1
|
Li Y, Zhao J, Tang K, Yin J, Song Y, Pan W, Li N, Tang B. Doxorubicin prodrug for γ-glutamyl transpeptidase imaging and on-demand cancer therapy. Biosens Bioelectron 2025; 272:117127. [PMID: 39778243 DOI: 10.1016/j.bios.2025.117127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
The γ-glutamyl transpeptidase (γ-GGT) is an important tumor marker, which has been reported to be firmly associated with the developmental stage of liver cancer. Therefore, it makes sense to image and monitor γ-GGT level and design γ-GGT-responsive prodrug for integrated diagnosis and treatment of liver cancer. Herein, we prepare a doxorubicin (Dox) prodrug for imaging γ-GGT and on-demand treating liver cancer. When γ-GGT exists, the γ-glutamyl group will be cut off to liberate free Dox for monitoring cancer progression and killing tumor cells. Fortunately, little Dox is released due to the low level of γ-GGT in normal cells, which improves the safety and efficiency of chemotherapy. To further improve the tumor targeted ability, Dox prodrug is loaded in hyaluronic acid modified liposome nanoparticles to form the nano-prodrug. Then nano-prodrug is enriched in the tumor by binding to the high expressed CD44 on cancer cells. With the assistance of anti-PD-L1, nano-prodrug effectively inhibits the growth of proximal and distal tumors.
Collapse
Affiliation(s)
- Yanhua Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jiexiang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Kun Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Jiaqi Yin
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Yingying Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, PR China; Laoshan Laboratory, Qingdao, 266237, PR China.
| |
Collapse
|
2
|
Guo Z, Huang T, Lv X, Yin R, Wan P, Li G, Zhang P, Xiao C, Chen X. Tumor microenvironment-activated polypeptide nanoparticles for oncolytic immunotherapy. Biomaterials 2025; 314:122870. [PMID: 39369669 DOI: 10.1016/j.biomaterials.2024.122870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Cationic oncolytic polypeptides have gained increasing attention owing to their ability to directly lyse cancer cells and activate potent antitumor immunity. However, the low tumor cell selectivity and inherent toxicity induced by positive charges of oncolytic polypeptides hinder their systemic application. Herein, a tumor microenvironment-responsive nanoparticle (DNP) is developed by the self-assembly of a cationic oncolytic polypeptide (PLP) with a pH-sensitive anionic polypeptide via electrostatic interactions. After the formation of DNP, the positive charges of PLP are shielded. DNPs can keep stable in physiological conditions (pH 7.4) but respond to acidic tumor microenvironment (pH 6.8) to release oncolytic PLP. As a result, DNPs evoke potent immunogenic cell death by disrupting cell membranes, damaging mitochondria and increasing intracellular levels of reactive oxygen species. In vivo results indicate that DNPs significantly improve the biocompatibility of PLP, and inhibit tumor growth, recurrence and metastasis by direct oncolysis and activation of antitumor immune responses. In summary, these results indicate that pH-sensitive DNPs represent a prospective strategy to improve the tumor selectivity and biosafety of cationic polymers for oncolytic immunotherapy.
Collapse
Affiliation(s)
- Zhihui Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Tianze Huang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Xueli Lv
- College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| | - Pengqi Wan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China.
