1
|
Oulhen N, Morita S, Pieplow C, Onorato TM, Foster S, Wessel G. Conservation and contrast in cell states of echinoderm ovaries. Mol Reprod Dev 2024; 91:e23721. [PMID: 38054259 PMCID: PMC11153327 DOI: 10.1002/mrd.23721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Echinoderms produce functional gametes throughout their lifespan, in some cases exceeding 200 years. The histology and ultrastructure of echinoderm ovaries has been described but how these ovaries function and maintain the production of high-quality gametes remains a mystery. Here, we present the first single cell RNA sequencing data sets of mature ovaries from two sea urchin species (Strongylocentrotus purpuratus [Sp] and Lytechinus variegatus [Lv]), and one sea star species (Patiria miniata [Pm]). We find 14 cell states in the Sp ovary, 16 cell states in the Lv ovary and 13 cell states in the ovary of the sea star. This resource is essential to understand the structure and functional biology of the ovary in echinoderms, and better informs decisions in the utilization of in situ RNA hybridization probes selective for various cell types. We link key genes with cell clusters in validation of this approach. This resource also aids in the identification of the stem cells for prolonged and continuous gamete production, is a foundation for testing changes in the annual reproductive cycle, and is essential for understanding the evolution of reproduction of this important phylum.
Collapse
Affiliation(s)
- Nathalie Oulhen
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Shumpei Morita
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
- Asamushi Research Center for Marine Biology, Tohoku University, Aomori, 039-3501, Japan
| | - Cosmo Pieplow
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Thomas M. Onorato
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
- Department of Natural Sciences, LaGuardia Community College, Long Island City, NY 11101, USA
| | - Stephany Foster
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| | - Gary Wessel
- Department of Molecular and Cellular Biology & Biochemistry, Brown University, Providence, RI 02912, USA
| |
Collapse
|
2
|
Cardenas RP, Zyoud A, McIntyre A, Alberio R, Mongan NP, Allegrucci C. NANOG controls testicular germ cell tumour stemness through regulation of MIR9-2. Stem Cell Res Ther 2024; 15:128. [PMID: 38693576 PMCID: PMC11062916 DOI: 10.1186/s13287-024-03724-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Testicular germ cell tumours (TGCTs) represent a clinical challenge; they are most prevalent in young individuals and are triggered by molecular mechanisms that are not fully understood. The origin of TGCTs can be traced back to primordial germ cells that fail to mature during embryonic development. These cells express high levels of pluripotency factors, including the transcription factor NANOG which is highly expressed in TGCTs. Gain or amplification of the NANOG locus is common in advanced tumours, suggesting a key role for this master regulator of pluripotency in TGCT stemness and malignancy. METHODS In this study, we analysed the expression of microRNAs (miRNAs) that are regulated by NANOG in TGCTs via integrated bioinformatic analyses of data from The Cancer Genome Atlas and NANOG chromatin immunoprecipitation in human embryonic stem cells. Through gain-of-function experiments, MIR9-2 was further investigated as a novel tumour suppressor regulated by NANOG. After transfection with MIR9-2 mimics, TGCT cells were analysed for cell proliferation, invasion, sensitivity to cisplatin, and gene expression signatures by RNA sequencing. RESULTS For the first time, we identified 86 miRNAs regulated by NANOG in TGCTs. Among these, 37 miRNAs were differentially expressed in NANOG-high tumours, and they clustered TGCTs according to their subtypes. Binding of NANOG within 2 kb upstream of the MIR9-2 locus was associated with a negative regulation. Low expression of MIR9-2 was associated with tumour progression and MIR9-2-5p was found to play a role in the control of tumour stemness. A gain of function of MIR9-2-5p was associated with reduced proliferation, invasion, and sensitivity to cisplatin in both embryonal carcinoma and seminoma tumours. MIR9-2-5p expression in TGCT cells significantly reduced the expression of genes regulating pluripotency and cell division, consistent with its functional effect on reducing cancer stemness. CONCLUSIONS This study provides new molecular insights into the role of NANOG as a key determinant of pluripotency in TGCTs through the regulation of MIR9-2-5p, a novel epigenetic modulator of cancer stemness. Our data also highlight the potential negative feedback mediated by MIR9-2-5p on NANOG expression, which could be exploited as a therapeutic strategy for the treatment of TGCTs.
