1
|
Mei P, Zhang Y, Ai B, Hong L, Zhou C, Zhang W. Versatile Peroxide Route-Based Kinetics-Controlled Coating Method to Construct Uniform Alkali Metal-Containing Fast Ionic Conductor Nanoshells. J Am Chem Soc 2024; 146:28677-28684. [PMID: 39382038 DOI: 10.1021/jacs.4c04519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Constructing a uniform coating of alkali metal-containing fast ionic conductors is crucial for realizing multifunctional responses and functionalities. However, the uncontrolled coprecipitation of alkali and transition metal ions, stemming from their significant difference in reactivity, poses a significant challenge in pursuing homogeneous and continuous nanoshells for fast ionic conductors. Here, we report a versatile peroxide-based kinetics-controlled coating approach for constructing alkali metal-containing fast ionic conductors using LiNbO3 as a proof-of-concept. Hydrogen peroxide (H2O2) was employed as an innovative precipitant, and the deposition kinetics could be precisely tuned by adjusting the pH value of the solution to facilitate the coprecipitation of the transition metal and ammonium/hydrogen ions. The latter could subsequently be exchanged with lithium ions and transformed into uniform LiNbO3 nanoshells after low-temperature annealing (280 °C). The obtained LiNbO3 coating layers are continuous, thickness-tunable, and exhibit significantly higher ionic conductivity, 2 orders of magnitude greater than conventional counterparts. This enhancement enables solid-state batteries with excellent cycling and rate performance. Furthermore, this method is extendable to various alkali metal-based (Li, Na, and K) fast ionic conductor nanoshells, injecting new vitality into the advanced applications of fast ionic conductors in various battery systems.
Collapse
Affiliation(s)
- Pan Mei
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Yuan Zhang
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bing Ai
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Luxi Hong
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Chenhuan Zhou
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Wei Zhang
- Innovation Center for Chemical Science, College of Chemistry Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
2
|
Gao J, Yan X, Gu X, Fu X, Chang Q, Zhang Z, Wang Y, Huang C, Li Y. The Alkynyl π Bond of sp-C Enhanced Rapid, Reversible Li-C Coupling to Accelerate Reaction Kinetics of Lithium Ions. J Am Chem Soc 2024; 146:27030-27039. [PMID: 39300785 DOI: 10.1021/jacs.4c08920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Graphdiyne (GDY) is a promising anode for rechargeable batteries with high capacity, outstanding cyclic stability, and low diffusion energy. The unique structure of GDY endows distinctive mechanisms for metal-ion storage, and it is of great significance to further visualize the complex reaction kinetics of the redox process. Here, we systematically tracked the reaction kinetics and provided mechanistic insights into the lithium ions in the GDY to reveal the feature of the cation-π effect. It has been demonstrated that, unlike only one π bond in sp2-C, π electrons provided by one of the two alkynyl π bonds in sp-C can achieve proper interaction and speedy capture of lithium ions; thus, reversible Li-C coupling can be formed between electron-rich sp-C and lithium ions. In addition to interlayer intercalation in sp2-C regions, nanopores filling triangular-like cavities composed of highly conjugated sp-C contribute to the major capacity in flat voltage plateau regions. Therefore, a capture/pores filling-intercalation hybrid mechanism can be found in GDY. The coexistence of sp and sp2 carbon enables GDY electrodes with rapid Li+ diffusion, high capacity of over 1435 mAh g-1, extraordinary rate capability, and cyclic stability for more than 10000 cycles at 10A g-1. These results provide guidance for developing advanced carbon electrodes with optimized reaction kinetics for rechargeable batteries.
Collapse
Affiliation(s)
- Jingchi Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xingru Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiangyao Gu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xinlong Fu
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Qian Chang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Zhihui Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Changshui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan 250100, P. R. China
| | - Yuliang Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
3
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Shen L, Wang P, Fang C, Lin Z, Zhao G, Li S, Lin Y, Huang Z, Li J. Crack-Resistant Si-C Hybrid Microspheres for High-Performance Lithium-Ion Battery Anodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404135. [PMID: 39087389 DOI: 10.1002/smll.202404135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/11/2024] [Indexed: 08/02/2024]
Abstract
To effectively solve the challenges of rapid capacity decay and electrode crushing of silicon-carbon (Si-C) anodes, it is crucial to carefully optimize the structure of Si-C active materials and enhance their electron/ion transport dynamic in the electrode. Herein, a unique hybrid structure microsphere of Si/C/CNTs/Cu with surface wrinkles is prepared through a simple ultrasonic atomization pyrolysis and calcination method. Low-cost nanoscale Si waste is embedded into the pyrolysis carbon matrix, cleverly combined with the flexible electrical conductivity carbon nanotubes (CNTs) and copper (Cu) particles, enhancing both the crack resistance and transport kinetics of the entire electrode material. Remarkably, as a lithium-ion battery anode, the fabricated Si/C/CNTs/Cu electrode exhibits stable cycling for up to 2300 cycles even at a current of 2.0 A g-1, retaining a capacity of ≈700 mAh g-1, with a retention rate of 100% compared to the cycling started at a current of 2.0 A g-1. Additionally, when paired with an NCM523 cathode, the full cell exhibits a capacity of 135 mAh g-1 after 100 cycles at 1.0 C. Therefore, this synthesis strategy provides insights into the design of long-life, practical anode electrode materials with micro/nano-spherical hybrid structures.