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, PR China
| |
Collapse
|
3
|
Zhu Z, Shang Y, Lin C, Zhang D, Ai L, Li Y, Tan W, Liu Y, Zhao Z. Targeted Covalent Nanodrugs Reinvigorate Antitumor Immunity and Kill Tumors via Improving Intratumoral Accumulation and Retention of Doxorubicin. ACS NANO 2025; 19:2315-2333. [PMID: 39760789 DOI: 10.1021/acsnano.4c12447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Specifically improving the intratumoral accumulation and retention and achieving the maximum therapeutic efficacy of small-molecule chemotherapeutics remains a considerable challenge. To address the issue, we here reported near-infrared (NIR) irradiation-activatable targeted covalent nanodrugs by installing diazirine-labeled transferrin receptor 1 (TfR1)-targeted aptamers on PEGylated phospholipid-coated upconversion nanoparticles followed by doxorubicin loading. Targeted covalent nanodrugs recognized and then were activated to covalently cross-link with TfR1 on cancer cells by 980 nm NIR irradiation. Systematic studies revealed that they achieved >6- and >5.5-fold higher intratumoral accumulations of doxorubicin than aptamer-based targeted nanodrugs at 6 and 120 h post intravenous injection, respectively. Based on high drug delivery efficacy, targeted covalent nanodrugs boosted doxorubicin-induced immunogenic cell death, activated antitumor immune responses and shrank the sizes of both primary and distant tumors, and displayed better therapeutic efficacy and less adverse effect than targeted nanodrugs and commercial Doxil in 4T1 syngeneic breast tumor model featuring an immunosuppressive microenvironment. By integrating the specificity of molecular recognition, the reactivity profile of diazirine and the accuracy of light manipulation with nanodrug supremacy, our targeted covalent nanodrugs could be expected as a longer-term and efficient strategy to improve anticancer therapeutic efficacy of chemotherapeutics.
Collapse
Affiliation(s)
- Zhijia Zhu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yanxue Shang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Chukai Lin
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Dongchen Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Lili Ai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Youshan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yanlan Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Zilong Zhao
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
4
|
Ma M, Zhang Y, Pu K, Tang W. Nanomaterial-enabled metabolic reprogramming strategies for boosting antitumor immunity. Chem Soc Rev 2025; 54:653-714. [PMID: 39620588 DOI: 10.1039/d4cs00679h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Immunotherapy has become a crucial strategy in cancer treatment, but its effectiveness is often constrained. Most cancer immunotherapies focus on stimulating T-cell-mediated immunity by driving the cancer-immunity cycle, which includes tumor antigen release, antigen presentation, T cell activation, infiltration, and tumor cell killing. However, metabolism reprogramming in the tumor microenvironment (TME) supports the viability of cancer cells and inhibits the function of immune cells within this cycle, presenting clinical challenges. The distinct metabolic needs of tumor cells and immune cells require precise and selective metabolic interventions to maximize therapeutic outcomes while minimizing adverse effects. Recent advances in nanotherapeutics offer a promising approach to target tumor metabolism reprogramming and enhance the cancer-immunity cycle through tailored metabolic modulation. In this review, we explore cutting-edge nanomaterial strategies for modulating tumor metabolism to improve therapeutic outcomes. We review the design principles of nanoplatforms for immunometabolic modulation, key metabolic pathways and their regulation, recent advances in targeting these pathways for the cancer-immunity cycle enhancement, and future prospects for next-generation metabolic nanomodulators in cancer immunotherapy. We expect that emerging immunometabolic modulatory nanotechnology will establish a new frontier in cancer immunotherapy in the near future.
Collapse
Affiliation(s)
- Muye Ma
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Immunology Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Dr 2, Singapore, 117545, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, 28 Medical Dr, Singapore, 117597, Singapore
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, Singapore, 636921, Singapore
| | - Wei Tang
- Department of Diagnostic Radiology, Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore, 117597, Singapore.
- Department of Pharmacy and Pharmaceutic Sciences, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore, 117543, Singapore
| |
Collapse
|
5
|
Zhan S, Cao Z, Li J, Chen F, Lai X, Yang W, Teng Y, Li Z, Zhang W, Xie J. Iron Oxide Nanoparticles Induce Macrophage Secretion of ATP and HMGB1 to Enhance Irradiation-Led Immunogenic Cell Death. Bioconjug Chem 2025; 36:80-91. [PMID: 39680043 PMCID: PMC11740999 DOI: 10.1021/acs.bioconjchem.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses. To this end, we tested three inorganic particles, namely, iron oxide nanoparticles (ION), aluminum oxide nanoparticles (AON), and zinc oxide nanoparticles (ZON), in vitro with bone marrow-derived dendritic cells (BMDCs) and then in vivo in syngeneic tumor models. Our results showed that ION was the most effective of the three nanoparticles in promoting the secretion of ATP and HMGB1 from macrophages without negatively affecting macrophage survival. Secretions from ION-loaded macrophages can activate BMDCs. Intratumoral injection of ION-loaded macrophages significantly enhanced tumor infiltration and activation of dendritic cells and cytotoxic T cells. Moreover, exogenous ION macrophages can enhance the efficacy of radiotherapy. In addition, direct injection of ION can also enhance the efficacy of radiotherapy, which is attributed to ION uptake by and stimulation of endogenous macrophages. Instead of directly targeting cancer cells, our strategy targets macrophages and uses them as a secretory source of ATP and HMGB1 to enhance radiation-induced ICD. Our research introduces a new nanoparticle-based immunomodulatory approach that may have applications in radiotherapy and beyond.
