1
|
Doan D, Kulikowski J, Gu XW. Direct observation of phase transitions in truncated tetrahedral microparticles under quasi-2D confinement. Nat Commun 2024; 15:1954. [PMID: 38528038 DOI: 10.1038/s41467-024-46230-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 02/16/2024] [Indexed: 03/27/2024] Open
Abstract
Colloidal crystals are used to understand fundamentals of atomic rearrangements in condensed matter and build complex metamaterials with unique functionalities. Simulations predict a multitude of self-assembled crystal structures from anisotropic colloids, but these shapes have been challenging to fabricate. Here, we use two-photon lithography to fabricate Archimedean truncated tetrahedrons and self-assemble them under quasi-2D confinement. These particles self-assemble into a hexagonal phase under an in-plane gravitational potential. Under additional gravitational potential, the hexagonal phase transitions into a quasi-diamond two-unit basis. In-situ imaging reveal this phase transition is initiated by an out-of-plane rotation of a particle at a crystalline defect and causes a chain reaction of neighboring particle rotations. Our results provide a framework of studying different structures from hard-particle self-assembly and demonstrates the ability to use confinement to induce unusual phases.
Collapse
Affiliation(s)
- David Doan
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - John Kulikowski
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - X Wendy Gu
- Department of Mechanical Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
2
|
Li X, Fang H, Sankaewtong K, Li M, Chen Y, Huang J, Ni R, Tanaka H, Tan P. Phase Reentrances and Solid Deformations in Confined Colloidal Crystals. PHYSICAL REVIEW LETTERS 2024; 132:018202. [PMID: 38242650 DOI: 10.1103/physrevlett.132.018202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
A simple geometric constraint often leads to novel, complex crystalline phases distinct from the bulk. Using thin-film charge colloidal crystals, a model system with tunable interactions, we study the effects of geometric constraints. Through a combination of experiments and simulations, we systematically explore phase reentrances and solid deformation modes concerning geometrical confinement strength, identifying two distinct categories of phase reentrances below a characteristic layer number, N_{c}: one for bcc bulk-stable and another for fcc bulk-stable systems. We further verify that the dominant thermodynamic origin is the nonmonotonic dependence of solids' free energy on the degree of spatial confinement. Moreover, we discover transitions in solid deformation modes between interface-energy and bulk-energy dominance: below a specific layer number, N_{k}, geometric constraints generate unique soft deformation modes adaptive to confinement. These findings on the N-dependent thermodynamic and kinetic behaviors offer fresh insights into understanding and manipulating thin-film crystal structures.
Collapse
Affiliation(s)
- Xiaoxia Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| | - Huang Fang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Krongtum Sankaewtong
- Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Minhuan Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yanshuang Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jiping Huang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
| | - Ran Ni
- Chemical Engineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, 637459, Singapore
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Peng Tan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China
| |
Collapse
|
3
|
Peng Y, Li W, Still T, Yodh AG, Han Y. In situ observation of coalescence of nuclei in colloidal crystal-crystal transitions. Nat Commun 2023; 14:4905. [PMID: 37582924 PMCID: PMC10427646 DOI: 10.1038/s41467-023-40627-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Coalescence of nuclei in phase transitions significantly influences the transition rate and the properties of product materials, but these processes occur rapidly and are difficult to observe at the microscopic scale. Here, we directly image the coalescence of nuclei with single particle resolution during the crystal-crystal transition from a multilayer square to triangular lattices. The coalescence process exhibits three similar stages across a variety of scenarios: coupled growth of two nuclei, their attachment, and relaxation of the coalesced nucleus. The kinetics vary with nucleus size, interface, and lattice orientation; the kinetics include acceleration of nucleus growth, small nucleus liquefaction, and generation/annihilation of defects. Related mechanisms, such as strain induced by nucleus growth and the lower energy of liquid-crystal versus crystal-crystal interfaces, appear to be common to both atomic and colloidal crystals.
