1
|
Zhu Y, Ji Y, Zhu W, Qu R, Faheem H, Xie C. Juxtaposed slab dehydration, decarbonation and seismotectonic variation beneath the Philippine subduction zone based on 3-D modeling. Sci Rep 2024; 14:26966. [PMID: 39505928 DOI: 10.1038/s41598-024-76508-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Largescale volcanic eruptions and earthquakes are occurring frequently in the Philippines, and research has shown that slab metamorphism and diversity alter the impacts of subducted oceanic plates by changing water‒carbon productivity and interplate stability. Within the framework of the thermal evolution history of subducting slabs, the relationships between subduction zone seismicity characterized by both regular megathrust earthquakes and slow slip events of various magnitudes and long-term slab dehydration-decarbonation evolution in the Philippines remain poorly understood. Here, we constructed a comprehensive thermal model incorporating 3-D slab geometric data for the incoming plate and a 3-D subduction velocity field based on the MORVEL plate motion dataset for the Philippine subduction zone with high spatial and temporal resolutions. Our findings reveal that subduction seismicity and arc volcanism are prominent in belt-shaped regions with high thermal gradients (> 5 °C/km) and large-scale slab dehydration (> 0.05 wt%/km). Dehydration of serpentinite in ultramafic rocks in the subducting slab and decarbonation of carbonate minerals preferentially contribute to the generation and transport of fluids and carbonate melts, thus facilitating seismicity and carbon-rich magmatism. Our results suggest that slab geometry diversity-induced juxtaposed slab dehydration-decarbonation processes play a vital role in the generation of megathrust earthquakes below the forearc.
Collapse
Affiliation(s)
- Ye Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingfeng Ji
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Weiling Zhu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Qu
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haris Faheem
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chaodi Xie
- Geophysics Department, School of Earth Sciences, Yunnan University, Kunming, 650500, China
| |
Collapse
|
2
|
Foley SF, Chen C, Jacob DE. The effects of local variations in conditions on carbon storage and release in the continental mantle. Natl Sci Rev 2024; 11:nwae098. [PMID: 38933600 PMCID: PMC11203914 DOI: 10.1093/nsr/nwae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 06/28/2024] Open
Abstract
Recent advances indicate that the amount of carbon released by gradual degassing from the mantle needs to be revised upwards, whereas the carbon supplied by plumes may have been overestimated in the past. Variations in rock types and oxidation state may be very local and exert strong influences on carbon storage and release mechanisms. Deep subduction may be prevented by diapirism in thick sedimentary packages, whereas carbonates in thinner sequences may be subducted. Carbonates stored in the mantle transition zone will melt when they heat up, recognized by coupled stable isotope systems (e.g. Mg, Zn, Ca). There is no single 'mantle oxygen fugacity', particularly in the thermal boundary layer (TBL) and lowermost lithosphere, where very local mixtures of rock types coexist. Carbonate-rich melts from either subduction or melting of the uppermost asthenosphere trap carbon by redox freezing or as carbonate-rich dykes in this zone. Deeply derived, reduced melts may form further diamond reservoirs, recognized as polycrystalline diamonds associated with websteritic silicate minerals. Carbon is released by either edge-driven convection, which tears sections of the TBL and lower lithosphere down so that they melt by a mixture of heating and oxidation, or by lateral advection of solids beneath rifts. Both mechanisms operate at steps in lithosphere thickness and result in carbonate-rich melts, explaining the spatial association of craton edges and carbonate-rich magmatism. High-pressure experiments on individual rock types, and increasingly on reactions between rocks and melts, are fine-tuning our understanding of processes and turning up unexpected results that are not seen in studies of single rocks. Future research should concentrate on elucidating local variations and integrating these with the interpretation of geophysical signals. Global concepts such as average sediment compositions and a uniform mantle oxidation state are not appropriate for small-scale processes; an increased focus on local variations will help to refine carbon budget models.