Collapse
Affiliation(s)
- Shuyue Zhan
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Zhengwei Cao
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jianwen Li
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Fanghui Chen
- Department of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Xinning Lai
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Wei Yang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Yong Teng
- Department of Hematology and Medical Oncology & Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Zibo Li
- Department of Radiology, Biomedical Research Imaging Center, and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Weizhong Zhang
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Jin Xie
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
6
|
Liu D, Ling Y, Dong L, Zhang J, Li X, Chen X, Huang H, Deng J, Guo Y. Ultrasound-triggered drug-loaded nanobubbles for enhanced T cell recruitment in cancer chemoimmunotherapy. Biomaterials 2025; 317:123086. [PMID: 39805187 DOI: 10.1016/j.biomaterials.2025.123086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/09/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Chemotherapy combined with immunotherapy is a highly promising approach for treating tumors. However, chemotherapeutic drugs often fail to accumulate effectively at the tumor site after systemic administration and they lack sufficient immunogenicity to activate adaptive immunity, making an effective T-cell immune response within the tumor microenvironment difficult to achieve. Here, this work developed drug-loaded nanobubbles (DTX-R837@NBs) that encapsulate the chemotherapy drug docetaxel and the immune adjuvant R837 via a thin-film hydration method. Ultrasound-targeted nanobubble destruction promoted drug accumulation within tumor tissues and damaged tumor cells through the cavitation effect, inducing immunogenic cell death and releasing damage-associated molecular patterns to augment dendritic cell maturation. Notably, DTX-R837@NBs exhibited excellent contrast-enhanced ultrasound imaging capabilities, enabling the seamless integration of diagnosis and treatment. In combination with immune checkpoint blockade targeting programmed cell death protein 1 (PD-1), the generated immunological responses attacked residual tumor cells and ameliorated the immunosuppressive tumor microenvironment, inhibiting distant tumor growth and metastasis. Moreover, this strategy exhibited robust immune memory effects, effectively protecting the host and preventing tumor recurrence upon rechallenge. Overall, ultrasound-mediated DTX-R837@NBs combined with anti-PD-1 immune checkpoint blockade therapy exhibits robust antitumor efficiency, represent a promising strategy for overcoming immunotherapy resistance in cold tumors, and warrant further investigation for clinical translation.
Collapse
Affiliation(s)
- Deng Liu
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China; Bioengineering College, Chongqing University, Chongqing, 400044, China
| | - Yi Ling
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Li Dong
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Jun Zhang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xin Li
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Xuemei Chen
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Haiyun Huang
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University, Chongqing, 400038, China.