Collapse
Affiliation(s)
- Liao Shen
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
- Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Pengcheng Wang
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Chenxi Fang
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
| | - Zhongfeiyu Lin
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
| | - Guiying Zhao
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Shaoyuan Li
- Faculty of Metallurgical and Energy Engineering/State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, 650093, China
| | - Yingbin Lin
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Zhigao Huang
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| | - Jiaxin Li
- College of Physics and Energy, Fujian Provincial Solar Energy Conversion and Energy Storage Engineering Technology Research Center, Fujian Normal University, Fuzhou, 350117, China
- Fujian Provincial Collaborative Innovation Center for Advanced High-Field Superconducting Materials and Engineering, Fuzhou, 350117, China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, Fuzhou, 350117, China
| |
Collapse
|
5
|
Liu S, Liu B, Yu Z, Sun Z, Liu M, Luo X, Wang MS, Gao Y, Wang B. Rapid Release of Silicon by Ultrafast Joule Heating Generates Mechanically Stable Shell-Shell Si/C Anodes with Dominant Inward Deformation. ACS NANO 2024; 18:17326-17338. [PMID: 38887893 DOI: 10.1021/acsnano.4c06067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
As a promising anode material, silicon-carbon composites encounter great challenges related to internal stress release and contact between the composites during lithiation. These issues lead to material degradation and concomitantly rapid capacity decline. Here, we report a type of shell-shell silicon-carbon (SS-Si/C) composite, which consists of a carbon shell tightly coated with a silicon shell. The mechanical analysis unveils that the dominant inward expansion of the Si shell is achieved through the synergistic effect of the outer carbon shell and the inner hollow structure. Benefiting from the well-tailored shell-shell structure, the SS-Si/C anode exhibits exceptional performance, boasting a high specific capacity (1690.3 mA h g-1 after 550 cycles at 0.5 A g-1), a high areal capacity (2.05 mA h cm-2 after more than 400 cycles at 0.5 mA cm-2), and an extended cycling life (1055.6 mA h g-1 after 1000 cycles at 8 A g-1), far exceeding commercially available Si/C anodes. Using the well-designed SS-Si/C anode, full cells assembled with LiCoO2 (LCO) or LiFePO4 (LFP) cathodes achieve favorable rate capability and cyclic stability. Notably, at a high rate of 6 C (1 C = 170 and 270 mA g-1 for LFP and LCO, respectively), these full cells deliver high specific capacities of 79.5 mA h g-1 and 64.9 mA h g-1 when using LCO and LFP, respectively, demonstrating the potential of SS-Si/C anodes for practical applications. The straightforward and safe synthesis method in this work enables the rational design of hollow structures with distinct properties.
Collapse
Affiliation(s)
- Shigang Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Bowen Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongliang Yu
- College of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhefei Sun
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Ming Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinying Luo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Yang Gao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Yu H, Li Y, Liu F, Wang L, Song Y. Yolk shell structured YS-Si@N-doped carbon derived from covalent organic frameworks for enhanced lithium storage. J Colloid Interface Sci 2024; 662:313-321. [PMID: 38354558 DOI: 10.1016/j.jcis.2024.02.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/22/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Silicon (Si) has ultra-high theoretical capacity (4200 mAh g-1) and accordingly is widely studied as anode materials for lithium-ion batteries (LIBs). However, its huge volume expansion during charging/discharging is a fatal challenge. The preparation of Si-based composite materials with yolk shell structure is the key to solving the Si volume expansion. Here, N-doped carbon-coated Si nanoparticles (SiNPs) nanocomposites (YS-Si@NC-60) with yolk shell structure derived from covalent organic frameworks (COFs) was prepared. N-doped carbon shells derived from COFs not only maintain the well-ordered nanosized pores of COFs, which facilitates the transport of Li+ to contact with internal SiNPs, but also provide more extra active sites for Li+ storage. Most importantly, the internal void can effectively alleviate the damage effect of SiNPs volume expansion. The obtained YS-Si@NC-60 as a LIBs anode show high cyclic stability and Li+ storage performances. At 0.1 A g-1, the capacity is 1446 mAh g-1 after 110 cycles, and initial coulomb efficiency is as high as 82.2 %. The excellent performance can be attributed to the unique yolk shell structure. This simple and template-free strategy provides a new idea for preparing Si-C nanocomposites with yolk shell structure.
Collapse
Affiliation(s)
- Hao Yu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Yuan Li
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Fang Liu
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China
| | - Li Wang
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| | - Yonghai Song
- National Engineering Research Center for Carbohydrate Synthesis/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, 99 Ziyang Road, Nanchang 330022, China.
| |
Collapse
|
7
|
Zhang JY, Xia C, Su Y, Zu L, Zhao Z, Li P, Lv Z, Wang J, Mei B, Lan K, Zhao T, Zhang P, Chen W, Zaman S, Liu Y, Peng L, Xia BY, Elzatahry A, Li W, Zhao D. Boosted Oxygen Kinetics of Hierarchically Mesoporous Mo 2C/C for High-current-density Zn-air Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307378. [PMID: 38009801 DOI: 10.1002/smll.202307378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/25/2023] [Indexed: 11/29/2023]
Abstract
The high-current-density Zn-air battery shows big prospects in next-generation energy technologies, while sluggish O2 reaction and diffusion kinetics barricade the applications. Herein, the sequential assembly is innovatively demonstrated for hierarchically mesoporous molybdenum carbides/carbon microspheres with a tunable thickness of mesoporous carbon layers (Meso-Mo2C/C-x, where x represents the thickness). The optimum Meso-Mo2C/C-14 composites (≈2 µm in diameter) are composed of mesoporous nanosheets (≈38 nm in thickness), which possess bilateral mesoporous carbon layers (≈14 nm in thickness), inner Mo2C/C layers (≈8 nm in thickness) with orthorhombic Mo2C nanoparticles (≈2 nm in diameter), a high surface area of ≈426 m2 g-1, and open mesopores (≈6.9 nm in size). Experiments and calculations corroborate the hierarchically mesoporous Mo2C/C can enhance hydrophilicity for supplying sufficient O2, accelerate oxygen reduction kinetics by highly-active Mo2C and N-doped carbon sites, and facilitate O2 diffusion kinetics over hierarchically mesopores. Therefore, Meso-Mo2C/C-14 outputs a high half-wave potential (0.88 V vs RHE) with a low Tafel slope (51 mV dec-1) for oxygen reduction. More significantly, the Zn-air battery delivers an ultrahigh power density (272 mW cm-2), and an unprecedented 100 h stability at a high-current-density condition (100 mA cm-2), which is one of the best performances.
