient strategy for cell capture, pairing, and fusion based on oscillating bubbles within an acoustofluidic device. Multirectangular structures of the same size were fabricated at the sidewall of polydimethylsiloxane to generate monodisperse microbubbles. These microbubbles oscillated with a similar amplitude under single-frequency acoustic excitation. Cells were simultaneously captured and paired on the surface of the oscillating bubbles within 40 ms, and the efficiency reached approximately 90%. Homotypic or heterotypic cell membrane fusion was achieved within 15 and 20 min, respectively. More importantly, the homotypic fused cells enabled migration and proliferation at 24 h, indicating that the important biological functions were not altered.
Collapse
Affiliation(s)
- Xiufang Liu
- College of Medicine and Biological information engineering, Northeastern University, Liaoning 110819, China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Wenjun Zhang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Umar Farooq
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Ning Rong
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Jingyao Shi
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Na Pang
- College of Medicine and Biological information engineering, Northeastern University, Liaoning 110819, China.
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Lisheng Xu
- College of Medicine and Biological information engineering, Northeastern University, Liaoning 110819, China.
| | - Lili Niu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| | - Long Meng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Guangdong 518055, China.
| |
Collapse
|
28
|
Wang Z, Rich J, Hao N, Gu Y, Chen C, Yang S, Zhang P, Huang TJ. Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation. MICROSYSTEMS & NANOENGINEERING 2022; 8:45. [PMID: 35498337 PMCID: PMC9051122 DOI: 10.1038/s41378-022-00374-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 05/08/2023]
Abstract
Nanocarrier and exosome encapsulation has been found to significantly increase the efficacy of targeted drug delivery while also minimizing unwanted side effects. However, the development of exosome-encapsulated drug nanocarriers is limited by low drug loading efficiencies and/or complex, time-consuming drug loading processes. Herein, we have developed an acoustofluidic device that simultaneously performs both drug loading and exosome encapsulation. By synergistically leveraging the acoustic radiation force, acoustic microstreaming, and shear stresses in a rotating droplet, the concentration, and fusion of exosomes, drugs, and porous silica nanoparticles is achieved. The final product consists of drug-loaded silica nanocarriers that are encased within an exosomal membrane. The drug loading efficiency is significantly improved, with nearly 30% of the free drug (e.g., doxorubicin) molecules loaded into the nanocarriers. Furthermore, this acoustofluidic drug loading system circumvents the need for complex chemical modification, allowing drug loading and encapsulation to be completed within a matter of minutes. These exosome-encapsulated nanocarriers exhibit excellent efficiency in intracellular transport and are capable of significantly inhibiting tumor cell proliferation. By utilizing physical forces to rapidly generate hybrid nanocarriers, this acoustofluidic drug loading platform wields the potential to significantly impact innovation in both drug delivery research and applications.
Collapse
Affiliation(s)
- Zeyu Wang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC 27708 USA
| | - Nanjing Hao
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Yuyang Gu
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Chuyi Chen
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Shujie Yang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Peiran Zhang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708 USA
| |
Collapse
|
29
|
Deshwal A, Gill AK, Nain S, Patra D, Maiti S. Inhibitory effect of nucleotides on acetylcholine esterase activity and its microflow-based actuation in blood plasma. Chem Commun (Camb) 2022; 58:3501-3504. [DOI: 10.1039/d2cc00029f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The inhibitory effect of nucleotides on the catalytic activity of acetylcholine esterase (AChE) was rationalized and similar inhibition trend was observed when analyzing the macroscopic fluid flow generated by surface...
Collapse
|
30
|
Zhou Y, Liu J, Yan J, Guo S, Li T. Soft-Contact Acoustic Microgripper Based on a Controllable Gas-Liquid Interface for Biomicromanipulations. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2104579. [PMID: 34738717 DOI: 10.1002/smll.202104579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The manipulation of microscale bioentities is desired in many biological and biomedical applications. However, the potential unobservable damage to bioparticles due to rigid contact has always been a source of concern. Herein, a soft-contact acoustic microgripper to handle microparticles to improve the interaction safety is introduced. The system takes advantage of the acoustic-enhanced adhesion of flexible gas-liquid interfaces to capture-release, transport, and rotate the target, such as microbeads (20-65 µm) and zebrafish embryos (from 950 µm to 1.4 mm). The gas-liquid interface generated at the tip of a microcapillary can be precisely controlled by a pneumatic pressure source. The gas-liquid interface oscillation excited by acoustic energy imposes coupled radiation force and drag force on the microparticles, enabling multidimensional movements. Experiments with the microbeads are conducted to evaluate the claimed function and quantify the key parameters that influence the manipulation result. Additionally, 250 zebrafish embryos are captured, transported, and rotated. The hatching rate of the 250 manipulated embryos is approximately 98% similar to that of the nonmanipulated group, which proves the noninvasiveness of the method. The derived theories and experimental data indicate that the developed soft-contact microgripper is functional and beneficial for biological and medical applications.
