1
|
Soravia C, Ashton BJ, Thornton A, Ridley AR. High temperatures are associated with reduced cognitive performance in wild southern pied babblers. Proc Biol Sci 2023; 290:20231077. [PMID: 37989242 PMCID: PMC10688443 DOI: 10.1098/rspb.2023.1077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/20/2023] [Indexed: 11/23/2023] Open
Abstract
Global temperatures are increasing rapidly. While considerable research is accumulating regarding the lethal and sublethal effects of heat on wildlife, its potential impact on animal cognition has received limited attention. Here, we tested wild southern pied babblers (Turdoides bicolor) on three cognitive tasks (associative learning, reversal learning and inhibitory control) under naturally occurring heat stress and non-heat stress conditions. We determined whether cognitive performance was explained by temperature, heat dissipation behaviours, individual and social attributes, or proxies of motivation. We found that temperature, but not heat dissipation behaviours, predicted variation in associative learning performance. Individuals required on average twice as many trials to learn an association when the maximum temperature during testing exceeded 38°C compared with moderate temperatures. Higher temperatures during testing were also associated with reduced inhibitory control performance, but only in females. By contrast, we found no temperature-related decline in performance in the reversal learning task, albeit individuals reached learning criterion in only 14 reversal learning tests. Our findings provide novel evidence of temperature-mediated cognitive impairment in a wild animal and indicate that its occurrence depends on the cognitive trait examined and individual sex.
Collapse
Affiliation(s)
- Camilla Soravia
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Benjamin J. Ashton
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia 2109
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| | - Alex Thornton
- Centre for Ecology and Conservation, University of Exeter, Penryn, TR10 9FE, UK
| | - Amanda R. Ridley
- Centre for Evolutionary Biology, School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
- FitzPatrick Institute of African Ornithology, University of Cape Town, Cape Town, South Africa, 7701
| |
Collapse
|
2
|
Protti-Sánchez F, Mayer U, Rowland HM. In paired preference tests, domestic chicks innately choose the colour green over red, and the shape of a frog over a sphere when both stimuli are green. Anim Cogn 2023; 26:1973-1983. [PMID: 37610527 PMCID: PMC10769926 DOI: 10.1007/s10071-023-01821-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Many animals express unlearned colour preferences that depend on the context in which signals are encountered. These colour biases may have evolved in response to the signalling system to which they relate. For example, many aposematic animals advertise their unprofitability with red warning signals. Predators' innate biases against these warning colours have been suggested as one of the potential explanations for the initial evolution of aposematism. It is unclear, however, whether unlearned colour preferences reported in a number of species is truly an innate behaviour or whether it is based on prior experience. We tested the spontaneous colour and shape preferences of dark-hatched, unfed, and visually naive domestic chicks (Gallus gallus). In four experiments, we presented chicks with a choice between either red (a colour typically associated with warning patterns) or green (a colour associated with palatable cryptic prey), volume-matched spheres (representing a generalised fruit shape) or frogs (representing an aposematic animal's shape). Chicks innately preferred green stimuli and avoided red. Chicks also preferred the shape of a frog over a sphere when both stimuli were green. However, no preference for frogs over spheres was present when stimuli were red. Male chicks that experienced a bitter taste of quinine immediately before the preference test showed a higher preference for green frog-shaped stimuli. Our results suggest that newly hatched chicks innately integrate colour and shape cues during decision making, and that this can be augmented by other sensory experiences. Innate and experience-based behaviour could confer a fitness advantage to novel aposematic prey, and favour the initial evolution of conspicuous colouration.
Collapse
Affiliation(s)
- Francesca Protti-Sánchez
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany.
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, 38068, Rovereto, TN, Italy
| | - Hannah M Rowland
- Max Planck Research Group Predators and Toxic Prey, Max Planck Institute for Chemical Ecology, Hans Knöll Straße 8, 07745, Jena, Germany
| |
Collapse
|
3
|
Hämäläinen R, Kajanus MH, Forsman JT, Kivelä SM, Seppänen JT, Loukola OJ. Ecological and evolutionary consequences of selective interspecific information use. Ecol Lett 2023; 26:490-503. [PMID: 36849224 DOI: 10.1111/ele.14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 03/01/2023]
Abstract
Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered.