Collapse
Affiliation(s)
- Jun-Ye Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lianhai Zu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Zaiwang Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Peng Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zirui Lv
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Jiazheng Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Bingbao Mei
- Shanghai Institute of Applied Physics, Shanghai Synchrotron Radiation Facility, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Kun Lan
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Tiancong Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Pengfei Zhang
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Weinan Chen
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yi Liu
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Liang Peng
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Bao Yu Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Ahmed Elzatahry
- Department of Physics and Materials Science, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, 2713, Qatar
| | - Wei Li
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and State Key Laboratory of Molecular Engineering of Polymers, School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Lee G, Park G, Park JG, Bak Y, Lee C, Yoon DK. Universal Strategy for Inorganic Nanoparticle Incorporation into Mesoporous Liquid Crystal Polymer Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307388. [PMID: 37991422 DOI: 10.1002/adma.202307388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/19/2023] [Indexed: 11/23/2023]
Abstract
Developing inorganic-organic composite polymers necessitates a new strategy for effectively controlling shape and optical properties while accommodating guest materials, as conventional polymers primarily act as carriers that transport inorganic substances. Here, a universal approach is introduced utilizing mesoporous liquid crystal polymer particles (MLPs) to fabricate inorganic-organic composites. By leveraging the liquid crystal phase, morphology and optical properties are precisely controlled through the molecular-level arrangement of the host, here monomers. The controlled host material allows the synthesis of inorganic particles within the matrix or accommodation of presynthesized nano-inorganic particles, all while preserving the intrinsic properties of the host material. This composite material surpasses the functional capabilities of the polymer alone by sequentially integrating one or more inorganic materials, allowing for the incorporation of multiple functionalities within a single polymer particle. Furthermore, this approach effectively mitigates the drawbacks associated with guest materials resulting in a substantial enhancement of composite performance. The presented approach is anticipated to hold immense potential for various applications in optoelectronics, catalysis, and biosensing, addressing the evolving demands of the society.
Collapse
Affiliation(s)
- Geunjung Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Geonhyeong Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jesse G Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeongseo Bak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Changjae Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Dong Ki Yoon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
9
|
Ouyang Q, Li G, Zhang X, Zhao X, Fu S, Li L. Yolk-Shell Gradient-Structured SiO x Anodes Derived from Periodic Mesoporous Organosilicas Enable High-Performance Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305793. [PMID: 37771177 DOI: 10.1002/smll.202305793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Gradient-structured materials hold great promise in the areas of batteries and electrocatalysis. Here, yolk-shell gradient-structured SiOx -based anode (YSG-SiOx /C@C) derived from periodic mesoporous organosilica spheres (PMOs) through a selective etching method is reported. Capitalizing on the poor hydrothermal stability of inorganic silica in organic-inorganic hybrid silica spheres, the inorganic silica component in the hybrid spheres is selectively etched to obtain yolk-shell-structured PMOs. Subsequently, the yolk-shell PMOs are coated with carbon to fabricate YSG-SiOx /C@C. YSG-SiOx /C@C is comprised of a core with uniform distribution of SiOx and carbon at the atomic scale, a middle void layer, and outer layers of SiOx and amorphous carbon. This unique gradient structure and composition from inside to outside not only enhances the electrical conductivity of the SiOx anode and reduces the side reactions, but also reserves void space for the expansion of SiOx , thereby effectively mitigating the stress caused by volumetric effect. As a result, YSG-SiOx /C@C exhibits exceptional cycling stability and rate capability. Specifically, YSG-SiOx /C@C maintains a specific capacity of 627 mAh g-1 after 400 cycles at 0.5 A g-1 , and remains stable even after 550 cycles at current density of 2 A g-1 , achieving a specific capacity of 519 mAh g-1 .
Collapse
Affiliation(s)
- Quan Ouyang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Guangshe Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xin Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Xu Zhao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Shilong Fu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Liping Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
10
|
Wang R, Wang L, Liu R, Li X, Wu Y, Ran F. "Fast-Charging" Anode Materials for Lithium-Ion Batteries from Perspective of Ion Diffusion in Crystal Structure. ACS NANO 2024; 18:2611-2648. [PMID: 38221745 DOI: 10.1021/acsnano.3c08712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
"Fast-charging" lithium-ion batteries have gained a multitude of attention in recent years since they could be applied to energy storage areas like electric vehicles, grids, and subsea operations. Unfortunately, the excellent energy density could fail to sustain optimally while lithium-ion batteries are exposed to fast-charging conditions. In actuality, the crystal structure of electrode materials represents the critical factor for influencing the electrode performance. Accordingly, employing anode materials with low diffusion barrier could improve the "fast-charging" performance of the lithium-ion battery. In this Review, first, the "fast-charging" principle of lithium-ion battery and ion diffusion path in the crystal are briefly outlined. Next, the application prospects of "fast-charging" anode materials with various crystal structures are evaluated to search "fast-charging" anode materials with stable, safe, and long lifespan, solving the remaining challenges associated with high power and high safety. Finally, summarizing recent research advances for typical "fast-charging" anode materials, including preparation methods for advanced morphologies and the latest techniques for ameliorating performance. Furthermore, an outlook is given on the ongoing breakthroughs for "fast-charging" anode materials of lithium-ion batteries. Intercalated materials (niobium-based, carbon-based, titanium-based, vanadium-based) with favorable cycling stability are predominantly limited by undesired electronic conductivity and theoretical specific capacity. Accordingly, addressing the electrical conductivity of these materials constitutes an effective trend for realizing fast-charging. The conversion-type transition metal oxide and phosphorus-based materials with high theoretical specific capacity typically undergoes significant volume variation during charging and discharging. Consequently, alleviating the volume expansion could significantly fulfill the application of these materials in fast-charging batteries.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Lu Wang
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Rui Liu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Xiangye Li
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Youzhi Wu
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| | - Fen Ran
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu 730050, China
| |
Collapse
|
11
|
Zhu G, Luo D, Chen X, Yang J, Zhang H. Emerging Multiscale Porous Anodes toward Fast Charging Lithium-Ion Batteries. ACS NANO 2023; 17:20850-20874. [PMID: 37921490 DOI: 10.1021/acsnano.3c07424] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
With the accelerated penetration of the global electric vehicle market, the demand for fast charging lithium-ion batteries (LIBs) that enable improvement of user driving efficiency and user experience is becoming increasingly significant. Robust ion/electron transport paths throughout the electrode have played a pivotal role in the progress of fast charging LIBs. Yet traditional graphite anodes lack fast ion transport channels, which suffer extremely elevated overpotential at ultrafast power outputs, resulting in lithium dendrite growth, capacity decay, and safety issues. In recent years, emergent multiscale porous anodes dedicated to building efficient ion transport channels on multiple scales offer opportunities for fast charging anodes. This review survey covers the recent advances of the emerging multiscale porous anodes for fast charging LIBs. It starts by clarifying how pore parameters such as porosity, tortuosity, and gradient affect the fast charging ability from an electrochemical kinetic perspective. We then present an overview of efforts to implement multiscale porous anodes at both material and electrode levels in diverse types of anode materials. Moreover, we critically evaluate the essential merits and limitations of several quintessential fast charging porous anodes from a practical viewpoint. Finally, we highlight the challenges and future prospects of multiscale porous fast charging anode design associated with materials and electrodes as well as crucial issues faced by the battery and management level.