| | - Yanli Guo
- Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
7
|
Wang Z, Liu S, Ming R, Wang W, Wang C, Li C, Yang J, Zhang F, Lu G, Mei L, Huang LL. Engineered virus-mimicking nanovaccine with lymph node-tumor dual-targeting and STING-activating capacity for robust cancer immunotherapy. J Control Release 2024; 378:416-427. [PMID: 39694072 DOI: 10.1016/j.jconrel.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/23/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Cancer vaccines have garnered considerable interest for cancer immunotherapy. However, their effectiveness is limited by inadequate proliferation, activation, and tumor infiltration of cytotoxic T lymphocytes (CTLs). Inspired by the potent immunostimulatory properties of viral components and the exposure of calreticulin during immunogenic cell death (ICD) triggered by viral infections; in this study, we describe cGAMP@vEVs, a virus-mimicking nanovaccine strategy by engineering tumor cell-derived extracellular vesicles through virus infection, which co-load both personalized and broad antigen repertoire as well as multiple immune adjuvants to potently elicit antitumor immunity. We demonstrate that cGAMP@vEVs exhibit both the commendable lymph node-tumor dual-targeting and stimulator of interferon genes (STING) pathway-activating capacity, which drive the proliferation and activation of tumor-specific CD8+ T cells in lymph nodes. Simultaneously, cGAMP@vEVs actively accumulate to tumor sites, and ameliorate immunosuppression tumor microenvironment, promoting the spontaneous tumor infiltration of CTLs. The coactivation of the immune response and TME reinitiate the self-sustaining cycle of cancer immunity, therefore efficiently inhibiting tumor progression, metastasis, and recurrence.
Collapse
Affiliation(s)
- Zhongjie Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Shujun Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ruiqi Ming
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Weiwei Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chenguang Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chuyu Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiahua Yang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China.
| | - Guihong Lu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen 518034, PR China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, PR China.
| | - Li-Li Huang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, PR China.
| |
Collapse
|
8
|
Nair ST, Abhi C, Kamalasanan K, Pavithran K, Unni AR, Sithara MS, Sarma M, Mangalanandan TS. Pathophysiology-Driven Approaches for Overcoming Nanomedicine Resistance in Pancreatic Cancer. Mol Pharm 2024; 21:5960-5988. [PMID: 39561094 DOI: 10.1021/acs.molpharmaceut.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Tumor heterogeneity poses a significant challenge in cancer therapy. To address this, we analyze pharmacotherapeutic challenges by categorizing them into static and dynamic barriers, reframing these challenges to improve drug delivery, efficacy, and the development of controlled-release nanomedicines (CRNMs). This pathophysiology-driven approach facilitates the design of novel therapeutics tailored to overcome obstacles in pancreatic ductal adenocarcinoma (PDAC) using nanotechnology. Advanced biomaterials in nanodrug delivery systems offer innovative solutions by combining controlled release, stimuli sensitivity, and smart design strategies. CRNMs are engineered to modulate spatiotemporal signaling and control drug release in PDAC, where resistance to conventional therapies is particularly high. This review explores pharmacokinetic considerations for nanomedicine design, RNA interference (RNAi) for stromal modulation, and the development of targeted nanomedicine strategies. Additionally, we highlight the limitations of current animal models in capturing the complexities of PDAC and discuss notable clinical failures, such as PEGylated hyaluronidase (Phase III HALO 109-301 trial) and evofosfamide (TH-302) with gemcitabine (MAESTRO trial), underscoring the need for improved models and treatment strategies. By targeting pathways like Notch and Hedgehog and incorporating stimuli-sensitive and pathway-modulating agents, CRNMs offer a promising avenue to enhance drug penetration and efficacy, reshaping the paradigm of pancreatic cancer treatment.
Collapse
Affiliation(s)
- Sreejith Thrivikraman Nair
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - C Abhi
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Kaladhar Kamalasanan
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - K Pavithran
- Department of Medical Oncology and Hematology, School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Ashok R Unni
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - M S Sithara
- Department of Veterinary Medicine, Central Animal Facility, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Manjit Sarma
- Department of Nuclear Medicine, Amrita School of Medicine, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - T S Mangalanandan
- Department of Endocrinology, Amrita Institute of Medical Sciences and Research Centre, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| |
Collapse
|
9
|
Zhao Y, Sun J, Xu XL, Su J, Du YZ. The potential of nanosystems in disrupting adenosine signaling pathways for tumor immunotherapy. Expert Opin Drug Deliv 2024; 21:1755-1770. [PMID: 39434697 DOI: 10.1080/17425247.2024.2417687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION Adenosine (ADO) is a naturally occurring nucleoside primarily synthesized through the hydrolysis of extracellular adenosine triphosphate. Within the tumor microenvironment, ADO levels substantially increase, resulting in suppressed immune responses. AREAS COVERED Nanosystems offer a promising approach for precise drug delivery to tumor lesions. In this review, we provide an overview of the current research progress in the development of nanosystems that modulate adenosine signaling for tumor immunotherapy. These nanosystems are designed to target adenosine-hydrolyzing proteins, increase adenosine decomposition, and antagonize adenosine receptors. EXPERT OPINION Based on the literature review, adenosine has great potential in tumor immunotherapy, and nano-drug delivery system has great application prospects in targeted cancer therapy in the near future due to its superior characteristics.