Collapse
Affiliation(s)
- Yi Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Li
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China
| | - Tim Still
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yilong Han
- Department of Physics, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
4
|
Yang M, Liu Y, Mo Y. Lithium crystallization at solid interfaces. Nat Commun 2023; 14:2986. [PMID: 37225679 DOI: 10.1038/s41467-023-38757-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Understanding the electrochemical deposition of metal anodes is critical for high-energy rechargeable batteries, among which solid-state lithium metal batteries have attracted extensive interest. A long-standing open question is how electrochemically deposited lithium-ions at the interfaces with the solid-electrolytes crystalize into lithium metal. Here, using large-scale molecular dynamics simulations, we study and reveal the atomistic pathways and energy barriers of lithium crystallization at the solid interfaces. In contrast to the conventional understanding, lithium crystallization takes multi-step pathways mediated by interfacial lithium atoms with disordered and random-closed-packed configurations as intermediate steps, which give rise to the energy barrier of crystallization. This understanding of multi-step crystallization pathways extends the applicability of Ostwald's step rule to interfacial atom states, and enables a rational strategy for lower-barrier crystallization by promoting favorable interfacial atom states as intermediate steps through interfacial engineering. Our findings open rationally guided avenues of interfacial engineering for facilitating the crystallization in metal electrodes for solid-state batteries and can be generally applicable for fast crystal growth.
Collapse
Affiliation(s)
- Menghao Yang
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yunsheng Liu
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA
| | - Yifei Mo
- Department of Materials Science and Engineering, University of Maryland, College Park, MD, USA.
- Maryland Energy Innovation Institute, University of Maryland, College Park, MD, USA.
| |
Collapse
|
5
|
Kim YJ, Moon JB, Hwang H, Kim YS, Yi GR. Advances in Colloidal Building Blocks: Toward Patchy Colloidal Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203045. [PMID: 35921224 DOI: 10.1002/adma.202203045] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The scalable synthetic route to colloidal atoms has significantly advanced over the past two decades. Recently, colloidal clusters with DNA-coated cores called "patchy colloidal clusters" have been developed, providing a directional bonding with specific angle of rotation due to the shape complementarity between colloidal clusters. Through a DNA-mediated interlocking process, they are directly assembled into low-coordination colloidal structures, such as cubic diamond lattices. Herein, the significant progress in recent years in the synthesis of patchy colloidal clusters and their assembly in experiments and simulations is reviewed. Furthermore, an outlook is given on the emerging approaches to the patchy colloidal clusters and their potential applications in photonic crystals, metamaterials, topological photonic insulators, and separation membranes.
Collapse
Affiliation(s)
- You-Jin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong-Bin Moon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyerim Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Youn Soo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
6
|
De A, Maliuta M, Senkovska I, Kaskel S. The Dilemma of Reproducibility of Gating Isotherms for Flexible MOFs. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14073-14083. [PMID: 36350052 DOI: 10.1021/acs.langmuir.2c01999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Porous materials receive a high level of scientific and technological interest due to their applications in various fields such as adsorption, separation and storage, catalysis, ion exchange, nanotechnology, etc. Gas adsorption is a well-established tool for the characterization of the texture of porous solids. Physisorption isotherms are generally expected to be well reproducible for rigid adsorbents, but this is not always the case for nonrigid (flexible) materials. The presence of a metastability region and sensitivity of the activation barriers to the material's texture often influence the isotherms' run. Here, we address the complexity that arises in terms of reproducibility and sample handling for flexible metal-organic frameworks, with the example of DUT-8(Ni). It belongs to the group of "gate opening" metal-organic frameworks and is a typical representative of the pillared layer compounds. We propose characteristic parameters for the analysis and comparison of adsorption isotherms, showing the "gate opening" step, associated with the adsorption-induced solid-state phase transition. A set of 50 nitrogen physisorption isotherms measured at 77 K were analyzed and correlated with the synthetic and outgassing conditions. The study highlights the importance of accurate descriptions and record-keeping of experimental details and their role in the replication of scientific results.
