1
|
Li Y, Li C, Liu S, Wang Q, Tang Z, Qu J, Ye J, Lu Y, Wang J, Zhang K, Fu Y, Xu J. Nano-photosensitizers with gallic acid-involved Fe-O-Cu "electronic storage station" bridging ligand-to-metal charge transfer for efficient catalytic theranostics. J Colloid Interface Sci 2024; 676:974-988. [PMID: 39068841 DOI: 10.1016/j.jcis.2024.07.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/18/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
NH2-MIL-88B (Fe) (MOF) is a promising photocatalytic material for antitumor therapy because of its distinctive electronic structure. However, inadequate separation of photo-generated electrons and slow reaction rate in low/high-valence iron (Fe) cycles limit their clinical application. In the present study, "electronic storage station" as a ligand-to-metal charge transfer bridge bond was constructed to inhibit recombination of electron/hole under 650 nm laser irradiation. Cupric (Cu) ions and gallic acid (GA) were self-assembled into a MOF (denoted as CGMOF) to create an FeO(GA)Cu bridge bond. GA, characterized by robust electron delocalization and abundant electron-donating groups, significantly enhances electron transfer efficiency for photodynamic therapy (PDT). CGMOF can respond to endogenous glutathione and release cuprous ions, accelerating the iron ion/ferrous ion cycles for chemodynamic therapy (CDT). The released Fe species can serve as T2-weighted magnetic resonance imaging contrast. Extended X-ray absorption fine structure spectra confirmed the presence of GA-containing FeOCu bonds in CGMOF. Furthermore, a series of photo-electrochemical tests confirmed that the formation of FeO(GA)Cu bond prominently elevated the redox capacity and increased the carrier density of CGMOF by 2.74-fold compared to that of MOF. In addition, cinnamaldehyde was grafted onto CGMOF for tumor-responsive hydrogen peroxide self-supply. Concurrently, hyaluronic acid was surface-modified to achieve the targeted delivery of nano-photosensitizers. In summary, this study presents an innovative approach for engineering Fe-based metal-organic frameworks for synergetic PDT/CDT applications.
Collapse
Affiliation(s)
- Yunlong Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyang Tang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jiawei Qu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China
| | - Yong Lu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241002, PR China
| | - Jun Wang
- Liuzhou People's Hospital Affiliated to Guangxi Medical University, Liuzhou 545000, PR China.
| | - Kefen Zhang
- Guangxi University of Science and Technology, Liuzhou 545006, PR China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, PR China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China; Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
2
|
Zhang Y, Zhang N, Xing J, Sun Y, Jin X, Shen C, Cheng L, Wang Y, Wang X. In situ hydrogel based on Cu-Fe 3O 4 nanoclusters exploits oxidative stress and the ferroptosis/cuproptosis pathway for chemodynamic therapy. Biomaterials 2024; 311:122675. [PMID: 38943822 DOI: 10.1016/j.biomaterials.2024.122675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/15/2024] [Indexed: 07/01/2024]
Abstract
Chemodynamic therapy (CDT) involving the use of metal nanozymes presents new opportunities for the treatment of deep-seated tumors. However, the lower ROS catalytic rate and dependence on high H2O2 concentrations affect therapeutic efficacy. To address this issue, a hydrogel was constructed for the treatment of osteosarcoma by combining Cu-Fe3O4 nanozymes (NCs) and artemisinin (AS) coencapsulated in situ with sodium alginate (ALG) and calcium ions. This hydrogel can release nanoparticles and AS within tumor tissue for an extended period of time, utilizing the multienzyme activity of NCs to achieve ROS accumulation. The carbon radicals (•C) generated from the interaction of Fe2+/Cu2+ with AS amplify oxidative stress, leading to tumor cell damage. Simultaneously, the NCs activate ferroptosis via the GPX4 pathway by depleting GSH and activate cuproptosis via the DLAT pathway by causing intracellular copper overload, enhancing therapeutic efficacy. In vitro experiments confirmed that the NCs-AS-ALG hydrogel has an excellent tumor cell killing effect, while in vivo experimental results demonstrated that it can effectively eliminate tumors with excellent biocompatibility, providing a new approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China; College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, PR China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Jianghao Xing
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Yiwei Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Xu Jin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China
| | - Cailiang Shen
- Department of Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, PR China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, PR China
| | - Yuanyin Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, PR China.
| | - Xianwen Wang
- College and Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei, 230032, PR China; School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
3
|
Leitão MIPS, Morais TS. Tailored Metal-Based Catalysts: A New Platform for Targeted Anticancer Therapies. J Med Chem 2024; 67:16967-16990. [PMID: 39348603 DOI: 10.1021/acs.jmedchem.4c01680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Innovative strategies for targeted anticancer therapies have gained significant momentum, with metal complexes emerging as tunable catalysts for more effective and safer treatments. Rational design and engineering of metal complexes enable the development of tailored molecular structures optimized for precision oncology. The strategic incorporation of metal complex catalysts within combinatorial therapies amplifies their anticancer properties. This perspective highlights the advancements in synthetic strategies and rational design since 2019, showing how tailored metal catalysts are optimized by designing structures to release or in situ synthesize active drugs, leveraging the target-specific characteristics to develop more precise cancer therapies. This review explores metal-based catalysts, including those conjugated with biomolecules, nanostructures, and metal-organic frameworks (MOFs), highlighting their catalytic activity in biological environments and their in vitro/in vivo performance. To sum up, the potential of metal complexes as catalysts to reshape the landscape of anticancer therapies and foster novel avenues for therapeutic advancement is emphasized.
Collapse
Affiliation(s)
- Maria Inês P S Leitão
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Tânia S Morais
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
4
|
Gu L, Li X, Chen G, Yang H, Qian H, Pan J, Miao Y, Li Y. A glutathione-activated bismuth-gallic acid metal-organic framework nano-prodrug for enhanced sonodynamic therapy of breast tumor. J Colloid Interface Sci 2024; 679:214-223. [PMID: 39362146 DOI: 10.1016/j.jcis.2024.09.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Sonodynamic therapy is a promising, noninvasive, and precise tumor treatment that leverages sonosensitizers to generate cytotoxic reactive oxygen species during ultrasound stimulation. Gallic acid (GA), a natural polyphenol, possesses certain anti-tumor properties, but exhibits significant toxicity toward normal cells, limiting its application in cancer treatment. To overcome this issue, we synthesized a bismuth-gallic acid (BGA), coordinated metal-organic framework (MOF) nano-prodrug. Upon encountering glutathione (GSH), BGA gradually dissociated and depleted GSH, releasing GA, which had anti-tumor effects. As an MOF with semiconductor properties, BGA primarily produced superoxide anion radical upon ultrasound excitation. After the release of GA, GA generated superoxide anion radical and further produced high toxic singlet oxygen under ultrasound stimulation, while further oxidizing and consuming GSH, enhancing sonocatalytic performance. Additionally, the released GA induced cell cycle arrest, ultimately leading to apoptosis. Our results revealed that BGA, as a GSH-activated, metal-polyphenol MOF nano-prodrug, showed potential for use in breast tumor sonodynamic therapy, providing a novel strategy for precise tumor treatment.
Collapse
Affiliation(s)
- Liping Gu
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guobo Chen
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Huihui Qian
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Junjie Pan
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Li Y, Wang Y, Zhao L, Stenzel MH, Jiang Y. Metal ion interference therapy: metal-based nanomaterial-mediated mechanisms and strategies to boost intracellular "ion overload" for cancer treatment. MATERIALS HORIZONS 2024; 11:4275-4310. [PMID: 39007354 DOI: 10.1039/d4mh00470a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Metal ion interference therapy (MIIT) has emerged as a promising approach in the field of nanomedicine for combatting cancer. With advancements in nanotechnology and tumor targeting-related strategies, sophisticated nanoplatforms have emerged to facilitate efficient MIIT in xenografted mouse models. However, the diverse range of metal ions and the intricacies of cellular metabolism have presented challenges in fully understanding this therapeutic approach, thereby impeding its progress. Thus, to address these issues, various amplification strategies focusing on ionic homeostasis and cancer cell metabolism have been devised to enhance MIIT efficacy. In this review, the remarkable progress in Fe, Cu, Ca, and Zn ion interference nanomedicines and understanding their intrinsic mechanism is summarized with particular emphasis on the types of amplification strategies employed to strengthen MIIT. The aim is to inspire an in-depth understanding of MIIT and provide guidance and ideas for the construction of more powerful nanoplatforms. Finally, the related challenges and prospects of this emerging treatment are discussed to pave the way for the next generation of cancer treatments and achieve the desired efficacy in patients.
Collapse
Affiliation(s)
- Yutang Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Yandong Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Li Zhao
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| | - Martina H Stenzel
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China.
| |
Collapse
|
6
|
Yang Z, Zuo H, Hou Y, Zhou S, Zhang Y, Yang W, He J, Shen X, Peng Q. Dual Oxygen-Supply Immunosuppression-Inhibiting Nanomedicine to Avoid the Intratumoral Recruitment of Myeloid-Derived Suppressor Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406860. [PMID: 39233543 DOI: 10.1002/smll.202406860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are reported to be responsible for the negative prognosis of colorectal cancer (CRC) patients due to the mediated immunosuppressive tumor microenvironment (TME). The selective and chronic circumvention of tumor-infiltrated MDSCs has potential clinical significance for CRC treatment, which unluckily remains a technical challenge. Because tumor hypoxia makes a significant contribution to the recruitment of MDSCs in tumor sites, a dual oxygen-supplied immunosuppression-inhibiting nanomedicine (DOIN) is demonstrated for overcoming tumor hypoxia, which achieves selective and long-term inhibition of intratumoral recruitment of MDSCs. The DOIN is constructed by the encasement of perfluorooctyl bromide (PFOB) and 4-methylumbelliferone (4-MU) into a TME-responsive amphiphilic polymer. This nanoplatform directly carries oxygen to the tumor region and simultaneously loosens the condensed tumor extracellular matrix for the normalization of tumor vasculature, which selectively remodels the TME toward one adverse to the intratumoral recruitment of MDSCs. Importantly, this nanoplatform offers a long-acting alleviation of the hypoxic TME, chronically avoiding the comeback of tumor-infiltrated MDSCs. Consequently, the immunosuppressive TME is relieved, and T cells are successfully proliferated and activated into cytotoxic T lymphocytes, which boosts a systemic immune response and contributes to lasting inhibition of tumor growth with a prolonged survival span of xenograft.