Collapse
Affiliation(s)
| | - Mira H Kajanus
- Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Sami M Kivelä
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
4
|
Burdfield-Steel E, Burdfield C. How to fail in advertising: The potential of marketing theory to predict the community-level selection of defended prey. J Evol Biol 2023. [PMID: 36820741 DOI: 10.1111/jeb.14160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/14/2022] [Accepted: 01/16/2023] [Indexed: 02/24/2023]
Abstract
Economics and ecology both present us with a key challenge: scaling up from individual behaviour to community-level effects. As a result, biologists have frequently utilized theories and frameworks from economics in their attempt to better understand animal behaviour. In the study of predator-prey interactions, we face a particularly difficult task-understanding how predator choices and strategies will impact the ecology and evolution not just of individual prey species, but whole communities. However, a similar challenge has been encountered, and largely solved, in Marketing, which has created frameworks that successfully predict human consumer behaviour at the community level. We argue that by applying these frameworks to non-human consumers, we can leverage this predictive power to understand the behaviour of these key ecological actors in shaping the communities they act upon. We here use predator-prey interactions, as a case study, to demonstrate and discuss the potential of marketing and human-consumer theory in helping us bridge the gap from laboratory experiments to complex community dynamics.
Collapse
Affiliation(s)
- Emily Burdfield-Steel
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Claire Burdfield
- Sheffield University Management School, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Jordán F. The network perspective: Vertical connections linking organizational levels. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 PMCID: PMC9449480 DOI: 10.1098/rsos.220363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/10/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
7
|
Mohammadi S, Yang L, Bulbert M, Rowland HM. Defence mitigation by predators of chemically defended prey integrated over the predation sequence and across biological levels with a focus on cardiotonic steroids. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220363. [PMID: 36133149 DOI: 10.6084/m9.figshare.c.6168216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/17/2022] [Indexed: 05/25/2023]
Abstract
Predator-prey interactions have long served as models for the investigation of adaptation and fitness in natural environments. Anti-predator defences such as mimicry and camouflage provide some of the best examples of evolution. Predators, in turn, have evolved sensory systems, cognitive abilities and physiological resistance to prey defences. In contrast to prey defences which have been reviewed extensively, the evolution of predator counter-strategies has received less attention. To gain a comprehensive view of how prey defences can influence the evolution of predator counter-strategies, it is essential to investigate how and when selection can operate. In this review we evaluate how predators overcome prey defences during (i) encounter, (ii) detection, (iii) identification, (iv) approach, (v) subjugation, and (vi) consumption. We focus on prey that are protected by cardiotonic steroids (CTS)-defensive compounds that are found in a wide range of taxa, and that have a specific physiological target. In this system, coevolution is well characterized between specialist insect herbivores and their host plants but evidence for coevolution between CTS-defended prey and their predators has received less attention. Using the predation sequence framework, we organize 574 studies reporting predators overcoming CTS defences, integrate these counter-strategies across biological levels of organization, and discuss the costs and benefits of attacking CTS-defended prey. We show that distinct lineages of predators have evolved dissecting behaviour, changes in perception of risk and of taste perception, and target-site insensitivity. We draw attention to biochemical, hormonal and microbiological strategies that have yet to be investigated as predator counter-adaptations to CTS defences. We show that the predation sequence framework will be useful for organizing future studies of chemically mediated systems and coevolution.
Collapse
Affiliation(s)
- Shabnam Mohammadi
- School of Biological Sciences, University of Nebraska, Lincoln, NE, USA
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Hamburg, Germany
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Lu Yang
- Wellcome Sanger Institute, Cambridge, UK
| | - Matthew Bulbert
- Department of Biological Sciences, Macquarie University North Ryde, New South Wales, Australia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, University of Oxford Brookes, Oxford, UK
- Max Planck Institute for Chemical Ecology, Jena, Germany
| | | |
Collapse
|
8
|
Kluen E, Rönkä K, Thorogood R. Prior experience of captivity affects behavioural responses to 'novel' environments. PeerJ 2022; 10:e13905. [PMID: 36061744 PMCID: PMC9438767 DOI: 10.7717/peerj.13905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/27/2022] [Indexed: 01/26/2023] Open
Abstract
Information ecology theory predicts that prior experience influences current behaviour, even if the information is acquired under a different context. However, when individuals are tested to quantify personality, cognition, or stress, we usually assume that the novelty of the test is consistent among individuals. Surprisingly, this 'gambit of prior experience' has rarely been explored. Therefore, here we make use of a wild population of great tits (Parus major) to test if prior experience of handling and captivity influences common measures of exploration (open field tests in two novel contexts: room and cage arenas), social response (simulated using a mirror), and behavioural stress (breathing rate). We found that birds with prior experience of captivity (caught previously for unrelated learning and foraging experiments) were more exploratory, but this depended on age: exploration and captivity experience (in terms of both absolute binary experience and the length of time spent in captivity) were associated more strongly in young (first-winter) birds than in adults. However, there was no association of prior experience of captivity with social response and breathing rate, and nor did the measures of exploration correlate. Together our results suggest that re-testing of individuals requires careful consideration, particularly for younger birds, and previous experiences can carry over and affect behaviours differently.