Collapse
Affiliation(s)
- Yutong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| | - Jingqi Sun
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, PR China
| | - Jin Su
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
| | - Yong-Zhong Du
- College of Pharmacy, Jiamusi University, Jiamusi, PR China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
10
|
Liu C, Gao J, Cheng Y, Zhang S, Fu C. Homologous-adhering/targeting cell membrane- and cell-mediated delivery systems: a cancer-catch-cancer strategy in cancer therapy. Regen Biomater 2024; 12:rbae135. [PMID: 39811105 PMCID: PMC11729729 DOI: 10.1093/rb/rbae135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 11/06/2024] [Indexed: 01/16/2025] Open
Abstract
Low tumor enrichment remains a serious and urgent problem for drug delivery in cancer therapy. Accurate targeting of tumor sites is still a critical aim in cancer therapy. Though there have been a variety of delivery strategies to improve the tumor targeting and enrichment, biological barriers still cause most delivered guests to fail or be excreted before they work. Recently, cell membrane-based systems have attracted a huge amount of attention due to their advantages such as easy access, good biocompatibility and immune escape, which contribute to their biomimetic structures and specific surface proteins. Furthermore, cancer cell membrane-based delivery systems are referred to as homologous-targeting function in which they exhibit significantly high adhesion and internalization to homologous-type tumor sites or cells even though the exact mechanism is not entirely revealed. Here, we summarize the sources and characterizations of cancer cell membrane systems, including reconstructed single or hybrid membrane-based nano-/microcarriers, as well as engineered cancer cells. Additionally, advanced applications of these cancer cell membrane systems in cancer therapy are categorized and summarized according to the components of membranes. The potential factors related to homologous targeting of cancer cell membrane-based systems are also discussed. By discussing the applications, challenges and opportunities, we expect the cancer cell membrane-based homologous-targeting systems to have a far-reaching development in preclinic or clinics.
Collapse
Affiliation(s)
- Chenguang Liu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Jingjie Gao
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Yuying Cheng
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Shanshan Zhang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Caiyun Fu
- Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| |
Collapse
|
11
|
Cheng R, Wang S. Cell-mediated nanoparticle delivery systems: towards precision nanomedicine. Drug Deliv Transl Res 2024; 14:3032-3054. [PMID: 38615157 PMCID: PMC11445310 DOI: 10.1007/s13346-024-01591-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2024] [Indexed: 04/15/2024]
Abstract
Cell-mediated nanoparticle delivery systems (CMNDDs) utilize cells as carriers to deliver the drug-loaded nanoparticles. Unlike the traditional nanoparticle drug delivery approaches, CMNDDs take the advantages of cell characteristics, such as the homing capabilities of stem cells, inflammatory chemotaxis of neutrophils, prolonged blood circulation of red blood cells, and internalization of macrophages. Subsequently, CMNDDs can easily prolong the blood circulation, cross biological barriers, such as the blood-brain barrier and the bone marrow-blood barrier, and rapidly arrive at the diseased areas. Such advantageous properties make CMNDDs promising delivery candidates for precision targeting. In this review, we summarize the recent advances in CMNDDs fabrication and biomedical applications. Specifically, ligand-receptor interactions, non-covalent interactions, covalent interactions, and internalization are commonly applied in constructing CMNDDs in vitro. By hitchhiking cells, such as macrophages, red blood cells, monocytes, neutrophils, and platelets, nanoparticles can be internalized or attached to cells to construct CMNDDs in vivo. Then we highlight the recent application of CMNDDs in treating different diseases, such as cancer, central nervous system disorders, lung diseases, and cardiovascular diseases, with a brief discussion about challenges and future perspectives in the end.