Collapse
Affiliation(s)
- Zhengyang Yang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory of Cancer Invasion and Metastasis Research & National Clinical Research Center for Digestive Diseases, Beijing, 100050, China
| | - Huaqin Zuo
- Department of Hematology, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, China
| | - Yuchen Hou
- Department of General Surgery, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230021, China
| | - Shuqin Zhou
- Department of Anesthesiology of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Ying Zhang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
| | - Wanren Yang
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Xiaofei Shen
- Department of General Surgery, Drum Tower Hospital, Medical School of Nanjing University, 321 Zhongshan RD, Nanjing, 210008, China
| | - Qing Peng
- Central Laboratory of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China
- Department of Hepatobiliary Surgery II, General Surgery Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510000, China
| |
Collapse
|
7
|
Fang F, Chen X. Carrier-Free Nanodrugs: From Bench to Bedside. ACS NANO 2024; 18:23827-23841. [PMID: 39163559 DOI: 10.1021/acsnano.4c09027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Carrier-free nanodrugs with extraordinary active pharmaceutical ingredient (API) loading (even 100%), avoidable carrier-induced toxicity, and simple synthetic procedures are considered as one of the most promising candidates for disease theranostics. Substantial studies and the commercial success of "carrier-free" nanocrystals have demonstrated their strong clinical potential. However, their practical translations remain challenging and are impeded by unpredictable assembly processes, insufficient delivery efficiency, and an unclear in vivo fate. In this Perspective, we systematically outline the contemporary and emerging carrier-free nanodrugs based on diverse APIs, as well as highlight their opportunities and challenges in clinical translation. Looking ahead, further improvements in design and preparation, drug delivery, in vivo efficacy, and safety of carrier-free nanomedicines are essential to facilitate their translation from the bench to bedside.
Collapse
Affiliation(s)
- Fang Fang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, 11 Biopolis Way, Helios, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
8
|
Xi ZY, Fan CY, Zhu S, Nie GY, Xi XR, Jiang YY, Zhou Y, Mei YH, Xu L. PAFerroptosis Combined with Metabolic Disturbance of Mito by p52-ZER6 for Enhanced Cancer Immunotherapy induced by Nano-Bacilliform-Enzyme. Adv Healthc Mater 2024:e2402314. [PMID: 39171764 DOI: 10.1002/adhm.202402314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Indexed: 08/23/2024]
Abstract
The confused gene expressions and molecular mechanisms for mitochondrial dysfunction of traditional nanoenzymes is a challenge for tumor therapy. Herein, a nano-bacilliform-enzyme obtains the ability to inhibit p52-ZER6 signal pathway, regulate the genes related to mitochondrial metabolism, and possess the GOx/CAT/POD-like property. NBE acquires catalytic activity from the electronic energy transition. The tannin of NBE as a mitochondrial (Mito)-targeting guide overloads MitoROS, and then metabolic disorder and lipid peroxidation of Mito membrane occurs, thus leading to a novel death pathway called PAFerroptosis (pyroptosis, apoptosis, and Ferroptosis). Simultaneously, in order to refrain from mitophagy, hydroxychloroquine is mixed with NBE to form a combo with strength pyroptosis. As a result, NBE/combo improves the PAFerroptosis obviously by activation of CD8+T cells and inactivation of MDSC cells, up-regulating expression of caspase-3 signal pathway, intercepting DHODH pathway to arrive excellent antitumor effect (93%). Therefore, this study establishes a rational nanoenzyme for mitochondrial dysfunction without mitophagy for effective antitumor therapy.
Collapse
Affiliation(s)
- Zi-Yue Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chuan-Yong Fan
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuang Zhu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Gan-Yu Nie
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xin-Ran Xi
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Ying-Ying Jiang
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yao Zhou
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yi-Hua Mei
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lu Xu
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
9
|
Hu Z, Shan J, Cui Y, Cheng L, Chen XL, Wang X. Nanozyme-Incorporated Microneedles for the Treatment of Chronic Wounds. Adv Healthc Mater 2024; 13:e2400101. [PMID: 38794907 DOI: 10.1002/adhm.202400101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/28/2024] [Indexed: 05/26/2024]
Abstract
Acute wounds are converted to chronic wounds due to advanced age and diabetic complications. Nanozymes catalyze ROS production to kill bacteria without causing drug resistance, while microneedles (MNs) can break through the skin barrier to deliver drugs effectively. Nanozymes can be intergrateded into MNs delivery systems to improve painless drug delivery. It can also reduce the effective dose of drug sterilization while increasing delivery efficiency and effectively killing wounded bacteria while preventing drug resistance. This paper describes various types of metal nanozymes from previous studies and compares their mutual enhancement with nanozymes. The pooled results show that the MNs, through material innovation, are able to both penetrate the scab and deliver nanozymes and exert additional anti-inflammatory and bactericidal effects. The catalytic effect of some of the nanozymes can also accelerate the lysis of the MNs or create a cascade reaction against inflammation and infection. However, the issue of increased toxicity associated with skin penetration and clinical translation remains a challenge. This study reviews the latest published results and corresponding challenges associated with the use of MNs combined with nanozymes for the treatment of wounds, providing further information for future research.
Collapse
Affiliation(s)
- Zhiyuan Hu
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Jie Shan
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Yuyu Cui
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Xu-Lin Chen
- Department of Burns, The First Hospital Affiliated Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui, 230032, P. R. China
| |
Collapse
|
10
|
He M, Wang Z, Xiang D, Sun D, Chan YK, Ren H, Lin Z, Yin G, Deng Y, Yang W. A H₂S-Evolving Alternately-Catalytic Enzyme Bio-Heterojunction with Antibacterial and Macrophage-Reprogramming Activity for All-Stage Infectious Wound Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405659. [PMID: 38943427 DOI: 10.1002/adma.202405659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/24/2024] [Indexed: 07/01/2024]
Abstract
The disorder of the macrophage phenotype and the hostile by-product of lactate evoked by pathogenic infection in hypoxic deep wound inevitably lead to the stagnant skin regeneration. In this study, hydrogen sulfide (H2S)-evolving alternately catalytic bio-heterojunction enzyme (AC-BioHJzyme) consisting of CuFe2S3 and lactate oxidase (LOD) named as CuFe2S3@LOD is developed. AC-BioHJzyme exhibits circular enzyme-mimetic antibacterial (EMA) activity and macrophage re-rousing capability, which can be activated by near-infrared-II (NIR-II) light. In this system, LOD exhausts lactate derived from bacterial anaerobic respiration and generated hydrogen peroxide (H2O2), which provides an abundant stock for the peroxidase-mimetic activity to convert the produced H2O2 into germicidal •OH. The GPx-mimetic activity endows AC-BioHJzyme with a glutathione consumption property to block the antioxidant systems in bacterial metabolism, while the O2 provided by the CAT-mimetic activity can generate 1O2 under the NIR-II irradiation. Synchronously, the H2S gas liberated from CuFe2S3@LOD under the infectious micromilieu allows the reduction of Fe(III)/Cu(II) to Fe(II)/Cu(І), resulting in sustained circular EMA activity. In vitro and in vivo assays indicate that the CuFe2S3@LOD AC-BioHJzyme significantly facilitates the infectious cutaneous regeneration by killing bacteria, facilitating epithelialization/collagen deposition, promoting angiogenesis, and reprogramming macrophages. This study provides a countermeasure for deep infectious wound healing via circular enzyme-mimetic antibiosis and macrophage re-rousing.
Collapse
Affiliation(s)
- Miaomiao He
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuyao Wang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Danni Xiang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Dan Sun
- Department Advanced Composite Research Group (ACRG), School of Mechanical and Aerospace Engineering, Queen's University Belfast, Belfast, BT9 5AH, UK
| | - Yau Kai Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Huilin Ren
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhijie Lin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Guangfu Yin
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Deng
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Weizhong Yang
- College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Zhu Y, Deng X, Dai Z, Liu Q, Kuang Y, Liu T, Chen H. A "Ferroptosis-Amplifier" Hydrogel for Eliminating Refractory Cancer Stem Cells Post-lumpectomy. NANO LETTERS 2024; 24:8179-8188. [PMID: 38885447 DOI: 10.1021/acs.nanolett.4c02192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The unique "Iron Addiction" feature of cancer stem cells (CSCs) with tumorigenicity and plasticity generally contributes to the tumor recurrence and metastasis after a lumpectomy. Herein, a novel "Ferroptosis Amplification" strategy is developed based on integrating gallic acid-modified FeOOH (GFP) and gallocyanine into Pluronic F-127 (F127) and carboxylated chitosan (CC)-based hydrogel for CSCs eradication. This "Ferroptosis Amplifier" hydrogel is thermally sensitive and achieves rapid gelation at the postsurgical wound in a breast tumor model. Specifically, gallocyanine, as the Dickkopf-1 (DKK1) inhibitor, can decrease the expression of SLC7A11 and GPX4 and synergistically induce ferroptosis of CSCs with GFP. Encouragingly, it is found that this combination suppresses the migratory and invasive capability of cancer cells via the downregulation of matrix metalloproteinase 7 (MMP7). The in vivo results further confirm that this "Ferroptosis Amplification" strategy is efficient in preventing tumor relapse and lung metastasis, manifesting an effective and promising postsurgical treatment for breast cancer.
Collapse
Affiliation(s)
- Yutong Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xi Deng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zideng Dai
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Qing Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yichen Kuang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tianzhi Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| |
Collapse
|
12
|
Huang WQ, Zhu YQ, Gao F, You W, Chen G, Nie X, Xia L, Wang LH, Hong CY, Zhang Z, Wang F, Yu Y, You YZ. Nanogalvanic Cells Release Highly Reactive Electrons in Tumors to Effectively Eliminate Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404199. [PMID: 38734974 DOI: 10.1002/adma.202404199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/06/2024] [Indexed: 05/13/2024]
Abstract
External stimuli triggering chemical reactions in cancer cells to generate highly reactive chemical species are very appealing for cancer therapy, in which external irradiation activating sensitizers to transfer energy or electrons to surrounding oxygen or other molecules is critical for generating cytotoxic reactive species. However, poor light penetration into tissue, low activity of sensitizers, and reliance on oxygen supply restrict the generation of cytotoxic chemical species in hypoxic tumors, which lowers the therapeutic efficacy. Here, this work presents galvanic cell nanomaterials that can directly release highly reactive electrons in tumors without external irradiation or photosensitizers. The released reactive electrons directly react with surrounding biomolecules such as proteins and DNA within tumors to destroy them or react with other surrounding (bio)molecules to yield cytotoxic chemical species to eliminate tumors independent of oxygen. Administering these nanogalvanic cells to mice results in almost complete remission of subcutaneous solid tumors and deep metastatic tumors. The results demonstrate that this strategy can further arouse an immune response even in a hypoxic environment. This method offers a promising approach to effectively eliminate tumors, similar to photodynamic therapy, but does not require oxygen or irradiation to activate photosensitizers.