Collapse
Affiliation(s)
- Ankita De
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Mariia Maliuta
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Irena Senkovska
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| | - Stefan Kaskel
- Chair of Inorganic Chemistry I, Technische Universität Dresden, Bergstr. 66, 01069 Dresden, Germany
| |
Collapse
|
7
|
Cao L, Fang S, Xu B, Zhang B, Wang C, Xiao Z, Zou G, Hou H, Ou X, Ji X. Enabling Reversible Reaction by Uniform Distribution of Heterogeneous Intermediates on Defect-Rich SnSSe/C Layered Heterostructure for Ultralong-Cycling Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202134. [PMID: 35638480 DOI: 10.1002/smll.202202134] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
2D layered Sn-based materials have attracted enormous attention due to their remarkable performance in sodium-ion batteries. Nevertheless, this promising candidate involves a complex Na+ -storage process with multistep conversion-alloying reactions, which induces the uneven dispersion of heterogeneous intermediate accompanied by severe agglomeration of metallic Sn0 , inescapably resulting in poor reaction reversibility with sluggish rate capability and inferior cyclic lifespan. Herein, a delicately layered heterostructure SnSSe/C consisting of defect-rich SnSSe and graphene is designed and successfully achieved via a facile hydrothermal process. The equal anionic substitution of Se in SnSSe crystal can trigger numerous defects, which can not only facilitate Na+ diffusion but also accelerate the nucleation process by inducing quantum-dot-level uniform distribution of heterogeneous intermediates, Na2 Se/Na2 S and Sn0 . Concurrently, in situ formed uniform Na2 Se/Na2 S grain boundaries confined by this unique layered heterostructure may effectively suppress the agglomeration of metallic Sn0 nanograins and boost the reversibility of conversion-alloying reaction. As a result, the SnSSe/C displays significant improvement in Na-storage performance, in terms of remarkable rate capability and ultralong cycling lifespan. This work, focusing on controlling intermediate distribution, provides an effective strategy to boost reaction reversibility, which can be wildly employed in conversion-based electrodes for energy storage regions.
Collapse
Affiliation(s)
- Liang Cao
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Shaojun Fang
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Baohe Xu
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Bao Zhang
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Chunhui Wang
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Zhiming Xiao
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Guoqiang Zou
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Hongshuai Hou
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| | - Xing Ou
- School of Metallurgy and Environment, Central South University, No.932 South Lushan Road, Changsha, Hunan, 410083, P. R. China
| | - Xiaobo Ji
- Hunan Province Key Laboratory of Chemical Power Source, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, P. R. China
| |
Collapse
|
8
|
Zhang Z, Tang Y, Ying Y, Guo J, Gan M, Jiang Y, Xing C, Pan S, Xu M, Zhou Y, Zhang H, Leung CW, Huang H, Mak CL, Fei L. Multistep nucleation visualized during solid-state crystallization. MATERIALS HORIZONS 2022; 9:1670-1678. [PMID: 35470363 DOI: 10.1039/d2mh00174h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mechanisms of nucleation have been debated for more than a century, despite successes of classical nucleation theory. The nucleation process has been recently argued as involving a nonclassical mechanism (the "two-step" mechanism) in which an intermediate step occurs before the formation of a nascent ordered phase. However, a thorough understanding of this mechanism, in terms of both microscopic kinetics and thermodynamics, remains experimentally challenging. Here, in situ observations using transmission electron microscopy on a solid-state nucleation case indicate that early-stage crystallization can follow the non-classical pathway, yet proceed via a more complex manner in which multiple metastable states precede the emergence of a stable nucleus. The intermediate steps were sequentially isolated as spinodal decomposition of amorphous precursor, mass transport and structural oscillations between crystalline and amorphous states. Our experimental and theoretical analyses support the idea that the energetic favorability is the driving force for the observed sequence of events. Due to the broad applicability of solid-state crystallization, the findings of this study offer new insights into modern nucleation theory and a potential avenue for materials design.
Collapse
Affiliation(s)
- Zhouyang Zhang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yujie Tang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yiran Ying
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Junqing Guo
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Min Gan
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Yateng Jiang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Chunxian Xing
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Shanshan Pan
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Ming Xu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Yangbo Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| | - Haitao Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chi Wah Leung
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Haitao Huang
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Chee Leung Mak
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Linfeng Fei
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Jiangxi Engineering Laboratory for Advanced Functional Thin Films and Jiangxi Key Laboratory for Multiscale Interdisciplinary Study, Nanchang University, Nanchang, Jiangxi 330031, China.
| |
Collapse
|