Collapse
Affiliation(s)
- Guanjia Zhu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dandan Luo
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
| | - Xiaoyi Chen
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Haijiao Zhang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
12
|
Wu B, Niu S, Wang C, Wu G, Zhang Y, Han X, Liu P, Lin Y, Yan W, Wang G, Hong X. Amorphous Vanadium Oxide Nanosheets with Alterable Polyhedron Configuration for Fast-Charging Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303360. [PMID: 37381653 DOI: 10.1002/smll.202303360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/05/2023] [Indexed: 06/30/2023]
Abstract
Transition metal oxides with high theoretical capacities are promising anode materials for lithium-ion batteries (LIBs). However, the sluggish reaction kinetics remain a bottleneck for fast-charging applications due to its slow Li+ migration rate. Herein, a strategy is reported of significantly reducing the Li+ diffusion barrier of amorphous vanadium oxide by constructing a specific ratio of the VO local polyhedron configuration in amorphous nanosheets. The optimized amorphous vanadium oxide nanosheets with a ratio ≈1:4 for octahedron sites (Oh ) to pyramidal sites (C4v ) revealed by Raman spectroscopy and X-ray absorption spectroscopy (XAS) demonstrate the highest rate capability (356.7 mA h g-1 at 10.0 A g-1 ) and long-term cycling life (455.6 mA h g-1 at 2.0 A g-1 over 1200 cycles). Density functional theory (DFT)calculations further verify that the local structure (Oh :C4v = 1:4) intrinsically changes the degree of orbital hybridization between V and O atoms and contributes to a higher intensity of electron occupied states near the Fermi level, thus resulting in a low Li+ diffusion barrier for favorable Li+ transport kinetics. Moreover, the amorphous vanadium oxide nanosheets possess a reversible VO vibration mode and volume expansion rate close to 0.3%, as determined through in situ Raman and in situ transmission electron microscopy.
Collapse
Affiliation(s)
- Bei Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Shuwen Niu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Chao Wang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Geng Wu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Yida Zhang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Xiao Han
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Peigen Liu
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Yue Lin
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230029, China
| | - Gongming Wang
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| | - Xun Hong
- Center of Advanced Nanocatalysis (CAN), Department of Applied Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 23002, China
| |
Collapse
|
13
|
Feng W, Wen X, Peng Y, Wang Y, Song L, Li X, Du R, Yang J, Jiang Y, Li H, Sun H, Huang L, He J, Shi J. FeN Coordination Induced Ultralong Lifetime of Sodium-Ion Battery with the Cycle Number Exceeding 65 000. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302029. [PMID: 37194986 DOI: 10.1002/smll.202302029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/22/2023] [Indexed: 05/18/2023]
Abstract
Sodium-ion batteries (SIBs) have received increasing attention because of their appealing cell voltages and cost-effective features. However, the atom aggregation and electrode volume variation inevitably deteriorate the sodium storage kinetics. Here a new strategy is proposed to boost the lifetime of SIB by synthesizing sea urchin-like FeSe2 /nitrogen-doped carbon (FeSe2 /NC) composites. The robust FeN coordination hinders the Fe atom aggregation and accommodates the volume expansion, while the unique biomorphic morphology and high conductivity of FeSe2 /NC enhance the intercalation/deintercalation kinetics and shorten the ion/electron diffusion length. As expected, FeSe2 /NC electrodes deliver excellent half (387.6 mAh g-1 at 20.0 A g-1 after 56 000 cycles) and full (203.5 mAh g-1 at 1.0 A g-1 after 1200 cycles) cell performances. Impressively, an ultralong lifetime of SIB composed of FeSe2 /Fe3 Se4 /NC anode is uncovered with the cycle number exceeding 65 000. The sodium storage mechanism is clarified with the aid of density function theory calculations and in situ characterizations. This work hereby provides a new paradigm for enhancing the lifetime of SIB by constructing a unique coordination environment between active material and framework.
Collapse
Affiliation(s)
- Wang Feng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xia Wen
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanan Peng
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuzhu Wang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ruofan Du
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Yulin Jiang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Hang Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Ling Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
- Hubei Luojia Laboratory, Wuhan, 430072, P. R. China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, P. R. China
| |
Collapse
|
14
|
Liu Y, Lei J, Chen Y, Liang C, Ni J. Hierarchical-Structured Fe 2O 3 Anode with Exposed (001) Facet for Enhanced Lithium Storage Performance. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2025. [PMID: 37446541 DOI: 10.3390/nano13132025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
The hierarchical structure is an ideal nanostructure for conversion-type anodes with drastic volume expansion. Here, we demonstrate a tin-doping strategy for constructing Fe2O3 brushes, in which nanowires with exposed (001) facets are stacked into the hierarchical structure. Thanks to the tin-doping, the conductivity of the Sn-doped Fe2O3 has been improved greatly. Moreover, the volume changes of the Sn-doped Fe2O3 anodes can be limited to ~4% vertical expansion and ~13% horizontal expansion, thus resulting in high-rate performance and long-life stability due to the exposed (001) facet and the unique hierarchical structure. As a result, it delivers a high reversible lithium storage capacity of 580 mAh/g at a current density of 0.2C (0.2 A/g), and excellent rate performance of above 400 mAh/g even at a high current density of 2C (2 A/g) over 500 cycles, which is much higher than most of the reported transition metal oxide anodes. This doping strategy and the unique hierarchical structures bring inspiration for nanostructure design of functional materials in energy storage.