Collapse
Affiliation(s)
- Stephen F Foley
- School of Natural Sciences, Macquarie University, North Ryde 2109, New South Wales, Australia
- Research School of Earth Sciences, Australian National University, Canberra, AT 2601, Australia
| | - Chunfei Chen
- School of Natural Sciences, Macquarie University, North Ryde 2109, New South Wales, Australia
- State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Dorrit E Jacob
- Research School of Earth Sciences, Australian National University, Canberra, AT 2601, Australia
| |
Collapse
|
3
|
Chu M, Bao R, Strasser M, Ikehara K, Everest J, Maeda L, Hochmuth K, Xu L, McNichol A, Bellanova P, Rasbury T, Kölling M, Riedinger N, Johnson J, Luo M, März C, Straub S, Jitsuno K, Brunet M, Cai Z, Cattaneo A, Hsiung K, Ishizawa T, Itaki T, Kanamatsu T, Keep M, Kioka A, McHugh C, Micallef A, Pandey D, Proust JN, Satoguchi Y, Sawyer D, Seibert C, Silver M, Virtasalo J, Wang Y, Wu TW, Zellers S. Earthquake-enhanced dissolved carbon cycles in ultra-deep ocean sediments. Nat Commun 2023; 14:5427. [PMID: 37696798 PMCID: PMC10495447 DOI: 10.1038/s41467-023-41116-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/23/2023] [Indexed: 09/13/2023] Open
Abstract
Hadal trenches are unique geological and ecological systems located along subduction zones. Earthquake-triggered turbidites act as efficient transport pathways of organic carbon (OC), yet remineralization and transformation of OC in these systems are not comprehensively understood. Here we measure concentrations and stable- and radiocarbon isotope signatures of dissolved organic and inorganic carbon (DOC, DIC) in the subsurface sediment interstitial water along the Japan Trench axis collected during the IODP Expedition 386. We find accumulation and aging of DOC and DIC in the subsurface sediments, which we interpret as enhanced production of labile dissolved carbon owing to earthquake-triggered turbidites, which supports intensive microbial methanogenesis in the trench sediments. The residual dissolved carbon accumulates in deep subsurface sediments and may continue to fuel the deep biosphere. Tectonic events can therefore enhance carbon accumulation and stimulate carbon transformation in plate convergent trench systems, which may accelerate carbon export into the subduction zones.
Collapse
Affiliation(s)
- Mengfan Chu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Rui Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Michael Strasser
- University of Innsbruck, Institute of Geology, Innsbruck, Austria
| | - Ken Ikehara
- National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan, Institute of Geology and Geoinformation, Ibaraki, 305-8567, Japan
| | - Jez Everest
- British Geological Survey, Lyell Centre, Edinburgh, EH14 4AP, UK
| | - Lena Maeda
- Center for Deep Earth Exploration, Japan Agency for Marine-Earth Science and Technology, Kanagawa, 236-0001, Japan
| | - Katharina Hochmuth
- School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
- Australian Centre for Excellence in Antarctic Sciences, Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point TAS, Churchill Ave, 7004, Australia
| | - Li Xu
- NOSAMS Laboratory, Woods Hole Oceanographic Institution, Massachusetts, USA
| | - Ann McNichol
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Massachusetts, USA
| | - Piero Bellanova
- RWTH Aachen University, Institute of Neotectonics and Natural Hazards & Institute of Geology and Geochemistry of Petroleum and Coal, 52056, Aachen, Germany
| | - Troy Rasbury
- Stony Brook University, Department of Geosciences, New York, 11794, USA
| | - Martin Kölling
- MARUM - Center for Marine Environmental Science, University of Bremen, Bremen, 28359, Germany
| | - Natascha Riedinger
- Boone Pickens School of Geology, Oklahoma State University, Oklahoma, 74078, USA
| | - Joel Johnson
- University of New Hampshire, Department of Earth Sciences, New Hampshire, 03824, USA
| | - Min Luo
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Christian März
- School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
- Institute for Geosciences, University of Bonn, Nussallee 8, 53115, Bonn, Germany
| | - Susanne Straub