Collapse
Affiliation(s)
- Wei-Qiang Huang
- The Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ya-Qi Zhu
- The Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Fan Gao
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wei You
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Guang Chen
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xuan Nie
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Lei Xia
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Long-Hai Wang
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chun-Yan Hong
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ze Zhang
- Hefei National Research Centre for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Fei Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yue Yu
- The Department of Gastroenterology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ye-Zi You
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
13
|
Jin Z, Jiang L, He Q. Critical learning from industrial catalysis for nanocatalytic medicine. Nat Commun 2024; 15:3857. [PMID: 38719843 PMCID: PMC11079063 DOI: 10.1038/s41467-024-48319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
Systematical and critical learning from industrial catalysis will bring inspiration for emerging nanocatalytic medicine, but the relevant knowledge is quite limited so far. In this review, we briefly summarize representative catalytic reactions and corresponding catalysts in industry, and then distinguish the similarities and differences in catalytic reactions between industrial and medical applications in support of critical learning, deep understanding, and rational designing of appropriate catalysts and catalytic reactions for various medical applications. Finally, we summarize/outlook the present and potential translation from industrial catalysis to nanocatalytic medicine. This review is expected to display a clear picture of nanocatalytic medicine evolution.
Collapse
Affiliation(s)
- Zhaokui Jin
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 510182, China
| | - Lingdong Jiang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China
| | - Qianjun He
- Medical Center on Aging, Ruijin Hospital; Shanghai Key Laboratory of Hydrogen Science & Center of Hydrogen Science, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
14
|
Yang X, Li C, Liu S, Li Y, Zhang X, Wang Q, Ye J, Lu Y, Fu Y, Xu J. Gallic acid-loaded HFZIF-8 for tumor-targeted delivery and thermal-catalytic therapy. NANOSCALE 2024. [PMID: 38651386 DOI: 10.1039/d4nr01102c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
"Transition" metal-coordinated plant polyphenols are a type of promising antitumor nanodrugs owing to their high biosafety and catalytic therapy potency; however, the major obstacle restricting their clinical application is their poor tumor accumulation. Herein, Fe-doped ZIF-8 was tailored using tannic acid (TA) into a hollow mesoporous nanocarrier for gallic acid (GA) loading. After hyaluronic acid (HA) modification, the developed nanosystem of HFZIF-8/GA@HA was used for the targeted delivery of Fe ions and GA, thereby intratumorally achieving the synthesis of an Fe-GA coordinated complex. The TA-etching strategy facilitated the development of a cavitary structure and abundant coordination sites of ZIF-8, thus ensuring an ideal loading efficacy of GA (23.4 wt%). When HFZIF-8/GA@HA accumulates in the tumor microenvironment (TME), the framework is broken due to the competitive protonation ability of overexpressed protons in the TME. Interestingly, the intratumoral degradation of HFZIF-8/GA@HA provides the opportunity for the in situ "meeting" of GA and Fe ions, and through the coordination of polyhydroxyls assisted by conjugated electrons on the benzene ring, highly stable Fe-GA nanochelates are formed. Significantly, owing to the electron delocalization effect of GA, intratumorally coordinated Fe-GA could efficiently absorb second near-infrared (NIR-II, 1064 nm) laser irradiation and transfer it into thermal energy with a conversion efficiency of 36.7%. The photothermal performance could speed up the Fenton reaction rate of Fe-GA with endogenous H2O2 for generating more hydroxyl radicals, thus realizing thermally enhanced chemodynamic therapy. Overall, our research findings demonstrate that HFZIF-8/GA@HA has potential as a safe and efficient anticancer nanodrug.
Collapse
Affiliation(s)
- Xing Yang
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chunsheng Li
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Shuang Liu
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Yunlong Li
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Xinyu Zhang
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Qiang Wang
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Yong Lu
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
- School of Laboratory Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiating Xu
- Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- College of Forestry, Beijing Forestry University, Beijing 100083, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
15
|
Wu X, Zhou Z, Li K, Liu S. Nanomaterials-Induced Redox Imbalance: Challenged and Opportunities for Nanomaterials in Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308632. [PMID: 38380505 PMCID: PMC11040387 DOI: 10.1002/advs.202308632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/24/2024] [Indexed: 02/22/2024]
Abstract
Cancer cells typically display redox imbalance compared with normal cells due to increased metabolic rate, accumulated mitochondrial dysfunction, elevated cell signaling, and accelerated peroxisomal activities. This redox imbalance may regulate gene expression, alter protein stability, and modulate existing cellular programs, resulting in inefficient treatment modalities. Therapeutic strategies targeting intra- or extracellular redox states of cancer cells at varying state of progression may trigger programmed cell death if exceeded a certain threshold, enabling therapeutic selectivity and overcoming cancer resistance to radiotherapy and chemotherapy. Nanotechnology provides new opportunities for modulating redox state in cancer cells due to their excellent designability and high reactivity. Various nanomaterials are widely researched to enhance highly reactive substances (free radicals) production, disrupt the endogenous antioxidant defense systems, or both. Here, the physiological features of redox imbalance in cancer cells are described and the challenges in modulating redox state in cancer cells are illustrated. Then, nanomaterials that regulate redox imbalance are classified and elaborated upon based on their ability to target redox regulations. Finally, the future perspectives in this field are proposed. It is hoped this review provides guidance for the design of nanomaterials-based approaches involving modulating intra- or extracellular redox states for cancer therapy, especially for cancers resistant to radiotherapy or chemotherapy, etc.
Collapse
Affiliation(s)
- Xumeng Wu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
| | - Ziqi Zhou
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Kai Li
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| | - Shaoqin Liu
- School of Life Science and TechnologyHarbin Institute of TechnologyHarbin150006China
- Zhengzhou Research InstituteHarbin Institute of TechnologyZhengzhou450046China
- School of Medicine and HealthHarbin Institute of TechnologyHarbin150006China
| |
Collapse
|
16
|
Han D, Ding B, Zheng P, Yuan M, Bian Y, Chen H, Wang M, Chang M, Kheraif AAA, Ma P, Lin J. NADPH Oxidase-Like Nanozyme for High-Efficiency Tumor Therapy Through Increasing Glutathione Consumption and Blocking Glutathione Regeneration. Adv Healthc Mater 2024; 13:e2303309. [PMID: 38214472 DOI: 10.1002/adhm.202303309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/18/2023] [Indexed: 01/13/2024]
Abstract
To counteract the high level of reactive oxygen species (ROS) caused by rapid growth, tumor cells resist oxidative stress by accelerating the production and regeneration of intracellular glutathione (GSH). Numerous studies focus on the consumption of GSH, but the regeneration of GSH will enhance the reduction level of tumor cells to resist oxidative stress. Therefore, inhibiting the regeneration of GSH; while, consuming GSH is of great significance for breaking the redox balance of tumor cells. Herein, a simple termed MnOx-coated Au (AMO) nanoflower, as a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) nanoenzyme, is reported for efficient tumor therapy. Au nanoparticles exhibit the capability to catalyze the oxidation of NADPH, hindering GSH regeneration; while, concurrently functioning as a photothermal agent. During the process of eliminating intracellular GSH, MnOx releases Mn2+ that subsequently engages in Fenton-like reactions, ultimately facilitating the implementation of chemodynamic therapy (CDT). Overall, this NOX enzyme-based nanoplatform enhances ROS generation and disrupts the state of reduction equilibrium, inducing apoptosis and ferroptosis by blocking GSH regeneration and increasing GSH consumption, thereby achieving collaborative treatments involving photothermal therapy (PTT), CDT, and catalytic therapy. This research contributes to NADPH and GSH targeted tumor therapy and showcases the potential of nanozymes.
Collapse
Affiliation(s)
- Di Han
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Binbin Ding
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Pan Zheng
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Hao Chen
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Meifang Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Mengyu Chang
- Departments of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, 77030, USA
| | - Abdulaziz A Al Kheraif
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
17
|
Chen Q, Qian Q, Xu H, Zhou H, Chen L, Shao N, Zhang K, Chen T, Tian H, Zhang Z, Jones M, Kwan KYH, Sewell M, Shen S, Wang X, Khan MA, Makvandi P, Jin S, Zhou Y, Wu A. Mitochondrial-Targeted Metal-Phenolic Nanoparticles to Attenuate Intervertebral Disc Degeneration: Alleviating Oxidative Stress and Mitochondrial Dysfunction. ACS NANO 2024; 18:8885-8905. [PMID: 38465890 DOI: 10.1021/acsnano.3c12163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
As intervertebral disc degeneration (IVDD) proceeds, the dysfunctional mitochondria disrupt the viability of nucleus pulposus cells, initiating the degradation of the extracellular matrix. To date, there is a lack of effective therapies targeting the mitochondria of nucleus pulposus cells. Here, we synthesized polygallic acid-manganese (PGA-Mn) nanoparticles via self-assembly polymerization of gallic acid in an aqueous medium and introduced a mitochondrial targeting peptide (TP04) onto the nanoparticles using a Schiff base linkage, resulting in PGA-Mn-TP04 nanoparticles. With a size smaller than 50 nm, PGA-Mn-TP04 possesses pH-buffering capacity, avoiding lysosomal confinement and selectively accumulating within mitochondria through electrostatic interactions. The rapid electron exchange between manganese ions and gallic acid enhances the redox capability of PGA-Mn-TP04, effectively reducing mitochondrial damage caused by mitochondrial reactive oxygen species. Moreover, PGA-Mn-TP04 restores mitochondrial function by facilitating the fusion of mitochondria and minimizing their fission, thereby sustaining the vitality of nucleus pulposus cells. In the rat IVDD model, PGA-Mn-TP04 maintained intervertebral disc height and nucleus pulposus tissue hydration. It offers a nonoperative treatment approach for IVDD and other skeletal muscle diseases resulting from mitochondrial dysfunction, presenting an alternative to traditional surgical interventions.
Collapse
Affiliation(s)
- Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Hongbo Xu
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Nannan Shao
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Kai Zhang
- Ninth People's Hospital, Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Haijun Tian
- Department of Orthopaedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, U.K
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mathew Sewell
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham B31 2AP, U.K
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310013, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou 324000, Zhejiang, China
- Centre of Research Impact and Outcome, Chitkara University, Rajpura-140401, Punjab, India
- Department of Biomaterials, Saveetha Dental College and Hospitals, SIMATS, Saveetha University, Chennai-600077, India
| | - Shengwei Jin
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| |
Collapse
|
18
|
Xu X, Liu S, Ye J, Wang Q, Liu M, Li Y, Shangguan H, Zhang K, Fu Y, Xu J. Optimized silicate nanozymes with atomically incorporated iron and manganese for intratumoral coordination-enhanced once-for-all catalytic therapy. J Mater Chem B 2024; 12:2594-2609. [PMID: 38372142 DOI: 10.1039/d3tb02840b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Although plant-derived cancer therapeutic products possess great promise in clinical translations, they still suffer from quick degradation and low targeting rates. Herein, based on the oxygen vacancy (OV)-immobilization strategy, an OV-enriched biodegradable silicate nanoplatform with atomically dispersed Fe/Mn active species and polyethylene glycol modification was innovated for loading gallic acid (GA) (noted as FMMPG) for intratumoral coordination-enhanced multicatalytic cancer therapy. The OV-enriched FMMPG nanozymes with a narrow band gap (1.74 eV) can be excited by a 650 nm laser to generate reactive oxygen species. Benefiting from the Mn-O bond in response to the tumor microenvironment (TME), the silicate skeleton in FMMPG collapses and completely degrades after 24 h. The degraded metal M (M = Fe, Mn) ions and released GA can in situ produce a stable M-GA nanocomplex at tumor sites. Importantly, the formed M-GA with strong reductive ability can transform H2O2 into the fatal hydroxyl radical, causing serious oxidative damage to the tumor. The released Fe3+ and Mn2+ can serve as enhanced contrast agents for magnetic resonance imaging, which can track the chemodynamic and photodynamic therapy processes. The work offers a reasonable strategy for a TME-responsive degradation and intratumoral coordination-enhanced multicatalytic therapy founded on bimetallic silicate nanozymes to achieve desirable tumor theranostic outcomes.