Collapse
Affiliation(s)
- Yanfei Liu
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jianfei Lei
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Ying Chen
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Chenming Liang
- Longmen Laboratory, School of Physics and Engineering, Henan University of Science and Technology, Luoyang 471000, China
| | - Jing Ni
- School of Chemistry and Material Science, Hubei Engineering University, Xiaogan 432000, China
| |
Collapse
|
15
|
Kang W, Nam I, Jo C. Pseudocapacitive behavior of mesoporous tungsten oxide in aqueous Zn2+ electrolyte. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1370-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
16
|
Zhao P, Jiang L, Li P, Xiong B, Zhou N, Liu C, Jia J, Ma G, Zhang M. Tailored engineering of Fe 3O 4 and reduced graphene oxide coupled architecture to realize the full potential as electrode materials for lithium-ion batteries. J Colloid Interface Sci 2023; 634:737-746. [PMID: 36563430 DOI: 10.1016/j.jcis.2022.12.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/12/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Developing advanced electrode materials with appropriate compositions and exquisite configurations is crucial in fabricating lithium-ion batteries (LIBs) with high energy density and fast charging capability plateau. Herein, a Fe3O4@reduced graphene oxide (Fe3O4@rGO) coupled architecture was rationally designed and in-situ synthesized. Monodispersed mesoporous Fe3O4 nanospheres were homogeneously formed and strongly bound on interconnected macroporous rGO frameworks to form well-defined three-dimensional (3D) hierarchical porous morphologies. This tailored Fe3O4@rGO coupled architecture fully exploited the advantages of Fe3O4 and rGO to overcome their inherent challenges, including spontaneous aggregating/excessive restacking tendency, sluggish ions diffusion/electrons transportation, and severe volume expansion/structural collapse. Benefitting from their synergistic effects, the optimized Fe3O4@rGO composite electrode exhibited an improved electrochemical reactivity, electrical conductivity, electrolyte accessibility, and structural stability. The optimized composite electrode displayed a high specific capacity of 1296.8 mA h g-1 at 0.1 A g-1 after 100 cycles, even retaining 555.1 mA h g-1 at 2 A g-1 after 2000 cycles. The electrochemical kinetics analysis revealed the predominantly pseudocapacitive behaviors of the Fe3O4@rGO heterogeneous interfaces, accounting for the excellent electrode performance. This study proposes a viable strategy for use in engineering hybrid composites with coupled architectures to optimize their potential as high-performance electrode materials for use in LIBs.
Collapse
Affiliation(s)
- Pengxiang Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Long Jiang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Peishan Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Bo Xiong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Na Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Changyu Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Jianbo Jia
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Guoqiang Ma
- School of Applied Physics and Materials, Wuyi University, Jiangmen 529020, Guangdong, China.
| | - Mengchen Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China.
| |
Collapse
|
17
|
Tang Y, Ding J, Zhou W, Cao S, Yang F, Sun Y, Zhang S, Xue H, Pang H. Design of Uniform Hollow Carbon Nanoarchitectures: Different Capacitive Deionization between the Hollow Shell Thickness and Cavity Size. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206960. [PMID: 36658723 PMCID: PMC10037972 DOI: 10.1002/advs.202206960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based materials with high capacitance ability and fast electrosorption rate are ideal electrode materials in capacitive deionization (CDI). However, traditional carbon materials have structural limitations in electrochemical and desalination performance due to the low capacitance and poor transmission channel of the prepared electrodes. Therefore, reasonable design of electrode material structure is of great importance for achieving excellent CDI properties. Here, uniform hollow carbon materials with different morphologies (hollow carbon nanospheres, hollow carbon nanorods, hollow carbon nano-pseudoboxes, hollow carbon nano-ellipsoids, hollow carbon nano-capsules, and hollow carbon nano-peanuts) are reasonably designed through multi-step template method and calcination of polymer precursors. Hollow carbon nanospheres and hollow carbon nano-pseudoboxes exhibit better capacitance and higher salt adsorption capacity (SAC) due to their stable carbonaceous structure during calcination. Moreover, the effects of the thickness of the shell and the size of the cavity on the CDI performance are also studied. HCNSs-0.8 with thicker shell (≈20 nm) and larger cavity (≈320 nm) shows the best SAC value of 23.01 mg g-1 due to its large specific surface area (1083.20 m2 g-1 ) and rich pore size distribution. These uniform hollow carbon nanoarchitectures with functional properties have potential applications in electrochemistry related fields.
Collapse
Affiliation(s)
- Yijian Tang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Jiani Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Wenxuan Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Shuai Cao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Feiyu Yang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Yangyang Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Songtao Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China
| |
Collapse
|
18
|
Wu C, Wang J, Zhang X, Kang L, Cao X, Zhang Y, Niu Y, Yu Y, Fu H, Shen Z, Wu K, Yong Z, Zou J, Wang B, Chen Z, Yang Z, Li Q. Hollow Gradient-Structured Iron-Anchored Carbon Nanospheres for Enhanced Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2022; 15:7. [PMID: 36472674 PMCID: PMC9727008 DOI: 10.1007/s40820-022-00963-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/03/2022] [Indexed: 06/02/2023]
Abstract
Highlights Microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance. Outstanding reflection loss value (−62.7 dB), broadband wave absorption (6.4 dB with only 2.1 mm thickness) in combination with flexible adjustment abilities were acquired, which is superior to other relative graded distribution structures. This strategy initiates a new method for designing and controlling wave absorber with excellent impedance matching property in practical applications. Abstract In the present paper, a microwave absorber with nanoscale gradient structure was proposed for enhancing the electromagnetic absorption performance. The inorganic–organic competitive coating strategy was employed, which can effectively adjust the thermodynamic and kinetic reactions of iron ions during the solvothermal process. As a result, Fe nanoparticles can be gradually decreased from the inner side to the surface across the hollow carbon shell. The results reveal that it offers an outstanding reflection loss value in combination with broadband wave absorption and flexible adjustment ability, which is superior to other relative graded distribution structures and satisfied with the requirements of lightweight equipment. In addition, this work elucidates the intrinsic microwave regulation mechanism of the multiscale hybrid electromagnetic wave absorber. The excellent impedance matching and moderate dielectric parameters are exhibited to be the dominative factors for the promotion of microwave absorption performance of the optimized materials. This strategy to prepare gradient-distributed microwave absorbing materials initiates a new way for designing and fabricating wave absorber with excellent impedance matching property in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s40820-022-00963-w.