- Lamont Doherty Earth Observatory, Geochemistry Division, New York, 10964, USA
| | - Kana Jitsuno
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, 162-0041, Japan
| | - Morgane Brunet
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000, Rennes, France
| | - Zhirong Cai
- Kyoto University, Department of Geology and Mineralogy, Division of Earth and Planetary Sciences, Graduate School of Science, Kyoto, 606-8502, Japan
| | - Antonio Cattaneo
- Geo-Ocean, UMR 6538, Univ Brest, CNRS, Ifremer, Plouzané, F-29280, France
| | - Kanhsi Hsiung
- Research Institute for Marine Geodynamics, JAMSTEC, Marine Geology and Geophysics Research Group, Subduction Dynamics Research Center, Kanagawa, 237-0061, Japan
| | - Takashi Ishizawa
- International Research Institute of Disaster Science, Tohoku University, Sendai, 980-0845, Japan
| | - Takuya Itaki
- National Institute of Advanced Industrial Science and Technology (AIST), Geological Survey of Japan, Institute of Geology and Geoinformation, Ibaraki, 305-8567, Japan
| | - Toshiya Kanamatsu
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Research Institute of Marine Geodynamics (IMG), Yokosuka, 237-0061, Japan
| | - Myra Keep
- The University of Western Australia, Department School of Earth Sciences, Perth, Australia
| | - Arata Kioka
- Kyushu University, Department of Earth Resources Engineering, Fukuoka, 819-0395, Japan
| | - Cecilia McHugh
- Queens College, City University of New York, School of Earth and Environmental Sciences, New York, 11367, USA
| | - Aaron Micallef
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, D-24148, Germany
| | - Dhananjai Pandey
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Government of India, Goa, 403 804, India
| | - Jean Noël Proust
- Univ Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000, Rennes, France
| | | | - Derek Sawyer
- The Ohio State University, School of Earth Sciences, Ohio, 43210, USA
| | - Chloé Seibert
- Lamont Doherty Earth Observatory, Marine geology and geophysics division, New York, 10964, USA
| | - Maxwell Silver
- Colorado School of Mines, Hydrologic Science and Engineering, Colorado, 80227, USA
| | | | - Yonghong Wang
- Ocean University of China, Department of Marine Geosciences, Qingdao, 266100, China
| | - Ting-Wei Wu
- MARUM - Center for Marine Environmental Science, University of Bremen, Bremen, 28359, Germany
- Norwegian Geotechnical Institute, Oslo, Norway
| | - Sarah Zellers
- University of Central Missouri, Department of Physical Sciences, Missouri, 64093, USA
| |
Collapse
|
4
|
Chen C, Förster MW, Foley SF, Shcheka SS. Carbonate-rich crust subduction drives the deep carbon and chlorine cycles. Nature 2023; 620:576-581. [PMID: 37558874 DOI: 10.1038/s41586-023-06211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/12/2023] [Indexed: 08/11/2023]
Abstract
The flux balances of carbon and chlorine between subduction into the deep mantle and volcanic emissions into the atmosphere are crucial for the habitability of our planet1,2. However, pervasive loss of fluids from subducting slabs has been thought to cut off the delivery of both carbon and chlorine to the deep mantle owing to their high mobility under hydrous conditions3,4. Our new high-pressure experiments show that most carbonates (>75 wt%) in carbonate-rich crustal rocks-one of the main subducting carbon reservoirs-survive devolatilization and hydrous melting in cold and warm subduction zones, indicating that their subduction has driven the deep carbon cycle since the Mesoproterozoic. We found that KCl and NaCl, respectively, become stable phases crystallizing from hydrous carbonatite melts with low chlorine solubility in warm and hot subduction zones, resulting in the sequestration of chlorine in the solid residue in downwelling slabs. Accordingly, the subduction of carbonate-rich rocks facilitated highly effective recycling of both chlorine and carbon into the deep mantle at intermediate stages of Earth's history and led to declining atmospheric pCO2 and the formation of carbon-rich and chlorine-rich mantle reservoirs since the Mesoproterozoic. This period of optimal carbon and chlorine subduction may explain the ages of eclogitic diamonds and the formation of the HIMU mantle source.