Collapse
Affiliation(s)
- Xiuping Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Yunlong Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Hang Shangguan
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
| | - Kefen Zhang
- Guangxi University of Science and Technology, Liuzhou 545006, China.
| | - Yujie Fu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China.
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
19
|
Du Q, Luo Y, Xu L, Du C, Zhang W, Xu J, Liu Y, Liu B, Chen S, Wang Y, Wang Z, Ran H, Wang J, Guo D. Smart responsive Fe/Mn nanovaccine triggers liver cancer immunotherapy via pyroptosis and pyroptosis-boosted cGAS-STING activation. J Nanobiotechnology 2024; 22:95. [PMID: 38448959 PMCID: PMC10918897 DOI: 10.1186/s12951-024-02354-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND The prognosis for hepatocellular carcinoma (HCC) remains suboptimal, characterized by high recurrence and metastasis rates. Although metalloimmunotherapy has shown potential in combating tumor proliferation, recurrence and metastasis, current apoptosis-based metalloimmunotherapy fails to elicit sufficient immune response for HCC. RESULTS A smart responsive bimetallic nanovaccine was constructed to induce immunogenic cell death (ICD) through pyroptosis and enhance the efficacy of the cGAS-STING pathway. The nanovaccine was composed of manganese-doped mesoporous silica as a carrier, loaded with sorafenib (SOR) and modified with MIL-100 (Fe), where Fe3+, SOR, and Mn2+ were synchronized and released into the tumor with the help of the tumor microenvironment (TME). Afterward, Fe3+ worked synergistically with SOR-induced immunogenic pyroptosis (via both the classical and nonclassical signaling pathways), causing the outflow of abundant immunogenic factors, which contributes to dendritic cell (DC) maturation, and the exposure of double-stranded DNA (dsDNA). Subsequently, the exposed dsDNA and Mn2+ jointly activated the cGAS-STING pathway and induced the release of type I interferons, which further led to DC maturation. Moreover, Mn2+-related T1 magnetic resonance imaging (MRI) was used to visually evaluate the smart response functionality of the nanovaccine. CONCLUSION The utilization of metallic nanovaccines to induce pyroptosis-mediated immune activation provides a promising paradigm for HCC treatment.
Collapse
Affiliation(s)
- Qianying Du
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Ying Luo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Lian Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Chier Du
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Wenli Zhang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Jie Xu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yun Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Bo Liu
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Sijin Chen
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Yi Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Zhigang Wang
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Haitao Ran
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China
| | - Junrui Wang
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
- Chongqing Key Laboratory of Ultrasound Molecular Imaging & Department of Ultrasound, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| | - Dajing Guo
- Department of Radiology, Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
20
|
Shi Y, Zhang G, Xiang C, Liu C, Hu J, Wang J, Ge R, Ma H, Niu Y, Xu Y. Defect-Engineering-Mediated Long-Lived Charge-Transfer Excited-State in Fe-Gallate Complex Improves Iron Cycle and Enables Sustainable Fenton-Like Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305162. [PMID: 37708316 DOI: 10.1002/adma.202305162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/18/2023] [Indexed: 09/16/2023]
Abstract
Fenton reactions are inefficient because the Fe(II) catalyst cannot be recycled in time due to the lack of a rapid electron transport pathway. This results in huge H2 O2 wastage in industrial applications. Here, it is shown that a sustainable heterogeneous Fenton system is attainable by enhancing the ligand-to-metal charge-transfer (LMCT) excited-state lifetime in Fe-gallate complex. By engineering oxygen defects in the complex, the lifetime is improved from 10-90 ps. The lengthened lifetime ensures sufficient concentrations of excited-states for an efficient Fe cycle, realizing previously unattainable H2 O2 activation kinetics and hydroxyl radical (• OH) productivity. Spectroscopic and electrochemical studies show the cyclic reaction mechanism involves in situ Fe(II) regeneration and synchronous supply of oxygen atoms from water to recover dissociated Fe─O bonds. Trace amounts of this catalyst effectively destroy two drug-resistant bacteria even after eight reaction cycles. This work reveals the link among LMCT excited-state lifetime, Fe cycle, and catalytic activity and stability, with implications for de novo design of efficient and sustainable Fenton-like processes.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Gong Zhang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chao Xiang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control School of Environment, Tsinghua University, Beijing, 100084, China
| | - Chengzhen Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Jun Hu
- School of Chemical Engineering, Northwest University, Xi' an, 710069, China
| | - Junhu Wang
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Rile Ge
- Center for Advanced Mössbauer Spectroscopy, Mössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China
| | - Haixia Ma
- School of Chemical Engineering, Northwest University, Xi' an, 710069, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
21
|
Liu S, Sun Y, Ye J, Li C, Wang Q, Liu M, Cui Y, Wang C, Jin G, Fu Y, Xu J, Liang X. Targeted Delivery of Active Sites by Oxygen Vacancy-Engineered Bimetal Silicate Nanozymes for Intratumoral Aggregation-Potentiated Catalytic Therapy. ACS NANO 2024; 18:1516-1530. [PMID: 38172073 DOI: 10.1021/acsnano.3c08780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Biodegradable silicate nanoconstructs have aroused tremendous interest in cancer therapeutics due to their variable framework composition and versatile functions. Nevertheless, low intratumoral retention still limits their practical application. In this study, oxygen vacancy (OV)-enriched bimetallic silicate nanozymes with Fe-Ca dual active sites via modification of oxidized sodium alginate and gallic acid (GA) loading (OFeCaSA-V@GA) were developed for targeted aggregation-potentiated therapy. The band gap of silica markedly decreased from 2.76 to 1.81 eV by codoping of Fe3+ and Ca2+, enabling its excitation by a 650 nm laser to generate reactive oxygen species. The OV that occurred in the hydrothermal synthetic stage of OFeCaSA-V@GA can anchor the metal ions to form an atomic phase, offering a massive fabrication method of single-atom nanozymes. Density functional theory results reveal that the Ca sites can promote the adsorption of H2O2, and Fe sites can accelerate the dissociation of H2O2, thereby realizing a synergetic catalytic effect. More importantly, the targeted delivery of metal ions can induce a morphological transformation at tumor sites, leading to high retention (the highest retention rate is 36.3%) of theranostic components in tumor cells. Thus, this finding may offer an ingenious protocol for designing and engineering highly efficient and long-retention nanodrugs.
Collapse
Affiliation(s)
- Shuang Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yu Sun
- Heilongjiang Vocational Institute Ecological Engineering, Harbin, 150040, P. R. China
| | - Jin Ye
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chunsheng Li
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Qiang Wang
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Mengting Liu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Yujie Cui
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
| | - Chen Wang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Guanqiao Jin
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiating Xu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, P. R. China
- Heilongjiang Provincial Key Laboratory of Ecological Utilization of Forestry-Based Active Substances, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Xinqiang Liang
- Guangxi Medical University Cancer Hospital, Nanning, 530021, P. R. China
| |
Collapse
|
22
|
Hao JN, Ge K, Chen G, Dai B, Li Y. Strategies to engineer various nanocarrier-based hybrid catalysts for enhanced chemodynamic cancer therapy. Chem Soc Rev 2023; 52:7707-7736. [PMID: 37874584 DOI: 10.1039/d3cs00356f] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chemodynamic therapy (CDT) is a newly developed cancer-therapeutic modality that kills cancer cells by the highly toxic hydroxyl radical (˙OH) generated from the in situ triggered Fenton/Fenton-like reactions in an acidic and H2O2-overproduced tumor microenvironment (TME). By taking the advantage of the TME-activated catalytic reaction, CDT enables a highly specific and minimally-invasive cancer treatment without external energy input, whose efficiency mainly depends on the reactant concentrations of both the catalytic ions and H2O2, and the reaction conditions (including pH, temperature, and amount of glutathione). Unfortunately, it suffers from unsatisfactory therapy efficiency for clinical application because of the limited activators (i.e., mild acid pH and insufficient H2O2 content) and overexpressed reducing substance in TME. Currently, various synergistic strategies have been elaborately developed to increase the CDT efficiency by regulating the TME, enhancing the catalytic efficiency of catalysts, or combining with other therapeutic modalities. To realize these strategies, the construction of diverse nanocarriers to deliver Fenton catalysts and cooperatively therapeutic agents to tumors is the key prerequisite, which is now being studied but has not been thoroughly summarized. In particular, nanocarriers that can not only serve as carriers but are also active themselves for therapy are recently attracting increasing attention because of their less risk of toxicity and metabolic burden compared to nanocarriers without therapeutic capabilities. These therapy-active nanocarriers well meet the requirements of an ideal therapy system with maximum multifunctionality but minimal components. From this new perspective, in this review, we comprehensively summarize the very recent research progress on nanocarrier-based systems for enhanced CDT and the strategies of how to integrate various Fenton agents into the nanocarriers, with particular focus on the studies of therapy-active nanocarriers for the construction of CDT catalysts, aiming to guide the design of nanosystems with less components and more functionalities for enhanced CDT. Finally, the challenges and prospects of such a burgeoning cancer-theranostic modality are outlooked to provide inspirations for the further development and clinical translation of CDT.
Collapse
Affiliation(s)
- Ji-Na Hao
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Kaiming Ge
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Guoli Chen
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Yongsheng Li
- Lab of Low Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
- School of Chemistry and Chemical Engineering, Pharmacy School, State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
23
|
Guo Y, Bao Q, Hu P, Shi J. Nanomedicine-based co-delivery of a calcium channel inhibitor and a small molecule targeting CD47 for lung cancer immunotherapy. Nat Commun 2023; 14:7306. [PMID: 37951973 PMCID: PMC10640620 DOI: 10.1038/s41467-023-42972-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023] Open
Abstract
Pro-tumoral macrophages in lung tumors present a significant challenge in immunotherapy. Here, we introduce a pH-responsive nanomedicine approach for activating anti-tumoral macrophages and dendritic cells. Using a layered double hydroxide nanosheet carrier, we co-deliver a T-type calcium channel inhibitor (TTA-Q6) and a CD47 inhibitor (RRX-001) into lung tumors. In the tumor acidic environment, TTA-Q6 is released, disrupting cancer cell calcium uptake, causing endoplasmic reticulum stress and inducing calreticulin transfer to the cell surface. Surface calreticulin activates macrophages and triggers dendritic cell maturation, promoting effective antigen presentation and therefore activating antitumor T cells. Simultaneously, RRX-001 reduces CD47 protein levels, aiding in preventing immune escape by calreticulin-rich cancer cells. In lung tumor models in male mice, this combined approach shows anti-tumor effects and immunity against tumor re-exposure, highlighting its potential for lung cancer immunotherapy.