Collapse
Affiliation(s)
- Edward Kluen
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Katja Rönkä
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rose Thorogood
- HiLIFE Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Research Programme in Organismal and Evolutionary Biology, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Social information-mediated population dynamics in non-grouping prey. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Abstract
Inadvertent social information (ISI) use, i.e., the exploitation of social cues including the presence and behaviour of others, has been predicted to mediate population-level processes even in the absence of cohesive grouping. However, we know little about how such effects may arise when the prey population lacks social structure beyond the spatiotemporal autocorrelation originating from the random movement of individuals. In this study, we built an individual-based model where predator avoidance behaviour could spread among randomly moving prey through the network of nearby observers. We qualitatively assessed how ISI use may affect prey population size when cue detection was associated with different probabilities and fitness costs, and characterised the structural properties of the emerging detection networks that would provide pathways for information spread in prey. We found that ISI use was among the most influential model parameters affecting prey abundance and increased equilibrium population sizes in most examined scenarios. Moreover, it could substantially contribute to population survival under high predation pressure, but this effect strongly depended on the level of predator detection ability. When prey exploited social cues in the presence of high predation risk, the observed detection networks consisted of a large number of connected components with small sizes and small ego networks; this resulted in efficient information spread among connected individuals in the detection networks. Our study provides hypothetical mechanisms about how temporary local densities may allow information diffusion about predation threats among conspecifics and facilitate population stability and persistence in non-grouping animals.
Significance statement
The exploitation of inadvertently produced social cues may not only modify individual behaviour but also fundamentally influence population dynamics and species interactions. Using an individual-based model, we investigated how the detection and spread of adaptive antipredator behaviour may cascade to changes in the demographic performance of randomly moving (i.e., non-grouping) prey. We found that social information use contributed to population stability and persistence by reducing predation-related per capita mortality and raising equilibrium population sizes when predator detection ability reached a sufficient level. We also showed that temporary detection networks had structural properties that allowed efficient information spread among prey under high predation pressure. Our work represents a general modelling approach that could be adapted to specific predator-prey systems and scrutinise how temporary local densities allow dynamic information diffusion about predation threats and facilitate population stability in non-grouping animals.
Collapse
|
10
|
|
11
|
Hämäläinen L, M. Rowland H, Mappes J, Thorogood R. Social information use by predators: expanding the information ecology of prey defences. OIKOS 2021. [DOI: 10.1111/oik.08743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Hannah M. Rowland
- Max Planck Inst. for Chemical Ecology Jena Germany
- Dept of Zoology, Univ. of Cambridge Cambridge UK
| | - Johanna Mappes
- Research Programme in Organismal&Evolutionary Biology, Faculty of Biological and Environmental Sciences, Univ. of Helsinki Helsinki Finland
- Dept of Biological and Environmental Sciences, Univ. of Jyväskylä Jyväskylä Finland
| | - Rose Thorogood
- Research Programme in Organismal&Evolutionary Biology, Faculty of Biological and Environmental Sciences, Univ. of Helsinki Helsinki Finland
- HiLIFE Helsinki Inst. of Life Science, Univ. of Helsinki Helsinki Finland
| |
Collapse
|
12
|
Pirastru M, Mereu P, Manca L, Bebbere D, Naitana S, Leoni GG. Anthropogenic Drivers Leading to Population Decline and Genetic Preservation of the Eurasian Griffon Vulture ( Gyps fulvus). Life (Basel) 2021; 11:life11101038. [PMID: 34685409 PMCID: PMC8540517 DOI: 10.3390/life11101038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/17/2022] Open
Abstract
Human activities are having increasingly devastating effects on the health of marine and terrestrial ecosystems. Studying the adaptive responses of animal species to changes in their habitat can be useful in mitigating this impact. Vultures represent one of the most virtuous examples of adaptation to human-induced environmental changes. Once dependent on wild ungulate populations, these birds have adapted to the epochal change resulting from the birth of agriculture and livestock domestication, maintaining their essential role as ecological scavengers. In this review, we retrace the main splitting events characterising the vultures’ evolution, with particular emphasis on the Eurasian griffon Gyps fulvus. We summarise the main ecological and behavioural traits of this species, highlighting its vulnerability to elements introduced into the habitat by humans. We collected the genetic information available to date, underlining their importance for improving the management of this species, as an essential tool to support restocking practices and to protect the genetic integrity of G. fulvus. Finally, we examine the difficulties in implementing a coordination system that allows genetic information to be effectively transferred into management programs. Until a linking network is established between scientific research and management practices, the risk of losing important wildlife resources remains high.
Collapse
Affiliation(s)
- Monica Pirastru
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.P.); (L.M.)
| | - Paolo Mereu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.P.); (L.M.)
- Correspondence:
| | - Laura Manca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy; (M.P.); (L.M.)
| | - Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (D.B.); (S.N.); (G.G.L.)
| | - Salvatore Naitana
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (D.B.); (S.N.); (G.G.L.)
| | - Giovanni G. Leoni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100 Sassari, Italy; (D.B.); (S.N.); (G.G.L.)
| |
Collapse
|