Collapse
Affiliation(s)
- Ryan P Cardenas
- SVMS, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Ahmad Zyoud
- SVMS, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Alan McIntyre
- School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Centre for Cancer Sciences and Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Ramiro Alberio
- School of Biosciences, Faculty of Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Nigel P Mongan
- SVMS, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
- Centre for Cancer Sciences and Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK
- Department of Pharmacology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Cinzia Allegrucci
- SVMS, Faculty of Medicine and Health Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK.
- Centre for Cancer Sciences and Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
3
|
Guan S, Tang J, Ma X, Miao R, Cheng B. CBX7C⋅PHC2 interaction facilitates PRC1 assembly and modulates its phase separation properties. iScience 2024; 27:109548. [PMID: 38600974 PMCID: PMC11004992 DOI: 10.1016/j.isci.2024.109548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 04/12/2024] Open
Abstract
CBX7 is a key component of PRC1 complex. Cbx7C is an uncharacterized Cbx7 splicing isoform specifically expressed in mouse embryonic stem cells (mESCs). We demonstrate that CBX7C functions as an epigenetic repressor at the classic PRC1 targets in mESCs, and its preferential interaction to PHC2 facilitates PRC1 assembly. Both Cbx7C and Phc2 are significantly upregulated during cell differentiation, and knockdown of Cbx7C abolishes the differentiation of mESCs to embryoid bodies. Interestingly, CBX7C⋅PHC2 interaction at low levels efficiently undergoes the formation of functional Polycomb bodies with high mobility, whereas the coordination of the two factors at high doses results in the formation of large, low-mobility, chromatin-free aggregates. Overall, these findings uncover the unique roles and molecular basis of the CBX7C⋅PHC2 interaction in PRC1 assembly on chromatin and Pc body formation and open a new avenue of controlling PRC1 activities via modulation of its phase separation properties.
Collapse
Affiliation(s)
- Shanli Guan
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Jiajia Tang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Xiaojun Ma
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Ruidong Miao
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| | - Bo Cheng
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, Lanzhou University, Lanzhou 730000, Gansu, P.R. China
| |
Collapse
|
4
|
Zhao J, Lan J, Wang M, Liu C, Fang Z, Song A, Zhang T, Wang L, Zhu B, Chen P, Yu J, Li G. H2AK119ub1 differentially fine-tunes gene expression by modulating canonical PRC1- and H1-dependent chromatin compaction. Mol Cell 2024; 84:1191-1205.e7. [PMID: 38458202 DOI: 10.1016/j.molcel.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/15/2023] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Polycomb repressive complex 1 (PRC1) is a key transcriptional regulator in development via modulating chromatin structure and catalyzing histone H2A ubiquitination at Lys119 (H2AK119ub1). H2AK119ub1 is one of the most abundant histone modifications in mammalian cells. However, the function of H2AK119ub1 in polycomb-mediated gene silencing remains debated. In this study, we reveal that H2AK119ub1 has two distinct roles in gene expression, through differentially modulating chromatin compaction mediated by canonical PRC1 and the linker histone H1. Interestingly, we find that H2AK119ub1 plays a positive role in transcription through interfering with the binding of canonical PRC1 to nucleosomes and therefore counteracting chromatin condensation. Conversely, we demonstrate that H2AK119ub1 facilitates H1-dependent chromatin condensation and enhances the silencing of developmental genes in mouse embryonic stem cells, suggesting that H1 may be one of several possible pathways for H2AK119ub1 in repressing transcription. These results provide insights and molecular mechanisms by which H2AK119ub1 differentially fine-tunes developmental gene expression.
Collapse
Affiliation(s)
- Jicheng Zhao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jie Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Min Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zheng Fang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Aoqun Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tiantian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Wang
- Beijing Advanced Innovation Center for Structure Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100101, China
| | - Bing Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| | - Juan Yu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
5
|
Ong ALC, Kokaji T, Kishi A, Takihara Y, Shinozuka T, Shimamoto R, Isotani A, Shirai M, Sasai N. Acquisition of neural fate by combination of BMP blockade and chromatin modification. iScience 2023; 26:107887. [PMID: 37771660 PMCID: PMC10522999 DOI: 10.1016/j.isci.2023.107887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 09/07/2023] [Indexed: 09/30/2023] Open
Abstract
Neural induction is a process where naive cells are converted into committed cells with neural characteristics, and it occurs at the earliest step during embryogenesis. Although the signaling molecules and chromatin remodeling for neural induction have been identified, the mutual relationships between these molecules are yet to be fully understood. By taking advantage of the neural differentiation system of mouse embryonic stem (ES) cells, we discovered that the BMP signal regulates the expression of several polycomb repressor complex (PRC) component genes. We particularly focused on Polyhomeotic Homolog 1 (Phc1) and established Phc1-knockout (Phc1-KO) ES cells. We found that Phc1-KO failed to acquire the neural fate, and the cells remained in pluripotent or primitive non-neural states. Chromatin accessibility analysis suggests that Phc1 is essential for chromatin packing. Aberrant upregulation of the BMP signal was confirmed in the Phc1 homozygotic mutant embryos. Taken together, Phc1 is required for neural differentiation through epigenetic modification.