Collapse
Affiliation(s)
- Yuedong Guo
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050, Shanghai, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qunqun Bao
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200331, Shanghai, P. R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050, Shanghai, P. R. China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200331, Shanghai, P. R. China.
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), 200050, Shanghai, P. R. China.
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, 200331, Shanghai, P. R. China.
| |
Collapse
|
24
|
Feng Q, Fang W, Guo Y, Hu P, Shi J. Nebulized Therapy of Early Orthotopic Lung Cancer by Iron-Based Nanoparticles: Macrophage-Regulated Ferroptosis of Cancer Stem Cells. J Am Chem Soc 2023; 145:24153-24165. [PMID: 37897426 DOI: 10.1021/jacs.3c08032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Cancer stem cells (CSCs) within protumorigenic microlesions are a critical driver in the initiation and progression of early stage lung cancer, where immune cells provide an immunosuppressive niche to strengthen the CSC stemness. As the mutual interactions between CSCs and immune cells are increasingly recognized, regulating the immune cells to identify and effectively eliminate CSCs has recently become one of the most attractive therapeutic options, especially for abundant tumor-associated macrophages (TAMs). Herein, we developed a nebulized nanocatalytic medicine strategy in which iron-based nanoparticle-regulated TAMs effectively target CSC niches and trigger CSC ferroptosis in the early stage of lung cancer. Briefly, the iron-based nanoparticles can effectively accumulate in lung cancer microlesions (minimum 122 μm in diameter) through dextran-mediated TAM targeting by nebulization administration, and as a result, nanoparticle-internalized TAMs can play a predominant role of the iron factory in elevating the iron level surrounding CSC niches and destroying redox equilibrium through downregulating glucose-6-phosphate metabolite following their lysosomal degradation and iron metabolism. The altered microenvironment results in the enhanced sensitivity of CSCs to ferroptosis due to their high expression of the CD44 receptor mediating iron endocytosis. In an orthotopic mouse model of lung cancer, the initiation and progression of early lung cancer are significantly suppressed through ferroptosis-induced stemness reduction of CSCs by nebulization administration. This work presents a nebulized therapeutic strategy for early lung cancer through modulation of communications between TAMs and CSCs, which is expected to be a general approach for regulating primary microlesions and micrometastatic niches of lung cancer.
Collapse
Affiliation(s)
- Qishuai Feng
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Wenming Fang
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Yuedong Guo
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Ping Hu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
25
|
He C, Jiang Y, Guo Y, Wu Z. Amplified Ferroptosis and Apoptosis Facilitated by Differentiation Therapy Efficiently Suppress the Progression of Osteosarcoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302575. [PMID: 37394717 DOI: 10.1002/smll.202302575] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/20/2023] [Indexed: 07/04/2023]
Abstract
Osteosarcoma (OS) is the most frequent osseous neoplasm among young people aged 10-20. Currently, the leading treatment for osteosarcoma is a combination of surgery and chemotherapy. However, the mortality remains high due to chemoresistance, metastasis, and recurrence, attributing to the existence of cancer stem cells (CSCs) as reported. To target CSCs, differentiation therapy attracts increasing attention, inducing CSCs to bulk tumor cells with elevated reactive oxygen species (ROS) levels and less chemoresistance. Moreover, increasing studies have implied that ferroptosis is a promising approach to eliminating cancer cells through eliciting oxidative damage and subsequent apoptosis, effectively bypassing chemoresistance. Here, a cancer-cell-membrane-decorated biocompatible formulation (GA-Fe@CMRALi liposome) is constructed to combat OS efficiently by combining distinct differentiation and ferroptosis therapies through magnified ROS-triggered ferroptosis and apoptosis with homologous target capability to tumor sites. The combinational approach exhibited favorable therapeutic efficacy against OS in vitro and in vivo. Impressively, the potential mechanisms are revealed by mRNA sequencing. This study provides a tactical design and typical paradigm of the synergized differentiation and ferroptosis therapies to combat heterogeneous OS.
Collapse
Affiliation(s)
- Chao He
- Department of Orthopedic Surgery, Translational Research Center of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuhang Jiang
- Department of Orthopedic Surgery, Translational Research Center of Regenerative Medicine and 3D Printing of Guangzhou Medical University, Guangdong Province Engineering Research Center for Biomedical Engineering, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yuan Guo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Zenghui Wu
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| |
Collapse
|
26
|
Yang J, Yang B, Shi J. A Nanomedicine-Enabled Ion-Exchange Strategy for Enhancing Curcumin-Based Rheumatoid Arthritis Therapy. Angew Chem Int Ed Engl 2023; 62:e202310061. [PMID: 37707122 DOI: 10.1002/anie.202310061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Curcumin (Cur) has been clinically used for rheumatoid arthritis treatment by the means of reactive oxygen species (ROS) scavenging and immune microenvironment regulation. However, this compound has a poor water solubility and moderate antioxidative activity, favoring no further broadened application. Metal complexes of curcumin such as zinc-curcumin (Zn-Cur) features enhanced water solubilities, while copper-curcumin (Cu-Cur) shows a higher antioxidant activity but lower solubility than Zn-Cur. Based on their inherent biological properties, this work proposes a nanomedicine-based ion-exchange strategy to enhance the efficacy of Cur for rheumatoid arthritis treatment. Copper silicate nanoparticles with hollow mesoporous structure were prepared to load water-soluble Zn-Cur for constructing a composite nanomedicine, which can degrade in acidic microenvironment of arthritic region, releasing Cu2+ and Zn-Cur. Cu2+ then substitute for Zn2+ in Zn-Cur to form Cu-Cur with a significantly enhanced antioxidative effect, capable of efficiently scavenging ROS in M1 macrophages, promoting their transition to an anti-inflammatory M2 phenotype. In addition, the silicate released after nanocarrier degradation and the Zn2+ released after ion exchange reaction synergistically promote the biomineralization of osteoblasts. This work provides a new approach for enhancing the antiarthritic effect of Cur via an ion-exchange strategy.
Collapse
Affiliation(s)
- Jiacai Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bowen Yang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai, 200050, P. R. China
- Tenth People's Hospital and School of Medicine, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
27
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
28
|
Nayak V, Patra S, Singh KR, Ganguly B, Kumar DN, Panda D, Maurya GK, Singh J, Majhi S, Sharma R, Pandey SS, Singh RP, Kerry RG. Advancement in precision diagnosis and therapeutic for triple-negative breast cancer: Harnessing diagnostic potential of CRISPR-cas & engineered CAR T-cells mediated therapeutics. ENVIRONMENTAL RESEARCH 2023; 235:116573. [PMID: 37437865 DOI: 10.1016/j.envres.2023.116573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions. Through synergizing state-of-the-art gene editing tools like the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas system with nanomaterials and targeting AKT, there is potential to enhance cancer diagnostics significantly. Furthermore, the integration of modified CAR-T cells into multifunctional nanodelivery systems offers a promising approach for targeted cancer inhibition, including the eradication of cancer stem cells (CSCs). Within the context of highly aggressive and metastatic Triple-negative Breast Cancer (TNBC), this review specifically focuses on devising innovative nanotheranostics. For both pre-clinical and post-clinical TNBC detection, the utilization of the CRISPR-Cas system, guided by RNA (gRNA) and coupled with a fluorescent reporter specifically designed to detect TNBC's mutated sequence, could be promising. Additionally, a cutting-edge approach involving the engineering of TNBC-specific iCAR and syn-Notch CAR T-cells, combined with the co-delivery of a hybrid polymeric nano-liposome encapsulating a conditionally replicative adenoviral vector (CRAdV) against CSCs, could present an intriguing intervention strategy. This review thus paves the way for exciting advancements in the field of nanotheranostics for the treatment of TNBC and beyond.
Collapse
Affiliation(s)
- Vinayak Nayak
- Indian Council of Agricultural Research- National Institute on Foot and Mouth Disease- International Center for Foot and Mouth Disease, Bhubaneswar, Odisha, India
| | - Sushmita Patra
- Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi-Mumbai 410210, India
| | - Kshitij Rb Singh
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Bristy Ganguly
- Fish Health Management Division, ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Das Nishant Kumar
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Deepak Panda
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Jay Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Sanatan Majhi
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shyam S Pandey
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Japan.
| | - Ravindra Pratap Singh
- Department of Biotechnology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.
| | - Rout George Kerry
- PG Department of Biotechnology, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|
29
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
30
|
Xu D, Ge M, Zong M, Wu C, Chen Z, Zhang Z, Zhu YX, Lu X, Lin H, Shi J. Revisiting the impacts of silica nanoparticles on endothelial cell junctions and tumor metastasis. Chem 2023; 9:1865-1881. [DOI: doi.org/10.1016/j.chempr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
|
31
|
Tumor microenvironment-triggered intratumoral in-situ biosynthesis of inorganic nanomaterials for precise tumor diagnostics. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
32
|
Ning S, Mo J, Huang R, Liu B, Fu B, Ding S, Yang H, Cui Y, Yao L. Injectable thermo-sensitive hydrogel loaded hollow copper sulfide nanoparticles for ROS burst in TME and effective tumor treatment. Front Bioeng Biotechnol 2023; 11:1191014. [PMID: 37200848 PMCID: PMC10185793 DOI: 10.3389/fbioe.2023.1191014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction: Lung cancer the most prevalent cause of cancer-related deaths, and current therapies lack sufficient specificity and efficacy. This study developed an injectable thermosensitive hydrogel harboring hollow copper sulfide nanoparticles and β-lapachone (Lap) (CLH) for lung tumor treatment. Methods: The hydrogel-encapsulated CLH system can remotely control the release of copper ions (Cu2+) and drugs using photothermal effects for non-invasive controlled-release drug delivery in tumor therapy. The released Cu2+ consumes the overexpressed GSH in TME and the generated Cu+ further exploits the TME characteristics to initiate nanocatalytic reactions for generating highly toxic hydroxyl radicals. In addition, in cancer cells overexpressing Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase 1 (NQO1), Lap can catalyze the generation of hydrogen peroxide (H2O2) through futile redox cycles. H2O2 is further converted into highly toxic hydroxyl radicals via the Fenton-like reaction, leading to a burst of reactive oxygen species in TME, which further enhances the therapeutic effect of chemokines. Results: Analysis of the antitumor efficacy in a subcutaneous A549 lung tumor model mice showed a significant delay in tumor growth and no systemic toxicity was detected. Discussion: In conclusion, we have established a CLH nanodrug platform that enables efficient lung tumor therapy through combined photothermal/chemodynamic therapy (CDT) treatment and self-supplying H2O2 to achieve cascade catalysis, leading to explosive amplification of oxidative stress.