Collapse
Affiliation(s)
- Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Shiqi Wang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland.
| |
Collapse
|
12
|
Zheng L, Ding Y, Fang S, Yang W, Chen J, Ma J, Wang M, Wang J, Zhang F, Guo X, Zhang K, Shu GF, Weng Q, Wu F, Zhao Z, Chen M, Jiansong J. Potentiated Calcium Carbonate with Enhanced Calcium Overload Induction and Acid Neutralization Capabilities to Boost Chemoimmunotherapy against Liver Cancer. ACS NANO 2024; 18:27597-27616. [PMID: 39342637 DOI: 10.1021/acsnano.4c08690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Unfavorable phenotypes characterized by low immunogenicity and acidity within the tumor microenvironment (TME) contribute to immunosuppression and therapeutic resistance. Herein, we rationally synthesized a multifunctional nanoregulator by encapsulating DOX and erianin into calcium carbonate (CaCO3)-based nanoparticles using a modified double emulsion method. The DOX and erianin-loaded CaCO3-based nanoparticles, termed DECaNPs, could effectively induce the calcium overload by triggering calcium influx and absorbing CaCO3 nanoparticles. Additionally, DECaNPs also neutralize the acidic TME by interacting with extracellular protons and limiting lactic acid production, a result of metabolic remodeling in cancer cells. As a result, DECaNPs elicit cellular oxidative stress damage, which mediates the activation of ferroptosis/apoptosis hybrid pathways, and profound immunogenic cell death. Treatment with DECaNPs could inhibit the growth of tumors by promoting oxidative stress, acid neutralization, metabolic remodeling, and protective antitumor immunity in vivo. In addition, DECaNPs could synergistically amplify the antitumor effects of αPD-L1 in a bilateral tumor model by eliciting systemic immune responses. In all, our work presents the preparation of CaCO3-based nanoregulators designed to reverse the unfavorable TME and enhance αPD-L1 immunotherapy through multiple mechanisms.
Collapse
Affiliation(s)
- Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Yiming Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Wenjing Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| | - Jiale Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Ji Ma
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Mengyuan Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiaoli Wang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoju Guo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Kun Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Gao-Feng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Qiaoyou Weng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Fazong Wu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Ji Jiansong
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, Key Laboratory of Precision Medicine of Lishui City, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Department of Radiology, Lishui Hospital of Zhejiang University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310000, China
| |
Collapse
|
13
|
Mao W, Yoo HS. Inorganic Nanoparticle Functionalization Strategies in Immunotherapeutic Applications. Biomater Res 2024; 28:0086. [PMID: 39323561 PMCID: PMC11423863 DOI: 10.34133/bmr.0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/27/2024] Open
Abstract
Nanotechnology has been increasingly utilized in anticancer treatment owing to its ability of engineering functional nanocarriers that enhance therapeutic effectiveness while minimizing adverse effects. Inorganic nanoparticles (INPs) are prevalent nanocarriers to be customized for a wide range of anticancer applications, including theranostics, imaging, targeted drug delivery, and therapeutics, because they are advantageous for their superior biocompatibility, unique optical properties, and capacity of being modified via versatile surface functionalization strategies. In the past decades, the high adaptation of INPs in this emerging immunotherapeutic field makes them good carrier options for tumor immunotherapy and combination immunotherapy. Tumor immunotherapy requires targeted delivery of immunomodulating therapeutics to tumor locations or immunological organs to provoke immune cells and induce tumor-specific immune response while regulating immune homeostasis, particularly switching the tumor immunosuppressive microenvironment. This review explores various INP designs and formulations, and their employment in tumor immunotherapy and combination immunotherapy. We also introduce detailed demonstrations of utilizing surface engineering tactics to create multifunctional INPs. The generated INPs demonstrate the abilities of stimulating and enhancing the immune response, specific targeting, and regulating cancer cells, immune cells, and their resident microenvironment, sometimes along with imaging and tracking capabilities, implying their potential in multitasking immunotherapy. Furthermore, we discuss the promises of INP-based combination immunotherapy in tumor treatments.