Collapse
Affiliation(s)
- Yidi Zhou
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300132, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin, 300132, China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Jixiao Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300132, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin, 300132, China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Junjia Yan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300132, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin, 300132, China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Shijie Guo
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, 300132, China
- Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin, 300132, China
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300132, China
| | - Tiejun Li
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300132, China
| |
Collapse
|
31
|
Akkoyun F, Gucluer S, Ozcelik A. Potential of the acoustic micromanipulation technologies for biomedical research. BIOMICROFLUIDICS 2021; 15:061301. [PMID: 34849184 PMCID: PMC8616630 DOI: 10.1063/5.0073596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/16/2021] [Indexed: 05/04/2023]
Abstract
Acoustic micromanipulation technologies are a set of versatile tools enabling unparalleled micromanipulation capabilities. Several characteristics put the acoustic micromanipulation technologies ahead of most of the other tweezing methods. For example, acoustic tweezers can be adapted as non-invasive platforms to handle single cells gently or as probes to stimulate or damage tissues. Besides, the nature of the interactions of acoustic waves with solids and liquids eliminates labeling requirements. Considering the importance of highly functional tools in biomedical research for empowering important discoveries, acoustic micromanipulation can be valuable for researchers in biology and medicine. Herein, we discuss the potential of acoustic micromanipulation technologies from technical and application points of view in biomedical research.
Collapse
Affiliation(s)
| | | | - Adem Ozcelik
- Author to whom correspondence should be addressed:
| |
Collapse
|
32
|
Marconi M, Wabnik K. Shaping the Organ: A Biologist Guide to Quantitative Models of Plant Morphogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:746183. [PMID: 34675952 PMCID: PMC8523991 DOI: 10.3389/fpls.2021.746183] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Organ morphogenesis is the process of shape acquisition initiated with a small reservoir of undifferentiated cells. In plants, morphogenesis is a complex endeavor that comprises a large number of interacting elements, including mechanical stimuli, biochemical signaling, and genetic prerequisites. Because of the large body of data being produced by modern laboratories, solving this complexity requires the application of computational techniques and analyses. In the last two decades, computational models combined with wet-lab experiments have advanced our understanding of plant organ morphogenesis. Here, we provide a comprehensive review of the most important achievements in the field of computational plant morphodynamics. We present a brief history from the earliest attempts to describe plant forms using algorithmic pattern generation to the evolution of quantitative cell-based models fueled by increasing computational power. We then provide an overview of the most common types of "digital plant" paradigms, and demonstrate how models benefit from diverse techniques used to describe cell growth mechanics. Finally, we highlight the development of computational frameworks designed to resolve organ shape complexity through integration of mechanical, biochemical, and genetic cues into a quantitative standardized and user-friendly environment.
Collapse
Affiliation(s)
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
33
|
Läubli NF, Gerlt MS, Wüthrich A, Lewis RTM, Shamsudhin N, Kutay U, Ahmed D, Dual J, Nelson BJ. Embedded Microbubbles for Acoustic Manipulation of Single Cells and Microfluidic Applications. Anal Chem 2021; 93:9760-9770. [PMID: 34228921 PMCID: PMC8295982 DOI: 10.1021/acs.analchem.1c01209] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Acoustically excited microstructures have demonstrated significant potential for small-scale biomedical applications by overcoming major microfluidic limitations. Recently, the application of oscillating microbubbles has demonstrated their superiority over acoustically excited solid structures due to their enhanced acoustic streaming at low input power. However, their limited temporal stability hinders their direct applicability for industrial or clinical purposes. Here, we introduce the embedded microbubble, a novel acoustofluidic design based on the combination of solid structures (poly(dimethylsiloxane)) and microbubbles (air-filled cavity) to combine the benefits of both approaches while minimizing their drawbacks. We investigate the influence of various design parameters and geometrical features through numerical simulations and experimentally evaluate their manipulation capabilities. Finally, we demonstrate the capabilities of our design for microfluidic applications by investigating its mixing performance as well as through the controlled rotational manipulation of individual HeLa cells.
Collapse
Affiliation(s)
- Nino F. Läubli
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
- Molecular
Neuroscience Group, Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, CB3 0AS Cambridge, United Kingdom
| | - Michael S. Gerlt
- Department
of Mechanical and Process Engineering, ETH Zurich, Mechanics and Experimental Dynamics, Institute of Mechanical Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Alexander Wüthrich
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Renard T. M. Lewis
- Department
of Biology, ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Naveen Shamsudhin
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Ulrike Kutay
- Department
of Biology, ETH Zurich, Institute of Biochemistry, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
| | - Daniel Ahmed
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
- Department
of Mechanical and Process Engineering, ETH Zurich, Acoustic Robotics Systems Lab, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Jürg Dual
- Department
of Mechanical and Process Engineering, ETH Zurich, Mechanics and Experimental Dynamics, Institute of Mechanical Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| | - Bradley J. Nelson
- Department
of Mechanical and Process Engineering, ETH Zurich, Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, Tannenstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|