Collapse
Affiliation(s)
- Agnes Lee Chen Ong
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Toshiya Kokaji
- Data-driven biology, NAIST Data Science Center, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Arisa Kishi
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Yoshihiro Takihara
- Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-0037, Japan
| | - Takuma Shinozuka
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ren Shimamoto
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Ayako Isotani
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| | - Manabu Shirai
- Omics Research Center (ORC), National Cerebral and Cardiovascular Center, 6-1 Kishibe Shinmachi, Suita, Osaka 564-8565, Japan
| | - Noriaki Sasai
- Division of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma 630-0192, Japan
| |
Collapse
|
6
|
Ray S, Hewitt K. Sticky, Adaptable, and Many-sided: SAM protein versatility in normal and pathological hematopoietic states. Bioessays 2023; 45:e2300022. [PMID: 37318311 PMCID: PMC10527593 DOI: 10.1002/bies.202300022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
With decades of research seeking to generalize sterile alpha motif (SAM) biology, many outstanding questions remain regarding this multi-tool protein module. Recent data from structural and molecular/cell biology has begun to reveal new SAM modes of action in cell signaling cascades and biomolecular condensation. SAM-dependent mechanisms underlie blood-related (hematologic) diseases, including myelodysplastic syndromes and leukemias, prompting our focus on hematopoiesis for this review. With the increasing coverage of SAM-dependent interactomes, a hypothesis emerges that SAM interaction partners and binding affinities work to fine tune cell signaling cascades in developmental and disease contexts, including hematopoiesis and hematologic disease. This review discusses what is known and remains unknown about the standard mechanisms and neoplastic properties of SAM domains and what the future might hold for developing SAM-targeted therapies.
Collapse
Affiliation(s)
- Suhita Ray
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Kyle Hewitt
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| |
Collapse
|
7
|
Liu C, Sun L, Tan Y, Wang Q, Luo T, Li C, Yao N, Xie Y, Yi X, Zhu Y, Guo T, Ji J. USP7 represses lineage differentiation genes in mouse embryonic stem cells by both catalytic and noncatalytic activities. SCIENCE ADVANCES 2023; 9:eade3888. [PMID: 37196079 DOI: 10.1126/sciadv.ade3888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 04/12/2023] [Indexed: 05/19/2023]
Abstract
USP7, a ubiquitin-specific peptidase (USP), plays an important role in many cellular processes through its catalytic deubiquitination of various substrates. However, its nuclear function that shapes the transcriptional network in mouse embryonic stem cells (mESCs) remains poorly understood. We report that USP7 maintains mESC identity through both catalytic activity-dependent and -independent repression of lineage differentiation genes. Usp7 depletion attenuates SOX2 levels and derepresses lineage differentiation genes thereby compromising mESC pluripotency. Mechanistically, USP7 deubiquitinates and stabilizes SOX2 to repress mesoendodermal (ME) lineage genes. Moreover, USP7 assembles into RYBP-variant Polycomb repressive complex 1 and contributes to Polycomb chromatin-mediated repression of ME lineage genes in a catalytic activity-dependent manner. USP7 deficiency in its deubiquitination function is able to maintain RYBP binding to chromatin for repressing primitive endoderm-associated genes. Our study demonstrates that USP7 harbors both catalytic and noncatalytic activities to repress different lineage differentiation genes, thereby revealing a previously unrecognized role in controlling gene expression for maintaining mESC identity.