Collapse
Affiliation(s)
- Cao Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Jing Wang
- School of Science, Nanchang Institute of Technology, Nanchang, 330099, Jiangxi, People's Republic of China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Xiaohang Zhang
- School of Science, Nanchang Institute of Technology, Nanchang, 330099, Jiangxi, People's Republic of China
| | - Lixing Kang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yongyi Zhang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China.
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| | - Yutao Niu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Yingying Yu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
- College of Safety Science and Engineering, Xi'an University of Science and Technology, Xi'an, 710054, People's Republic of China
| | - Huili Fu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Zongjie Shen
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
| | - Kunjie Wu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Zhenzhong Yong
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Jingyun Zou
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China
| | - Bin Wang
- Division of Nanomaterials and Jiangxi Key Lab of Carbonene Materials, Jiangxi Institute of Nanotechnology, Nanchang, 330200, Jiangxi, People's Republic of China
| | - Zhou Chen
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211800, People's Republic of China
| | - Zhengpeng Yang
- Henan Key Laboratory of Materials On Deep-Earth Engineering, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454003, People's Republic of China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Advanced Materials Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, Jiangsu, People's Republic of China.
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China.
| |
Collapse
|
19
|
Three-dimensional network of nitrogen-doped carbon matrix-encapsulated Si nanoparticles/carbon nanofibers hybrids for lithium-ion battery anodes with excellent capability. Sci Rep 2022; 12:16002. [PMID: 36163350 PMCID: PMC9512820 DOI: 10.1038/s41598-022-20026-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Three-dimensionally structured silicon (Si)–carbon (C) nanocomposites have great potential as anodes in lithium-ion batteries (LIBs). Here, we report a Nitrogen-doped graphene/carbon-encapsulated Si nanoparticle/carbon nanofiber composite (NG/C@Si/CNF) prepared by methods of surface modification, electrostatic self-assembly, cross-linking with heat treatment, and further carbonization as a potential high-performance anode for LIBs. The N-doped C matrix wrapped around Si nanoparticles improved the electrical conductivity of the composites and buffered the volume change of Si nanoparticles during lithiation/delithiation. Uniformly dispersed CNF in composites acted as conductive networks for the fast transport of ions and electrons. The entire tightly connected organic material of NG/C@Si and CNF prevented the crushing and shedding of particles and maintained the integrity of the electrode structure. The NG/C@Si/CNF composite exhibited better rate capability and cycling performance compared with the other electrode materials. After 100 cycles, the electrode maintained a high reversible specific capacity of 1371.4 mAh/g.
Collapse
|
20
|
Mao ZX, Zhang W, Yang X, Deng Y, Li J, Li J, Wei Z. Unusual Role of the Surfactant in the Self-Assembly of Pt Alloy in Ordered Mesoporous Carbon: Tuning the Nanocluster Size. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42347-42355. [PMID: 36097330 DOI: 10.1021/acsami.2c10715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In the one-step self-assembly synthesis of metallic nanocrystals in ordered mesoporous carbon (OMC), the surfactant functionalizes well as the structure directing agent and mesopore template. Interestingly, this work demonstrates another unusual role the surfactant plays: tuning the size of the nanocrystals. Our investigation shows that the decreasing molecular weight of the PS segment of PEO-b-PS leads to sequentially reduced PtRu particle sizes of 4.4, 3.9, and 2.9 nm, while F127 which has a distinctly smaller hydrophobic PO domain with a bending structure in the micelles successfully results in sub-2 nm PtM (M = Ru, Ir, Rh, Pd) nanoclusters in OMC. This well indicates that the nanocluster size is largely decided by the volume of the hydrophobic segment of the surfactant to which the metallic precursor is linked. The smaller the volume, the fewer the precursor molecules are adsorbed, and the smaller the alloy nanoclusters. In the electrocatalytic methanol oxidation reaction, the mass activity of PtRu-1.6/OMC with 1.6 nm PtRu clusters at 0.87 V reaches 1.07 A mgPt-1, which is 2.9 times that of commercial PtRu/C with an average alloy size of 2.7 nm. In principle, a wide range of ultrafine metallic clusters embedded in OMC can be prepared via this route for various applications.
Collapse
Affiliation(s)
- Zhan Xin Mao
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
- China Automotive Engineering Research Institute Corporation Limited, No. 9 Jinyu Avenue, Chongqing 401122, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Wenjing Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Xuanyu Yang
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yonghui Deng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jingwei Li
- Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University; Chongqing 400044 P. R. China
| | - Jing Li
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| | - Zidong Wei
- School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Road 55, Chongqing 401331, China
| |
Collapse
|
21
|
Superior interfacial stability and conductivity of B-doped LiPON electrolyte for LiCoO2 electrode in solid-state lithium batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
22
|
Ho SF, Yang YC, Tuan HY. Silver boosts ultra-long cycle life for metal sulfide lithium-ion battery anodes: Taking AgSbS 2 nanowires as an example. J Colloid Interface Sci 2022; 621:416-430. [PMID: 35483175 DOI: 10.1016/j.jcis.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 10/18/2022]
Abstract
Metal sulfide, being a high-capacity anode material, is a promising anode material for rechargeable lithium-ion batteries (LIBs). However, most research efforts have focused on improving their low cycling performance due to multiple combined factors, including low conductivity, huge volume changes, multi-step conversion/alloying reactions, and redox shuttling effect, during the cycling process. Here, we report that by using AgSbS2 nanowires as LIB anode materials, a record-breaking long cycle life metal sulfide anode has been achieved through the silver synergistic electrochemical performance effect. We found that while the AgSbS2 nanowire anode is cycled, Ag precipitated out to form a nanocrystal tightly connected with Sb and S and plays a key role in highly-reversible electrochemical performance. Ag can effectively enhance the electrode conductivity, increase ion diffusion rate, serve a diluent huge volume changes during conversion-alloying reactions, improve the absorbability and catalytic ability towards LiPSs to reduce shutting effect of sulfur, and enhanced Li+ adsorption. As a result, AgSbS2 nanowire anodes maintain 90% capacity retention over 5000 and 7000 cycles at the current densities of 500 mA g-1 and 2000 mA g-1, respectively, whereas the capacities of Sb2S3 nanowire and Sb2S3/C nanowire anodes drop rapidly within 10 cycles. The ultra-stable cycle life is superior to the state-of-the-art metal sulfide anodes. Finally, using AgSbS2 nanowires as the anode combined with the cathode LiNi5Co3Mn2, a full battery after 480 cycles was assembled to verify that its stability (high retention rate of 99.5%) can be used in the current commercial battery architecture. This work solves multiple problems related to shuttling effects and complex reactions of metal sulfide anodes, and provides important progress for the future development of metal sulfide anodes for LIBs.