Collapse
Affiliation(s)
- Wei Mao
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyuk Sang Yoo
- Department of Biomedical Materials Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
- Institute of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Kangwon Radiation Convergence Research Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
14
|
Li H, Song F, Chu Y, Su W, Li X, Yang M. Leukocyte-based delivery systems for enhanced nanotheranostics of inflammation and cancer. NANOTECHNOLOGY 2024; 35:482501. [PMID: 39146955 DOI: 10.1088/1361-6528/ad6fa1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
As a part of the immune system, leukocytes (LEs) have the features of circumvention of immunogenicity as well as recruitment to sites of inflammation during infection and tumorigenesis. Utilizing LEs as vehicles to carry theranostic agents is a promising strategy for highly efficient targeted delivery and treatment for inflammation and cancer. Specifically, the LEs, similar to 'Trojan horses', can bypass the immune system and thus enhance the therapeutic effects on inflammation and cancer. In this context, the latest progress of LEs-based delivery systems for improving theranostics of inflammations and cancers is summarized, includingin vitroincubation andin vivointernalization strategy. Although the therapeutic efficacy of LEs-based delivery systems has been achieved, the system construction is complex and the effect is not fulfilling demand completely. Encouragingly, a most recent work reported that the supramolecular arrangement of proteins on the nanocarriers would drive them to be selectively uptaken by neutrophils, opening a new avenue for diagnosis and treatment of inflammation. Moreover, enucleated cells are considered as the biomimetic drug delivery vehicle to retain the organelles for a range of diseases in a safe, controllable and effective manner. These novel findings provide more opportunities for researchers to rethink and redesign the LEs-based delivery systems to overcome existing limitations and broaden their usage, especially in clinical medicine.
Collapse
Affiliation(s)
- Helin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Fangyin Song
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yu Chu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Weike Su
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Xin Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Mengshi Yang
- Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
15
|
Wang Z, Miao F, Gu L, Zhang R, Ma Y, Li Y, Zheng J, Lin Z, Gao Y, Huang L, Shen Y, Wu T, Luo F, Li W. Stimulator of Interferon Genes-Activated Biomimetic Dendritic Cell Nanovaccine as a Chemotherapeutic Booster to Enhance Systemic Fibrosarcoma Treatment. ACS NANO 2024; 18:24219-24235. [PMID: 39172516 DOI: 10.1021/acsnano.4c05657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fibrosarcoma, a malignant mesenchymal tumor, is characterized by aggressive invasiveness and a high recurrence rate, leading to poor prognosis. Anthracycline drugs, such as doxorubicin (DOX), represent the frontline chemotherapy for fibrosarcoma, but often exhibit suboptimal efficacy. Recently, exploiting the stimulator of interferon genes (STING)-mediated innate immunity has emerged as a hopeful strategy for cancer treatment. Integrating chemotherapy with immunomodulators in chemo-immunotherapy has shown potential for enhancing treatment outcomes. Herein, we introduce an advanced dendritic cell (DC) nanovaccine, cGAMP@PLGA@CRTM (GP@CRTM), combined with low-dose DOX to enhance fibrosarcoma chemo-immunotherapy. The nanovaccine consists of poly(lactic-co-glycolic acid) (PLGA) nanoparticles encapsulating the STING agonist 2,3-cGAMP (cGAMP@PLGA, GP) as its core, and a calreticulin (CRT) high-expressing fibrosarcoma cell membrane (CRTM) as the shell. Exposing CRT on the vaccine surface aids in recruiting DCs and stimulating uptake, facilitating efficient simultaneous delivery of STING agonists and tumor antigens to DCs. This dual delivery method effectively activates the STING pathway in DCs, triggering sustained immune stimulation. Simultaneously, low-dose DOX reduces chemotherapy-related side effects, directly kills a subset of tumor cells, and increases tumor immunogenicity, thus further amplifying immune therapeutic performance. Hence, these findings demonstrate the potential of DC nanovaccine GP@CRTM as a booster for chemotherapy. Synergistically combining low-dose DOX with the DC nanovaccine emerges as a powerful chemo-immunotherapy strategy, optimizing systemic fibrosarcoma therapy.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fenglin Miao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Lingwei Gu