Collapse
Affiliation(s)
- Shipeng Ning
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jianlan Mo
- Department of Anesthesiology, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Rong Huang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Benkun Liu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Bicheng Fu
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shuaijie Ding
- Department of Gastrointestinal Surgery and Department of Geriatrics, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Huawei Yang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ying Cui
- Department of Radiation Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Yao
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
33
|
Yu J, Guo Z, Yan J, Bu C, Peng C, Li C, Mao R, Zhang J, Wang Z, Chen S, Yao M, Xie Z, Yang C, Yang YY, Yuan P, Ding X. Gastric Acid-Responsive ROS Nanogenerators for Effective Treatment of Helicobacter pylori Infection without Disrupting Homeostasis of Intestinal Flora. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206957. [PMID: 37127895 PMCID: PMC10369278 DOI: 10.1002/advs.202206957] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Helicobacter pylori (H. pylori) has infected more than half of the world's population, and is the major cause of gastric cancer. The efficacy of standard antibiotic-based triple therapy is declining due to drug resistance development. Herein, a pH-responsive reactive oxygen species (ROS) nanogenerator (Fe-HMME@DHA@MPN) composed of acid-responsive metal polyphenol network (MPN) shell and mesoporous metal-organic nanostructure core [Fe-HMME (hematoporphyrin monomethyl ether, sonosensitizer)] loaded with dihydroartemisinin (DHA) is reported. These nanoparticles generate more ROS singlet oxygen than sonosensitizer HMME under ultrasonication, and this sonodynamic process is fueled by oxygen generated through Fenton/Fenton-like reactions of the degraded product in gastric acid Fe (II) and hydrogen peroxide (H2 O2 ) in the infection microenvironment. The encapsulated DHA, as a hydroperoxide source, is found to enhance the peroxidase-like activity of the Fe-HMME@DHA@MPN to generate ROS hydroxyl radical, beneficial for the microenvironment without sufficient H2 O2 . In vitro experiments demonstrate that the ROS nanogenerators are capable of killing multidrug-resistant H. pylori and removing biofilm, and ROS nanogenerators show high therapeutic efficacy in a H. pylori infection mouse model. Unlike the triple therapy, the nanogenerators display negligible side effects toward the normal gut microbiota. Taken together, these self-enhanced ROS nanogenerators have a great potential for treatment of H. pylori infection.
Collapse
Affiliation(s)
- Jiayin Yu
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Zhihao Guo
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Jiachang Yan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Changxin Bu
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Chang Peng
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Cuie Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510080, P. R. China
| | - Rui Mao
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510080, P. R. China
| | - Jian Zhang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510080, P. R. China
| | - Zhi Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, 190 Kaiyuan Avenue, Guangzhou Science Park, Luogang District, Guangzhou, 510080, P. R. China
| | - Shi Chen
- The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Meicun Yao
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Zhiyong Xie
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Chuan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
| | - Yi Yan Yang
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Singapore
- Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119288, Singapore
| | - Peiyan Yuan
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| | - Xin Ding
- School of Pharmaceutical Science (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, P. R. China
| |
Collapse
|
34
|
Xu D, Ge M, Zong M, Wu C, Chen Z, Zhang Z, Zhu YX, Lu X, Lin H, Shi J. Revisiting the impacts of silica nanoparticles on endothelial cell junctions and tumor metastasis. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
35
|
Yu L, Yu M, Chen W, Sun S, Huang W, Wang T, Peng Z, Luo Z, Fang Y, Li Y, Deng Y, Wu M, Tao W. In Situ Separable Nanovaccines with Stealthy Bioadhesive Capability for Durable Cancer Immunotherapy. J Am Chem Soc 2023. [PMID: 36930579 DOI: 10.1021/jacs.2c12986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Because of tumor heterogeneity and the immunosuppressive tumor microenvironment, most cancer vaccines typically do not elicit robust antitumor immunological responses in clinical trials. In this paper, we report findings about a bioadhesive nanoparticle (BNP)-based separable cancer vaccine, FeSHK@B-ovalbumin (OVA), to target multi-epitope antigens and exert effective cancer immunotherapy. After the FeSHK@B-OVA "nanorocket" initiates the "satellite-rocket separation" procedure in the acidic tumor microenvironment, the FeSHK@B "launch vehicle" can amplify intracellular oxidative stress persistently. This procedure allows for bioadhesiveness-mediated prolonged drug retention within the tumor tissue and triggers the immunogenic death of tumor cells that transforms the primary tumors into antigen depots, which acts synergistically with the OVA "satellite" to trigger robust antigen-specific antitumor immunity. The cooperation of these two immunostimulants not only efficiently inhibits the primary tumor growth and provokes durable antigen-specific immune activation in vivo but also activates a long-term and robust immune memory effect to resist tumor rechallenge and metastasis. These results highlight the enormous potential of FeSHK@B-OVA to serve as an excellent therapeutic and prophylactic cancer nanovaccine. By leveraging the antigen depots in situ and the synergistic effect among multi-epitope antigens, such a nanovaccine strategy with stealthy bioadhesion may offer a straightforward and efficient approach to developing various cancer vaccines for different types of tumors.
Collapse
Affiliation(s)
- Liu Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Wenxin Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Zewen Luo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yang Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, P. R. China
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
36
|
Zhu P, Pu Y, Wang M, Wu W, Qin H, Shi J. MnOOH-Catalyzed Autoxidation of Glutathione for Reactive Oxygen Species Production and Nanocatalytic Tumor Innate Immunotherapy. J Am Chem Soc 2023; 145:5803-5815. [PMID: 36848658 DOI: 10.1021/jacs.2c12942] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
The antioxidant system, signed with reduced glutathione (GSH) overexpression, is the key weapon for tumor to resist the attack by reactive oxygen species (ROS). Counteracting the ROS depletion by GSH is an effective strategy to guarantee the antitumor efficacy of nanocatalytic therapy. However, simply reducing the concentration of GSH does not sufficiently improve tumor response to nanocatalytic therapy intervention. Herein, a well-dispersed MnOOH nanocatalyst is developed to catalyze GSH autoxidation and peroxidase-like reaction concurrently and respectively to promote GSH depletion and H2O2 decomposition to produce abundant ROS such as hydroxyl radical (·OH), thereby generating a highly effective superadditive catalytic therapeutic efficacy. Such a therapeutic strategy that transforms endogenous "antioxidant" into "oxidant" may open a new avenue for the development of antitumor nanocatalytic medicine. Moreover, the released Mn2+ can activate and sensitize the cGAS-STING pathway to the damaged intratumoral DNA double-strands induced by the produced ROS to further promote macrophage maturation and M1-polarization, which will boost the innate immunotherapeutic efficacy. Resultantly, the developed simple MnOOH nanocatalytic medicine capable of simultaneously catalyzing GSH depletion and ROS generation, and mediating innate immune activation, holds great potential in the treatment of malignant tumors.
Collapse
Affiliation(s)
- Piao Zhu
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China
| | - Yinying Pu
- Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Ultrasound Research and Education Institute, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Min Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Wencheng Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| | - Huanlong Qin
- Department of Gastrointestinal Surgey, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200072, P. R. China
| | - Jianlin Shi
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai 200331, P. R. China.,State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics Chinese Academy of Sciences; Research Unit of Nanocatalytic Medicine in Specific Therapy for Serious Disease, Chinese Academy of Medical Sciences (2021RU012), Shanghai 200050, P. R. China
| |
Collapse
|
37
|
Pan Y, Luan X, Gao Y, Zeng F, Wang X, Zhou D, Li W, Wang Y, He B, Song Y. In-Tumor Biosynthetic Construction of Upconversion Nanomachines for Precise Near-Infrared Phototherapy. ACS NANO 2023; 17:4515-4525. [PMID: 36847587 DOI: 10.1021/acsnano.2c10453] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Targeted construction of therapeutic nanoplatforms in tumor cells with specific activation remains appealing but challenging. Here, we design a cancer-motivated upconversion nanomachine (UCNM) based on porous upconversion nanoparticles (p-UCNPs) for precise phototherapy. The nanosystem is equipped with a telomerase substrate (TS) primer and simultaneously encapsulates 5-aminolevulinic acid (5-ALA) and d-arginine (d-Arg). After coating with hyaluronic acid (HA), it can readily get into tumor cells, where 5-ALA induces efficient accumulation of protoporphyrin IX (PpIX) via the inherent biosynthetic pathway, and the overexpressed telomerase prolonged the TS to form G-quadruplexes (G4) for binding the resulting PpIX as a nanomachine. This nanomachine can respond to near-infrared (NIR) light and promote the active singlet oxygen (1O2) production due to the efficiency of Förster resonance energy transfer (FRET) between p-UCNPs and PpIX. Intriguingly, such oxidative stress can oxidize d-Arg into nitric oxide (NO), which relieves the tumor hypoxia and in turn improves the phototherapy effect. This in situ assembly approach significantly enhances targeting in cancer therapy and might be of considerable clinical value.
Collapse
Affiliation(s)
- Yongchun Pan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Xiaowei Luan
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Yanfeng Gao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Fei Zeng
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Xuyuan Wang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Dongtao Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Wanqi Li
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| | - Yuzhen Wang
- Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergistic Innovation Center for Advanced Materials, Nanjing Tech University, 211816 Nanjing, China
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, 210006 Nanjing, China
| | - Yujun Song
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, 210023 Nanjing, China
| |
Collapse
|
38
|
Lian Y, Wang C, Meng Y, Dong J, Zhang J, Xu S, Bai G, Gao J. Selenide Heterostructure Nanosheets with Efficient Near-Infrared Photothermal Conversion for Therapy. ACS OMEGA 2023; 8:9371-9378. [PMID: 36936278 PMCID: PMC10018708 DOI: 10.1021/acsomega.2c07964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Photothermal therapy has been regarded as one of promising ways for tumor treatment. However, nanoagents with highly efficient thermal conversion and good bio-compatibility are still needed to be developed in biomedicine. In this work, we prepared two-dimensional heterostructures with bismuth selenide and tungsten selenide nanosheets as photothermal nanoagents. Near-infrared photothermal conversion of selenide heterostructure nanosheets can reach up to 40.75% under 808 nm excitation. It is known that selenium is a critical element to human health. More importantly, our experiments with mice show that the heterostructure nanosheets have low toxicity and high biocompatibility both in vitro and in vivo. The nanoagents based on heterostructures can effectively realize photothermal tumor ablation. It is suggested that the developed selenide nanosheets have great potential application in cancer therapy.