Collapse
Affiliation(s)
- Sheng-Feng Ho
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Chun Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsing-Yu Tuan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
23
|
Grote L, Seyrich M, Döhrmann R, Harouna-Mayer SY, Mancini F, Kaziukenas E, Fernandez-Cuesta I, A Zito C, Vasylieva O, Wittwer F, Odstrčzil M, Mogos N, Landmann M, Schroer CG, Koziej D. Imaging Cu 2O nanocube hollowing in solution by quantitative in situ X-ray ptychography. Nat Commun 2022; 13:4971. [PMID: 36038564 PMCID: PMC9424245 DOI: 10.1038/s41467-022-32373-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding morphological changes of nanoparticles in solution is essential to tailor the functionality of devices used in energy generation and storage. However, we lack experimental methods that can visualize these processes in solution, or in electrolyte, and provide three-dimensional information. Here, we show how X-ray ptychography enables in situ nano-imaging of the formation and hollowing of nanoparticles in solution at 155 °C. We simultaneously image the growth of about 100 nanocubes with a spatial resolution of 66 nm. The quantitative phase images give access to the third dimension, allowing to additionally study particle thickness. We reveal that the substrate hinders their out-of-plane growth, thus the nanocubes are in fact nanocuboids. Moreover, we observe that the reduction of Cu2O to Cu triggers the hollowing of the nanocuboids. We critically assess the interaction of X-rays with the liquid sample. Our method enables detailed in-solution imaging for a wide range of reaction conditions.
Collapse
Affiliation(s)
- Lukas Grote
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Martin Seyrich
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Ralph Döhrmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Sani Y Harouna-Mayer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
| | - Federica Mancini
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Emilis Kaziukenas
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Irene Fernandez-Cuesta
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany
- Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Cecilia A Zito
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- São Paulo State University UNESP, Rua Cristóvão Colombo, 2265, 15054000, São José do Rio Preto, Brazil
| | - Olga Vasylieva
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Felix Wittwer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Michal Odstrčzil
- Paul Scherrer Institute, Forschungsstrasse 111, 5232, Villigen PSI, Switzerland
- Carl Zeiss SMT, Carl-Zeiss-Straße 22, 73447, Oberkochen, Germany
| | - Natnael Mogos
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Mirko Landmann
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Christian G Schroer
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany
- Center for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
- Helmholtz Imaging Platform, Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Dorota Koziej
- University of Hamburg, Institute for Nanostructure and Solid-State Physics, Center for Hybrid Nanostructures, Luruper Chaussee 149, 22761, Hamburg, Germany.
- The Hamburg Centre for Ultrafast Imaging, Hamburg, Germany.
| |
Collapse
|
24
|
Sun B, Zheng W, Xie B, Kang C, Zhu J, Kong F, Xiang L, Cui C, Lou S, Du C, Zuo P, Xie J, Yin G. Single-Atom Tailored Hierarchical Transition Metal Oxide Nanocages for Efficient Lithium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200367. [PMID: 35384281 DOI: 10.1002/smll.202200367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Mitigating the mechanical degradation and enhancing the ionic/electronic conductivity are critical but challengeable issues toward improving electrochemical performance of conversion-type anodes in rechargeable batteries. Herein, these challenges are addressed by constructing interconnected 3D hierarchically porous structure synergistic with Nb single atom modulation within a Co3 O4 nanocage (3DH-Co3 O4 @Nb). Such a hierarchical-structure nanocage affords several fantastic merits such as rapid ion migration and enough inner space for alleviating volume variation induced by intragrain stress and optimized stability of the solid-electrolyte interface. Particularly, experimental studies in combination with theoretical analysis verify that the introduction of Nb into the Co3 O4 lattice not only improves the electron conductivity, but also accelerates the surface/near-surface reactions defined as pesudocapacitance behavior. Dynamic behavior reveals that the ensemble design shows huge potential for fast and large lithium storage. These features endow 3DH-Co3 O4 @Nb with remarkable battery performance, delivering ≈740 mA h g-1 after ultra-long cycling of 1000 times under a high current density of 5 A g-1 . Importantly, the assembled 3DH-Co3 O4 @Nb//LiCoO2 pouch cell also presents a long-lived cycle performance with only ≈0.059% capacity decay per cycle, inspiring the design of electrode materials from both the nanostructure and atomic level toward practical applications.
Collapse
Affiliation(s)
- Baoyu Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Wei Zheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Bingxing Xie
- School of New Energy, Nanjing University of Science and Technology, Jiangyin, 214443, China
| | - Cong Kang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jiaming Zhu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Fanpeng Kong
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Lizhi Xiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Can Cui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Shuaifeng Lou
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chunyu Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Pengjian Zuo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jingying Xie
- State Key Laboratory of Space Power-Sources Technology, Shanghai Institute of Space Power Sources, Shanghai, 200245, China
| | - Geping Yin
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
25
|
Conjugated microporous polymer derived N, O and S co-doped sheet-like carbon materials as anode materials for high-performance lithium-ion batteries. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Wang Z, Wang J, Ni J, Li L. Structurally Durable Bimetallic Alloy Anodes Enabled by Compositional Gradients. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201209. [PMID: 35362272 PMCID: PMC9165509 DOI: 10.1002/advs.202201209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Metals such as Sb and Bi are important anode materials for sodium-ion batteries because they feature a large capacity and low reaction potential. However, the accumulation of stress and strain upon sodium storage leads to the formation of cracks and fractures, resulting in electrode failure upon extended cycling. In this work, the design and construction of Bix Sb1-x bimetallic alloy films with a compositional gradient to mitigate the intrinsic structural instability is reported. In the gradient film, the top is rich in Sb, contributing to the capacity, while the bottom is rich in Bi, helping to reduce the stress in the interphase between the film and the substrate. Significantly, this gradient film affords a high reversible capacity of ≈500 mAh g-1 and sustains 82% of the initial capacity after 1000 cycles at 2 C, drastically outperforming the solid-solution counterpart and many recently reported alloy anodes. Such a gradient design can open up the possibilities to engineering high-capacity anode materials that are structurally unstable due to the huge volume variation upon energy storage.