Collapse
Affiliation(s)
- Chao Liu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Lingang Sun
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yijun Tan
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qi Wang
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tao Luo
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chenlu Li
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Nan Yao
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yuting Xie
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Xiao Yi
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Yi Zhu
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Tiannan Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310030, China
- Center for Infectious Disease Research, Hangzhou 310030, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, China
| | - Junfeng Ji
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Institute of Hematology, Zhejiang University, Hangzhou 310058, China
- Department of Geriatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Eye Center, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
8
|
Barata T, Duarte I, Futschik ME. Integration of Stemness Gene Signatures Reveals Core Functional Modules of Stem Cells and Potential Novel Stemness Genes. Genes (Basel) 2023; 14:genes14030745. [PMID: 36981016 PMCID: PMC10048104 DOI: 10.3390/genes14030745] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
Stem cells encompass a variety of different cell types which converge on the dual capacity to self-renew and differentiate into one or more lineages. These characteristic features are key for the involvement of stem cells in crucial biological processes such as development and ageing. To decipher their underlying genetic substrate, it is important to identify so-called stemness genes that are common to different stem cell types and are consistently identified across different studies. In this meta-analysis, 21 individual stemness signatures for humans and another 21 for mice, obtained from a variety of stem cell types and experimental techniques, were compared. Although we observed biological and experimental variability, a highly significant overlap between gene signatures was identified. This enabled us to define integrated stemness signatures (ISSs) comprised of genes frequently occurring among individual stemness signatures. Such integrated signatures help to exclude false positives that can compromise individual studies and can provide a more robust basis for investigation. To gain further insights into the relevance of ISSs, their genes were functionally annotated and connected within a molecular interaction network. Most importantly, the present analysis points to the potential roles of several less well-studied genes in stemness and thus provides promising candidates for further experimental validation.
Collapse
Affiliation(s)
- Tânia Barata
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Isabel Duarte
- Center for Research in Health Technologies and Information Systems (CINTESIS), Universidade do Algarve, 8005-139 Faro, Portugal
| | - Matthias E Futschik
- SysBioLab, Centre for Biomedical Research (CBMR), Universidade do Algarve, 8005-139 Faro, Portugal
- School of Biomedical Sciences, Faculty of Health, Derriford Research Facility, University of Plymouth, Plymouth PL6 8BU, UK
- MRC London Institute of Medical Sciences (LMS), Imperial College London, London W12 0NN, UK
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
9
|
Novopashina DS, Dymova MA, Davydova AS, Meschaninova MI, Malysheva DO, Kuligina EV, Richter VA, Kolesnikov IA, Taskaev SY, Vorobyeva MA. Aptamers for Addressed Boron Delivery in BNCT: Effect of Boron Cluster Attachment Site on Functional Activity. Int J Mol Sci 2022; 24:ijms24010306. [PMID: 36613750 PMCID: PMC9820356 DOI: 10.3390/ijms24010306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Among the great variety of anti-cancer therapeutic strategies, boron neutron capture therapy (BNCT) represents a unique approach that doubles the targeting accuracy due to the precise positioning of a neutron beam and the addressed delivery of boron compounds. We have recently demonstrated the principal possibility of using a cell-specific 2'-F-RNA aptamer for the targeted delivery of boron clusters for BNCT. In the present study, we evaluated the amount of boron-loaded aptamer inside the cell via two independent methods: quantitative real-time polymerase chain reaction and inductive coupled plasma-atomic emission spectrometry. Both assays showed that the internalized boron level inside the cell exceeds 1 × 109 atoms/cell. We have synthesized closo-dodecaborate conjugates of 2'-F-RNA aptamers GL44 and Waz, with boron clusters attached either at the 3'- or at the 5'-end. The influence of cluster localization was evaluated in BNCT experiments on U-87 MG human glioblastoma cells and normal fibroblasts and subsequent analyses of cell viability via real-time cell monitoring and clonogenic assay. Both conjugates of GL44 aptamer provided a specific decrease in cell viability, while only the 3'-conjugate of the Waz aptamer showed the same effect. Thus, an individual adjustment of boron cluster localization is required for each aptamer. The efficacy of boron-loaded 2'-F-RNA conjugates was comparable to that of 10B-boronophenylalanine, so this type of boron delivery agent has good potential for BNCT due to such benefits as precise targeting, low toxicity and the possibility to use boron clusters made of natural, unenriched boron.