Collapse
Affiliation(s)
- Yanbang Lian
- Radiology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Congcong Wang
- Key
Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang
Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Yu Meng
- Oncology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Junqiang Dong
- Radiology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jianbin Zhang
- Department
of Medical Oncology, Zhejiang Provincial
People’s Hospital, Affiliated People’s Hospital, Hangzhou
Medical College, Hangzhou, Zhejiang 310014, China
| | - Shiqing Xu
- Key
Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang
Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Gongxun Bai
- Key
Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang
Province, College of Optical and Electronic Technology, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Jianbo Gao
- Radiology
Department, The First Affiliated Hospital
of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
39
|
Liu K, Zhang L, Lu H, Wen Y, Bi B, Wang G, Jiang Y, Zeng L, Zhao J. Enhanced mild-temperature photothermal therapy by pyroptosis-boosted ATP deprivation with biodegradable nanoformulation. J Nanobiotechnology 2023; 21:64. [PMID: 36823540 PMCID: PMC9948333 DOI: 10.1186/s12951-023-01818-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Mild-temperature photothermal therapy (mild PTT) is a safe and promising tumor therapeutic modality by alleviating the damage of healthy tissues around the tumor due to high temperature. However, its therapeutic efficiency is easily restricted by heat shock proteins (HSPs). Thus, exploitation of innovative approaches of inhibiting HSPs to enhance mild PTT efficiency is crucial for the clinical application of PTT. RESULTS Herein, an innovative strategy is reported: pyroptosis-boosted mild PTT based on a Mn-gallate nanoformulation. The nanoformulation was constructed via the coordination of gallic acid (GA) and Mn2+. It shows an acid-activated degradation and releases the Mn2+ and GA for up-regulation of reactive oxygen species (ROS), mitochondrial dysfunction and pyroptosis, which can result in cellular ATP deprivation via both the inhibiton of ATP generation and incresed ATP efflux. The reduction of ATP and accumulation of ROS provide a powerful approach for inhibiting the expression of HSPs, which enables the nanoformulation-mediated mild PTT. CONCLUSIONS Our in-vitro and in-vivo results demonstrate that this strategy of pyroptosis-assited PTT can achieve efficient mild PTT efficiency for osteosarcoma therapy.
Collapse
Affiliation(s)
- Kaiyuan Liu
- grid.24516.340000000123704535School of Medicine, Tongji University, Shanghai, 200072 People’s Republic of China
| | - Li Zhang
- grid.24516.340000000123704535School of Medicine, Tongji University, Shanghai, 200072 People’s Republic of China
| | - Hengli Lu
- grid.24516.340000000123704535School of Medicine, Tongji University, Shanghai, 200072 People’s Republic of China
| | - Yingfei Wen
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107 People’s Republic of China
| | - Bo Bi
- grid.511083.e0000 0004 7671 2506Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107 People’s Republic of China
| | - Guocheng Wang
- grid.9227.e0000000119573309Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055 Guangdong China
| | - Yingying Jiang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, People's Republic of China.
| | - Leli Zeng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China.
| | - Jing Zhao
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, 518107, People's Republic of China. .,School of Medicine, Tongji University, Shanghai, 200072, People's Republic of China.
| |
Collapse
|
40
|
Caterino S, Pajer N, Crestini C. Iron-galls inks: preparation, structure and characterisation. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Mao H, Wen Y, Yu Y, Li H, Wang J, Sun B. Ignored role of polyphenol in boosting reactive oxygen species generation for polyphenol/chemodynamic combination therapy. Mater Today Bio 2022; 16:100436. [PMID: 36176720 PMCID: PMC9513774 DOI: 10.1016/j.mtbio.2022.100436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 11/25/2022]
Abstract
Chemodynamic therapy (CDT) is a promising tumor-specific treatment, but still suffering insufficient reactive oxygen species (ROS) levels due to its limited efficacy of Fenton/Fenton-like reaction. Polyphenol, as a natural reductant, has been applied to promote the efficacy of Fenton/Fenton-like reactions; however, its intrinsic pro-apoptosis effects was ignored. Herein, a novel CDT/polyphenol-combined strategy was designed, based on Avenanthramide C-loaded dendritic mesoporous silica (DMSN)-Au/Fe3O4 nanoplatforms with folic acid modification for tumor-site targeting. For the first time, we showed that the nanocomplex (DMSNAF-AVC-FA) induced ROS production in the cytoplasm via Au/Fe3O4-mediated Fenton reactions and externally damaged the mitochondrial membrane; simultaneously, the resultant increased mitochondrial membrane permeability can facilitate the migration of AVC into mitochondrial, targeting the DDX3 pathway and impairing the electron transport chain (ETC) complexes, which significantly boosted the endogenous ROS levels inside the mitochondrial. Under the elevated oxidative stress level via both intra- and extra-mitochondrial ROS production, the maximum mitochondrial membrane permeability was achieved by up-regulation of Bax/Bcl-2, and thereby led to massive release of Cytochrome C and maximum tumor cell apoptosis via Caspase-3 pathway. As a result, the as-designed strategy achieved synergistic cytotoxicity to 4T1 tumor cells with the cell apoptosis rate of 99.12% in vitro and the tumor growth inhibition rate of 63.3% in vivo, while very minor cytotoxicity to normal cells with cell viability of 95.4%. This work evidenced that natural bioactive compounds are powerful for synergistically boosting ROS level, providing new insight for accelerating the clinical conversion progress of CDT with minimal side effects. A novel CDT/polyphenol-combined nanoplatform, DMSNAF-AVC-FA was designed. DMSNAF-AVC-FA induced ROS production and externally damaged mitochondrial membrane. DMSNAF-AVC-FA facilitated AVC targeting the DDX3 pathway and impairing ETC complexes. DMSNAF-AVC-FA achieved synergistic antitumor efficacy both in vitro and in vivo.
Collapse
Affiliation(s)
- Huijia Mao
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Yangyang Wen
- College of Chemistry and Materials Engineering, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Yonghui Yu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Hongyan Li
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| | - Baoguo Sun
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), School of Food and Health, Beijing Technology and Business University (BTBU), 11 Fucheng Road, Beijing, 100048, China
| |
Collapse
|
42
|
Liang X, Zhang Y, Zhou J, Bu Z, Liu J, Zhang K. Tumor microenvironment-triggered intratumoral in situ construction of theranostic supramolecular self-assembly. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
43
|
Ahmad A, Imran M, Sharma N. Precision Nanotoxicology in Drug Development: Current Trends and Challenges in Safety and Toxicity Implications of Customized Multifunctional Nanocarriers for Drug-Delivery Applications. Pharmaceutics 2022; 14:2463. [PMID: 36432653 PMCID: PMC9697541 DOI: 10.3390/pharmaceutics14112463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 11/17/2022] Open
Abstract
The dire need for the assessment of human and environmental endangerments of nanoparticulate material has motivated the formulation of novel scientific tools and techniques to detect, quantify, and characterize these nanomaterials. Several of these paradigms possess enormous possibilities for applications in many of the realms of nanotoxicology. Furthermore, in a large number of cases, the limited capabilities to assess the environmental and human toxicological outcomes of customized and tailored multifunctional nanoparticles used for drug delivery have hindered their full exploitation in preclinical and clinical settings. With the ever-compounded availability of nanoparticulate materials in commercialized settings, an ever-arising popular debate has been egressing on whether the social, human, and environmental costs associated with the risks of nanomaterials outweigh their profits. Here we briefly review the various health, pharmaceutical, and regulatory aspects of nanotoxicology of engineered multifunctional nanoparticles in vitro and in vivo. Several aspects and issues encountered during the safety and toxicity assessments of these drug-delivery nanocarriers have also been summarized. Furthermore, recent trends implicated in the nanotoxicological evaluations of nanoparticulate matter in vitro and in vivo have also been discussed. Due to the absence of robust and rigid regulatory guidelines, researchers currently frequently encounter a larger number of challenges in the toxicology assessment of nanocarriers, which have also been briefly discussed here. Nanotoxicology has an appreciable and significant part in the clinical translational development as well as commercialization potential of nanocarriers; hence these aspects have also been touched upon. Finally, a brief overview has been provided regarding some of the nanocarrier-based medicines that are currently undergoing clinical trials, and some of those which have recently been commercialized and are available for patients. It is expected that this review will instigate an appreciable interest in the research community working in the arena of pharmaceutical drug development and nanoformulation-based drug delivery.
Collapse
Affiliation(s)
- Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Mohammad Imran
- Therapeutics Research Group, Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane 4102, Australia
| | - Nisha Sharma
- Division of Nephrology, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
44
|
Yang Z, Xu T, Zhang S, Li H, Ji Y, Jia X, Li J. Multifunctional N,S-doped and methionine functionalized carbon dots for on-off-on Fe 3+ and ascorbic acid sensing, cell imaging, and fluorescent ink applying. NANO RESEARCH 2022; 16:5401-5411. [PMID: 36405981 PMCID: PMC9643953 DOI: 10.1007/s12274-022-5107-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 05/25/2023]
Abstract
Fluorescent carbon dots (CDs) have been identified as potential nanosensors and attracted tremendous research interests in wide areas including anti-counterfeiting, environmental and biological sensing and imaging in considering of the attractive optical properties. In this work, we present a CDs based fluorescent sensor from polyvinylpyrrolidone, citric acid, and methionine as precursors by hydrothermal approach. The selective quantifying of Fe3+ and ascorbic acid (AA) are based on the fluorescent on-off-on process, in which the fluorescent quenching is induced by the coordination of the Fe3+ on the surface of the CDs, while the fluorescence recovery is mainly attributed to redox reaction between Fe3+ and AA, breaking the coordination and bringing the fluorescence back. Inspired by the good water solubility and biocompatibility, significant photostability, superior photobleaching resistance as well as high selectivity, sensitivity, and interference immunity, which are constructed mainly from the N,S-doping and methionine surface functionalization, the CDs have not only been employed as fluorescence ink in multiple anti-counterfeiting printing and confidential document writing or transmitting, but also been developed as promising fluorescence sensors in solution and solid by CDs doped test strips and hydrogels for effectively monitoring and removing of Fe3+ and AA in environmental aqueous solution. The CDs have been also implemented as effective diagnostic candidates for imaging and tracking of Fe3+ and AA in living cells, accelerating the understanding of their function and importance in related biological processes for the prevention and treatment specific diseases. Electronic Supplementary Material Supplementary material (fluorescence spectra: UV and Xe irradiation, TG, thermo stability, ionic strength, relationship between fluorescence responses at different concentrations of Fe3+ and AA, reaction time-dependent fluorescent responses; XPS spectra of CDs + Fe3+ and Fe3+@CDs + AA; structural characterization; equations about fluorescence lifetime, quantum yield and LOD; comparison of the CDs for the detection of Fe3+ and AA with reported methods; detection of Fe3+ and AA in real samples; absorption of Fe3+ in environmental samples and MTT assay results) is available in the online version of this article at 10.1007/s12274-022-5107-7.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 China
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, 710054 China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an, 710012 China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, 710054 China
| | - Shaobing Zhang
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, 710054 China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 China
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, 710054 China
| | - Yali Ji
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 China
| | - Xiaodan Jia
- College of Chemistry and Chemical Engineering, Xi’an University of Science and Technology, Xi’an, 710054 China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Land and Resources, Xi’an, 710012 China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi’an, 710127 China
| |
Collapse
|
45
|
|
46
|
He X, Zhu H, Shang J, Li M, Zhang Y, Zhou S, Gong G, He Y, Blocki A, Guo J. Intratumoral synthesis of transformable metal-phenolic nanoaggregates with enhanced tumor penetration and retention for photothermal immunotherapy. Am J Cancer Res 2022; 12:6258-6272. [PMID: 36168635 PMCID: PMC9475467 DOI: 10.7150/thno.74808] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/19/2022] [Indexed: 11/05/2022] Open
Abstract
Rationale: Effective photothermal therapy (PTT) remains a great challenge due to the difficulties of delivering photothermal agents with both deep penetration and prolonged retention at tumor lesion spatiotemporally. Methods: Here, we report an intratumoral self-assembled nanostructured aggregate named FerH, composed of a natural polyphenol and a commercial iron supplement. FerH assemblies possess size-increasing dynamic kinetics as a pseudo-stepwise polymerization from discrete nanocomplexes to microscale aggregates. Results: The nanocomplex can penetrate deeply into solid tumors, followed by prolonged retention (> 6 days) due to the in vivo growth into nanoaggregates in the tumor microenvironment. FerH performs a targeting ablation of tumors with a high photothermal conversion efficiency (60.2%). Importantly, an enhanced immunotherapeutic effect on the distant tumor can be triggered when co-administrated with checkpoint-blockade PD-L1 antibody. Conclusions: Such a therapeutic approach by intratumoral synthesis of metal-phenolic nanoaggregates can be instructive to address the challenges associated with malignant tumors.