Collapse
Affiliation(s)
- Zhenzhu Wang
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| | - Jie Wang
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| | - Jiangfeng Ni
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
- Light Industry Institute of Electrochemical Power SourcesSuzhou215699China
| | - Liang Li
- School of Physical Science and TechnologyCenter for Energy Conversion Materials & Physics (CECMP)Jiangsu Key Laboratory of Thin FilmsSoochow UniversitySuzhou215006China
| |
Collapse
|
27
|
Xue C, Zhou X, Li X, Yang N, Xin X, Wang Y, Zhang W, Wu J, Liu W, Huo F. Rational Synthesis and Regulation of Hollow Structural Materials for Electrocatalytic Nitrogen Reduction Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104183. [PMID: 34889533 PMCID: PMC8728834 DOI: 10.1002/advs.202104183] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/21/2021] [Indexed: 05/22/2023]
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is known as a promising mean of nitrogen fixation to mitigate the energy crisis and facilitate fertilizer production under mild circumstances. For electrocatalytic reactions, the design of efficient catalysts is conducive to reducing activation energy and accelerating lethargic dynamics. Among them, hollow structural materials possess cavities in their structures, which can slack off the escape rate of N2 and reaction intermediates, prolong the residence time of N2 , enrich the reaction intermediates' concentration, and shorten electron transportation path, thereby further enhancing their NRR activity. Here, the basic synthetic strategies of hollow structural materials are introduced first. Then, the recent breakthroughs in hollow structural materials as NRR catalysts are reviewed from the perspective of intrinsic, mesoscopic, and microscopic regulations, aiming to discuss how structures affect and improve the catalytic performance. Finally, the future research directions of hollow structural materials as NRR catalysts are discussed. This review is expected to provide an outlook for optimizing hollow structural NRR catalysts.
Collapse
Affiliation(s)
- Cong Xue
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xinru Zhou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xiaohan Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Nan Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Xue Xin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Yusheng Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Jiansheng Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Wenjing Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM)Nanjing Tech University30 South Puzhu RoadNanjing211816China
| |
Collapse
|
28
|
Yang S, Li R, Nie Z, Zhang H, Zhang Y, Zhu J. Intercalation pseudocapacitance in 2D N-doped V 2O 3 nanosheets for stable and ultrafast lithium-ion storage. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01352e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2D N-doped V2O3 (N-V2O3) is synthesized as an anode material for Li-ion batteries by a facile strategy. Benefiting from the 3D V–V tunnel structure, sufficient active sites and N modifications, N-V2O3 exhibits stable and ultrafast Li-ion storage.
Collapse
Affiliation(s)
- Shiyu Yang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Ruizi Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Zhentao Nie
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Hongjian Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jixin Zhu
- State Key Laboratory of Fire Science, University of Science and Technology of China, 443 Huangshan Road, Hefei, 230027, P. R. China
| |
Collapse
|
29
|
Duan L, Wang C, Zhang W, Ma B, Deng Y, Li W, Zhao D. Interfacial Assembly and Applications of Functional Mesoporous Materials. Chem Rev 2021; 121:14349-14429. [PMID: 34609850 DOI: 10.1021/acs.chemrev.1c00236] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Functional mesoporous materials have gained tremendous attention due to their distinctive properties and potential applications. In recent decades, the self-assembly of micelles and framework precursors into mesostructures on the liquid-solid, liquid-liquid, and gas-liquid interface has been explored in the construction of functional mesoporous materials with diverse compositions, morphologies, mesostructures, and pore sizes. Compared with the one-phase solution synthetic approach, the introduction of a two-phase interface in the synthetic system changes self-assembly behaviors between micelles and framework species, leading to the possibility for the on-demand fabrication of unique mesoporous architectures. In addition, controlling the interfacial tension is critical to manipulate the self-assembly process for precise synthesis. In particular, recent breakthroughs based on the concept of the "monomicelles" assembly mechanism are very promising and interesting for the synthesis of functional mesoporous materials with the precise control. In this review, we highlight the synthetic strategies, principles, and interface engineering at the macroscale, microscale, and nanoscale for oriented interfacial assembly of functional mesoporous materials over the past 10 years. The potential applications in various fields, including adsorption, separation, sensors, catalysis, energy storage, solar cells, and biomedicine, are discussed. Finally, we also propose the remaining challenges, possible directions, and opportunities in this field for the future outlook.
Collapse
Affiliation(s)
- Linlin Duan
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Changyao Wang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Zhang
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Bing Ma
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Yonghui Deng
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Wei Li
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| | - Dongyuan Zhao
- Department of Chemistry, Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
30
|
Oxygen Vacancy Modulated TiP
2
O
7‐y
with Enhanced High‐rate Capabilities and Long‐term Cyclability used as Anode Material for Lithium‐ion Batteries. ChemistrySelect 2021. [DOI: 10.1002/slct.202103266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Wu C, Wang Y, Ma G, Zheng X. Enhanced rate capability of Li4Ti5O12 anode material by a photo-assisted sol–gel route for lithium-ion batteries. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.107119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
32
|
Cui TL, Zhang WB, Chen JJ, Zhang BW, Wang H, Zhang XJ. Fabrication of conjugated polyimides with porous crosslinked networks and their application as cathodes for lithium-ion batteries. NEW J CHEM 2021. [DOI: 10.1039/d1nj03925c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We synthesized a series of conjugated porous polymers with crosslinked networks and assessed their performance as cathodes for lithium-ion batteries.
Collapse
Affiliation(s)
- Tian-Lu Cui
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Wen-Bei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jian-Jun Chen
- Institute of Environmental & Catalytic Engineering, School of Chemistry and Chemical Engineering, Zhengzhou Normal University, Zhengzhou 450044, China
| | - Bo-Wen Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Hui Wang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Xue-Jing Zhang
- Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| |
Collapse
|