Collapse
Affiliation(s)
- Darya S. Novopashina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Maya A. Dymova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Mariya I. Meschaninova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Daria O. Malysheva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Elena V. Kuligina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Vladimir A. Richter
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Iaroslav A. Kolesnikov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Budker Institute of Nuclear Physics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Sergey Yu. Taskaev
- Budker Institute of Nuclear Physics, Siberian Division of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Department of Physics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Mariya A. Vorobyeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Division of Russian Academy of Sciences, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
10
|
Samara A, Spildrejorde M, Sharma A, Falck M, Leithaug M, Modafferi S, Bjørnstad PM, Acharya G, Gervin K, Lyle R, Eskeland R. A multi-omics approach to visualize early neuronal differentiation from hESCs in 4D. iScience 2022; 25:105279. [PMID: 36304110 PMCID: PMC9593815 DOI: 10.1016/j.isci.2022.105279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal differentiation of pluripotent stem cells is an established method to study physiology, disease, and medication safety. However, the sequence of events in human neuronal differentiation and the ability of in vitro models to recapitulate early brain development are poorly understood. We developed a protocol optimized for the study of early human brain development and neuropharmacological applications. We comprehensively characterized gene expression and epigenetic profiles at four timepoints, because the cells differentiate from embryonic stem cells towards a heterogeneous population of progenitors, immature and mature neurons bearing telencephalic signatures. A multi-omics roadmap of neuronal differentiation, combined with searchable interactive gene analysis tools, allows for extensive exploration of early neuronal development and the effect of medications.
Collapse
Affiliation(s)
- Athina Samara
- Division of Clinical Paediatrics, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Mari Spildrejorde
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Ankush Sharma
- Department of Informatics, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Martin Falck
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Magnus Leithaug
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Stefania Modafferi
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Pål Marius Bjørnstad
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Ganesh Acharya
- Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Alfred Nobels Allé 8, SE-14152 Stockholm, Sweden
- Center for Fetal Medicine, Karolinska University Hospital Huddinge, SE-14186 Stockholm, Sweden
| | - Kristina Gervin
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, School of Pharmacy, University of Oslo, Oslo, Norway
- Division of Clinical Neuroscience, Department of Research and Innovation, Oslo University Hospital, Oslo, Norway
| | - Robert Lyle
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ragnhild Eskeland
- PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Lan X, Ding S, Zhang T, Yi Y, Li C, Jin W, Chen J, Liang K, Wang H, Jiang W. PCGF6 controls neuroectoderm specification of human pluripotent stem cells by activating SOX2 expression. Nat Commun 2022; 13:4601. [PMID: 35933409 PMCID: PMC9357003 DOI: 10.1038/s41467-022-32295-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Polycomb group (PcG) proteins are known to repress developmental genes during embryonic development and tissue homeostasis. Here, we report that PCGF6 controls neuroectoderm specification of human pluripotent stem cells (PSCs) by activating SOX2 gene. Human PSCs with PCGF6 depletion display impaired neuroectoderm differentiation coupled with increased mesendoderm outcomes. Transcriptome analysis reveals that de-repression of the WNT/β-catenin signaling pathway is responsible for the differentiation of PSC toward the mesendodermal lineage. Interestingly, PCGF6 and MYC directly interact and co-occupy a distal regulatory element of SOX2 to activate SOX2 expression, which likely accounts for the regulation in neuroectoderm differentiation. Supporting this notion, genomic deletion of the SOX2-regulatory element phenocopies the impaired neuroectoderm differentiation, while overexpressing SOX2 rescues the neuroectoderm phenotype caused by PCGF6-depletion. Together, our study reveals that PCGF6 can function as lineage switcher between mesendoderm and neuroectoderm in human PSCs by both suppression and activation mechanisms. Variant Polycomb complexes can have tissue-specific roles during development. Here they show that PCGF6 controls lineage-specification in human PSCs by promoting neuroectoderm differentiation and repressing mesendoderm differentiation via distinct downstream targets.