Collapse
Affiliation(s)
- Xianglian He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Hongfu Zhu
- Collage of Material Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jiaojiao Shang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Meifeng Li
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Biomass Chemistry and Engineering, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yaoyao Zhang
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Key Laboratory of Birth Defects and Related of Women and Children of Ministry of Education, Department of Pediatrics, The Reproductive Medical Center, Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shicheng Zhou
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Guidong Gong
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yunxiang He
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Anna Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong (CUHK), Shatin, Hong Kong SAR, China
| | - Junling Guo
- BMI Center for Biomass Materials and Nanointerfaces, College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan 610065, China.,Bioproducts Institute, Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
47
|
Liu Z, Zeng N, Yu J, Huang C, Huang Q. A novel dual MoS 2/FeGA quantum dots endowed injectable hydrogel for efficient photothermal and boosting chemodynamic therapy. Front Bioeng Biotechnol 2022; 10:998571. [PMID: 36110320 PMCID: PMC9468328 DOI: 10.3389/fbioe.2022.998571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
Due to its responsiveness to the tumour microenvironment (TME), chemodynamic therapy (CDT) based on the Fenton reaction to produce cytotoxic reactive oxygen species (ROS) to destroy tumor has drawn more interest. However, the Fenton's reaction potential for therapeutic use is constrained by its modest efficacy. Here, we develop a novel injectable hydrogel system (FMH) on the basis of FeGA/MoS2 dual quantum dots (QDs), which uses near-infrared (NIR) laser in order to trigger the synergistic catalysis and photothermal effect of FeGA/MoS2 for improving the efficiency of the Fenton reaction. Mo4+ in MoS2 QDs can accelerate the conversion of Fe3+ to Fe2+, thereby promoting the efficiency of Fenton reaction, and benefiting from the synergistically enhanced CDT/PTT, FMH combined with NIR has achieved good anti-tumour effects in vitro and in vivo experiments. Furthermore, the quantum dots are easily metabolized after treatment because of their ultrasmall size, without causing any side effects. This is the first report to study the co-catalytic effect of MoS2 and Fe3+ at the quantum dot level, as well as obtain a good PTT/CDT synergy, which have implications for future anticancer research.
Collapse
Affiliation(s)
- Zeming Liu
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ning Zeng
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yu
- Department of Plastic and Cosmetic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunyu Huang
- Department of Radiation and Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qinqin Huang
- Department of Molecular Pathology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
48
|
Biomolecule-based Stimuli-responsive Nanohybrids for Tumor-specific and Cascade-enhanced Synergistic Therapy. Acta Biomater 2022; 152:484-494. [PMID: 36028197 DOI: 10.1016/j.actbio.2022.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/23/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022]
Abstract
Poor tumor specificity is one of the key obstacles for clinical applications of nanotheranostic agents, consequently leading to serious side effects and unsatisfactory therapeutic efficacy. Herein, biomolecule-based nanohybrids (named as Hb-PDA-GOx) with multiple stimuli-responsiveness were designed and fabricated to enhance tumor-specific therapy. The nanohybrids embodied two proteins, i.e., hemoglobin (Hb) and glucose oxidase (GOx), which exhibited cascade catalytic activity selectively within the tumor microenvironment (TME). Specifically, GOx catalyzes the overexpressed glucose into gluconic acid and hydrogen peroxide (H2O2), which not only initiated starvation therapy (ST) through cutting off the nutrition supply for carcinoma cells, but also provided H2O2 for sequential Fenton reaction induced by Hb that generating biotoxic hydroxyl radicals (•OH) for chemodynamic therapy (CDT). Moreover, localized heat generation from polydopamine (PDA) in the nanohybrids can implement photothermal therapy (PTT) and reinforce the CDT efficacy. Excitingly, effective eradication of solid tumors and significant suppression of metastatic tumors growth were achieved by utilizing Hb-PDA-GOx as a versatile theranostic agent. All these results had been verified by in vitro and/or in vivo experiments. In light of the superior anticancer effects and insignificant systemic toxicity, the as-fabricated biomolecule-based nanohybrids could be employed as a promising agent for tumor-specific therapy. More importantly, the high biocompatibility and biodegradability of the selected biomolecules would facilitate subsequent clinical translation. STATEMENT OF SIGNIFICANCE: 1) A facile one-pot synthesis strategy was proposed to fabricate biomolecule-based tumor theranostic agent with high biocompatibility and biodegradability, which would facilitate subsequent clinical translation; 2) The as-developed theranostic agent was endowed with multiple stimuli-responsiveness for achieving tumor-specific and cascade-enhanced synergistic therapy; 3) The in vivo experiments demonstrated that the as-developed theranostic agent can not only effectively eradicate solid tumors, but also significantly suppress metastatic tumors growth.
Collapse
|
49
|
Li Z, Wang C, Dai C, Hu R, Ding L, Feng W, Huang H, Wang Y, Bai J, Chen Y. Engineering dual catalytic nanomedicine for autophagy-augmented and ferroptosis-involved cancer nanotherapy. Biomaterials 2022; 287:121668. [PMID: 35834999 DOI: 10.1016/j.biomaterials.2022.121668] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 06/30/2022] [Indexed: 12/14/2022]
Abstract
Chemodynamic therapy represents a distinct anti-tumor strategy by activating intratumoral chemical catalytic reactions to produce highly toxic reactive oxygen species (ROS) from non-/limited-toxic nanocatalysts. However, the low efficacy of ROS generation still remains a major challenge for further clinical translation. Herein, a liposomal nanosystem which simultaneously encapsulated copper peroxide nanodots (CPNs) and artemisinin (ART) was constructed for autophagy-enhanced and ferroptosis-involved cancer cell death owing to Cu-based dual catalytic strategy. To be specific, the CPN components, served as a H2O2 self-supplying platform, release H2O2 and Cu2+ under acidic tumor environment and endogenously generate .OH via Fenton-like reaction (catalytic reaction I). In addition, Cu2+ species catalyze ART components to produce ROS radicals (catalytic reaction II), further augmenting the intracellular oxidative damage and lipid peroxide accumulation, leading to cancer cell death. Specifically, ART also acted as a potent autophagy inducer increasing the level of intracellular iron pool through degradation of ferritin, which could promote cancer cell ferroptosis, producing the best antineoplastic effect. After accumulation into the tumor sites, ultrasound irradiation was applied to trigger the release of CPNs and ART from liposomal nanosystems, and amplify the efficacy of catalytic reaction for maximum therapeutic effect. Both in vitro and in vivo therapeutic outcomes suggest the outstanding autophagy-augmented ferroptosis-involved cancer-therapeutic efficacy, which was further corroborated by transcriptome sequencing. In this work, Cu was firstly proven to trigger ART to produce ROS species, but also provide a TME-responsive nanoplatform for potentially suppressing tumor growth by autophagy-augmented ferroptosis-involved cancer nanotherapy.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Chunmei Wang
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Chen Dai
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Ruizhi Hu
- Department of Ultrasound in Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Li Ding
- Tongji University School of Medicine, Tongji University Cancer Center, Shanghai Engineering Research Center of Ultrasound Diagnosis and Treatment, National Clinical Research Center of Interventional Medicine, Shanghai, 200072, PR China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yin Wang
- Department of Ultrasound, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, PR China.
| | - Jianwen Bai
- Department of Emergency Medicine and Critical Care, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| |
Collapse
|
50
|
Liu B, Feng L, Bian Y, Yuan M, Zhu Y, Yang P, Cheng Z, Lin J. Mn 2+ /Fe 3+ /Co 2+ and Tetrasulfide Bond Co-Incorporated Dendritic Mesoporous Organosilica as Multifunctional Nanocarriers: One-Step Synthesis and Applications for Cancer Therapy. Adv Healthc Mater 2022; 11:e2200665. [PMID: 35609979 DOI: 10.1002/adhm.202200665] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/27/2022] [Indexed: 12/21/2022]
Abstract
Enriching the application of multifunctional dendritic mesoporous organosilica (DMOS) is still challenging in anti-cancer research. Herein, manganese ions, iron ions, or cobalt ions and tetrasulfide bonds are co-incorporated into the framework of DMOS to yield multifunctional nanoparticles denoted as Mn-DMOS, Fe-DMOS, or Co-DMOS by directly doping metal ions during the synthetic process. Due to co-incorporation of metal ions and tetrasulfide bonds, these designed nanocarriers have more functions rather than only for cargo delivery. As proof of concept, the nanocomposite is established based on Mn-DMOS as an efficient nanocarrier for indocyanine green (ICG) delivery and modification with polyethylene glycol. In the tumor microenvironment, the generated hydrogen sulfide (H2 S) arising from the reaction between tetrasulfide bond and over-expressed glutathione (GSH) causes mitochondrial injury to reduce cellular respiration. The released Mn2+ from the rapidly decomposed nanocomposite catalyzes the endogenous hydrogen peroxide to produce oxygen (O2 ). The photothermal effect from the released ICG initiated by the near-infrared light induces cancer cells apoptosis and simultaneously enhances the content of blood O2 at tumor sites. Therefore, due to the GSH depletion and trimodal O2 compensation, the photodynamic therapy efficiency of ICG has significantly improved. In brief, these designed nanocarriers will play advanced roles in cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Sciences and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
- Key Laboratory of In‐Fiber Integrated Optics of Ministry of Education College of Physics and Optoelectronic Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Lili Feng
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Sciences and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Yulong Bian
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Yanlin Zhu
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Sciences and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology Ministry of Education College of Material Sciences and Chemical Engineering Harbin Engineering University Harbin 150001 P. R. China
| | - Ziyong Cheng
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|