Collapse
Affiliation(s)
- Chunfei Chen
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia.
| | - Michael W Förster
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Stephen F Foley
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Svyatoslav S Shcheka
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| |
Collapse
|
5
|
Prange MP, Mergelsberg ST, Kerisit SN. Structural water in amorphous carbonate minerals: ab initio molecular dynamics simulations of X-ray pair distribution experiments. Phys Chem Chem Phys 2023; 25:6768-6779. [PMID: 36789518 DOI: 10.1039/d2cp04881g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Water is known to play a controlling role in directing mineralization pathways and stabilizing metastable amorphous intermediates in hydrous carbonate mineral MCO3·nH2O systems, where M2+ is a divalent metal cation. Despite this recognition, the nature of the controls on crystallization is poorly understood, largely owing to the difficulty in characterizing the dynamically disordered structures of amorphous intermediates at the atomic scale. Here, we present a series of atomistic models, derived from ab initio molecular dynamics simulation, across a range of experimentally relevant cations (M = Ca, Mg, Sr) and hydration levels (0 ≤ n ≤ 2). Theoretical simulations of the dependence of the X-ray pair distribution function on the hydration level n show good agreement with available experimental data and thus provide further evidence for a lack of significant nanoscale structure in amorphous carbonates. Upon dehydration, the metal coordination number does not change significantly, but the relative extent of water dissociation increases, indicating that a thermodynamic driving force exists for water dissociation to accompany dehydration. Mg strongly favors monodentate conformation of carbonate ligands and shows a marked preference to exchange monodentate carbonate O for water O upon hydration, whereas Ca and Sr exchange mono- and bidentate carbonate ligands with comparable frequency. Water forms an extensive hydrogen bond network among both water and carbonate groups that exhibits frequent proton transfers for all three cations considered suggesting that proton mobility is likely predominantly due to water dissociation and proton transfer reactions rather than molecular water diffusion.
Collapse
Affiliation(s)
- Micah P Prange
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Sebastian T Mergelsberg
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| | - Sebastien N Kerisit
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA.
| |
Collapse
|
6
|
Müller RD, Mather B, Dutkiewicz A, Keller T, Merdith A, Gonzalez CM, Gorczyk W, Zahirovic S. Evolution of Earth's tectonic carbon conveyor belt. Nature 2022; 605:629-639. [PMID: 35614243 DOI: 10.1038/s41586-022-04420-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/13/2022] [Indexed: 11/09/2022]
Abstract
Concealed deep beneath the oceans is a carbon conveyor belt, propelled by plate tectonics. Our understanding of its modern functioning is underpinned by direct observations, but its variability through time has been poorly quantified. Here we reconstruct oceanic plate carbon reservoirs and track the fate of subducted carbon using thermodynamic modelling. In the Mesozoic era, 250 to 66 million years ago, plate tectonic processes had a pivotal role in driving climate change. Triassic-Jurassic period cooling correlates with a reduction in solid Earth outgassing, whereas Cretaceous period greenhouse conditions can be linked to a doubling in outgassing, driven by high-speed plate tectonics. The associated 'carbon subduction superflux' into the subcontinental mantle may have sparked North American diamond formation. In the Cenozoic era, continental collisions slowed seafloor spreading, reducing tectonically driven outgassing, while deep-sea carbonate sediments emerged as the Earth's largest carbon sink. Subduction and devolatilization of this reservoir beneath volcanic arcs led to a Cenozoic increase in carbon outgassing, surpassing mid-ocean ridges as the dominant source of carbon emissions 20 million years ago. An increase in solid Earth carbon emissions during Cenozoic cooling requires an increase in continental silicate weathering flux to draw down atmospheric carbon dioxide, challenging previous views and providing boundary conditions for future carbon cycle models.
Collapse
Affiliation(s)
- R Dietmar Müller
- EarthByte Group, School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia.
| | - Ben Mather
- EarthByte Group, School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Adriana Dutkiewicz
- EarthByte Group, School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tobias Keller
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, Scotland
| | - Andrew Merdith
- School of Earth and Environment, University of Leeds, Leeds, UK
| | - Christopher M Gonzalez
- Centre for Exploration Targeting, School of Earth Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Weronika Gorczyk
- Centre for Exploration Targeting, School of Earth Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Sabin Zahirovic
- EarthByte Group, School of Geosciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|