Collapse
Affiliation(s)
- Xianchun Lan
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Song Ding
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Tianzhe Zhang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Ying Yi
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Conghui Li
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Wenwen Jin
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China
| | - Jian Chen
- Chinese Institute for Brain Research (Beijing), Research Unit of Medical Neurobiology, Chinese Academy of Medical Sciences, 102206, Beijing, China
| | - Kaiwei Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hengbin Wang
- Department of Internal Medicine, Division of Hematology, Oncology, and Palliative Care, Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Wei Jiang
- Department of Biological Repositories, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, RNA Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, China. .,Human Genetics Resource Preservation Center of Wuhan University, Wuhan, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
12
|
Thymoquinone-Mediated Modulation of Toll-like Receptors and Pluripotency Factors in Gingival Mesenchymal Stem/Progenitor Cells. Cells 2022; 11:cells11091452. [PMID: 35563755 PMCID: PMC9101758 DOI: 10.3390/cells11091452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Thymoquinone (TQ), the key active component of Nigella sativa (NS), demonstrates very promising biomedical anti-inflammatory, antioxidant, antimicrobial and anticancer properties. Several investigations have inspected the modulative activities of TQ on different stem/progenitor cell types, but its possible role in the regulation of gingival mesenchymal stem/progenitor cells (G-MSCs) has not yet been characterized. For the first time, this study investigates the effects of TQ on G-MSCs’ stemness and Toll-like receptor expression profiles. G-MSCs (n = 5) were isolated, sorted via anti-STRO-1 antibodies and then disseminated on cell culture dishes to create colony-forming units (CFUs), and their stem/progenitor cell attributes were characterized. TQ stimulation of the G-MSCs was performed, followed by an examination of the expression of pluripotency-related factors using RT-PCR and the expression profiles of TLRs 1−10 using flowcytometry, and they were compared to a non-stimulated control group. The G-MSCs presented all the predefined stem/progenitor cells’ features. The TQ-activated G-MSCs displayed significantly higher expressions of TLR3 and NANOG with a significantly reduced expression of TLR1 (p < 0.05, Wilcoxon signed-rank test). TQ-mediated stimulation preserves G-MSCs’ pluripotency and facilitates a cellular shift into an immunocompetent-differentiating phenotype through increased TLR3 expression. This characteristic modulation might impact the potential therapeutic applications of G-MSCs.
Collapse
|
13
|
Bölicke N, Albert M. Polycomb-mediated gene regulation in human brain development and neurodevelopmental disorders. Dev Neurobiol 2022; 82:345-363. [PMID: 35384339 DOI: 10.1002/dneu.22876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
The neocortex is considered the seat of higher cognitive function in humans. It develops from a sheet of neural progenitor cells, most of which eventually give rise to neurons. This process of cell fate determination is controlled by precise temporal and spatial gene expression patterns that in turn are affected by epigenetic mechanisms including Polycomb group (PcG) regulation. PcG proteins assemble in multiprotein complexes and catalyze repressive posttranslational histone modifications. Their association with neurodevelopmental disease and various types of cancer of the central nervous system, as well as observations in mouse models, has implicated these epigenetic modifiers in controlling various stages of cortex development. The precise mechanisms conveying PcG-associated transcriptional repression remain incompletely understood and are an active field of research. PcG activity appears to be highly context-specific, raising the question of species-specific differences in the regulation of neural stem and progenitor regulation. In this review, we will discuss our growing understanding of how PcG regulation affects human cortex development, based on studies in murine model systems, but focusing mostly on findings obtained from examining impaired PcG activity in the context of human neurodevelopmental disorders and cancer. Furthermore, we will highlight relevant experimental approaches for functional investigations of PcG regulation in human cortex development.
Collapse
Affiliation(s)
- Nora Bölicke
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Mareike Albert
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
14
|
Zaqout S, Kaindl AM. Autosomal Recessive Primary Microcephaly: Not Just a Small Brain. Front Cell Dev Biol 2022; 9:784700. [PMID: 35111754 PMCID: PMC8802810 DOI: 10.3389/fcell.2021.784700] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/01/2021] [Indexed: 02/06/2023] Open
Abstract
Microcephaly or reduced head circumference results from a multitude of abnormal developmental processes affecting brain growth and/or leading to brain atrophy. Autosomal recessive primary microcephaly (MCPH) is the prototype of isolated primary (congenital) microcephaly, affecting predominantly the cerebral cortex. For MCPH, an accelerating number of mutated genes emerge annually, and they are involved in crucial steps of neurogenesis. In this review article, we provide a deeper look into the microcephalic MCPH brain. We explore cytoarchitecture focusing on the cerebral cortex and discuss diverse processes occurring at the level of neural progenitors, early generated and mature neurons, and glial cells. We aim to thereby give an overview of current knowledge in MCPH phenotype and normal brain growth.
Collapse
Affiliation(s)
- Sami Zaqout
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
- Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Angela M. Kaindl
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Berlin, Germany
- Center for Chronically Sick Children (Sozialpädiatrisches Zentrum, SPZ), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Department of Pediatric Neurology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|