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ruyi Zhang
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yuan Ma
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Ying Li
- Heji Hospital Affiliated with Changzhi Medical College, Changzhi 046000, Shanxi, China
| | - Jialiang Zheng
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Zhenhang Lin
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Yilai Gao
- Cancer Research Center, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361000, Fujian, China
| | - Liyong Huang
- Fuzhou No. 1 Hospital Affiliated with Fujian Medical University, Fuzhou 350000, Fu Jian, China
| | - Ye Shen
- Shanghai Jiangxia Blood Technology Co., Ltd. Shanghai 200000, China
| | - Ting Wu
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Fanghong Luo
- Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| | - Wengang Li
- Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, Cancer Research Center, School of Medicine, Xiamen University, Xiamen 361102, Fujian, China
| |
Collapse
|
16
|
Deng XC, Liang JL, Zhang SM, Wang YZ, Lin YT, Meng R, Wang JW, Feng J, Chen WH, Zhang XZ. Interference of ATP-Adenosine Axis by Engineered Biohybrid for Amplifying Immunogenic Cell Death-Mediated Antitumor Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405673. [PMID: 39022876 DOI: 10.1002/adma.202405673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Immunogenic cell death (ICD) often results in the production and accumulation of adenosine (ADO), a byproduct that negatively impacts the therapeutic effect as well as facilitates tumor development and metastasis. Here, an innovative strategy is elaborately developed to effectively activate ICD while avoiding the generation of immunosuppressive adenosine. Specifically, ZIF-90, an ATP-responsive consumer, is synthesized as the core carrier to encapsulate AB680 (CD73 inhibitor) and then coated with an iron-polyphenol layer to prepare the ICD inducer (AZTF), which is further grafted onto prebiotic bacteria via the esterification reaction to obtain the engineered biohybrid (Bc@AZTF). Particularly, the designed Bc@AZTF can actively enrich in tumor sites and respond to the acidic tumor microenvironment to offload AZTF nanoparticles, which can consume intracellular ATP (iATP) content and simultaneously inhibit the ATP-adenosine axis to reduce the accumulation of adenosine, thereby alleviating adenosine-mediated immunosuppression and strikingly amplifying ICD effect. Importantly, the synergy of anti-PD-1 (αPD-1) with Bc@AZTF not only establishes a collaborative antitumor immune network to potentiate effective tumoricidal immunity but also activates long-lasting immune memory effects to manage tumor recurrence and rechallenge, presenting a new paradigm for ICD treatment combined with adenosine metabolism.
Collapse
Affiliation(s)
- Xin-Chen Deng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jun-Long Liang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Yu-Zhang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Yan-Tong Lin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Ran Meng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia-Wei Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Jun Feng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Wei-Hai Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, P. R. China
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, P. R. China
| |
Collapse
|
17
|
Lee S, Hong KH, Park H, Ha J, Lee SE, Park DJ, Jeong SD, Kim S, Kim D, Ahn J, Lee HW, Koh WG, Ha SJ, Kim YC. Tumor phagocytosis-driven STING activation invigorates antitumor immunity and reprograms the tumor micro-environment. J Control Release 2024; 373:55-69. [PMID: 38971428 DOI: 10.1016/j.jconrel.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/14/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Immunogenic cell death (ICD) holds the potential for in situ tumor vaccination while concurrently eradicating tumors and stimulating adaptive immunity. Most ICD inducers, however, elicit insufficient immune responses due to negative feedback against ICD biomarkers, limited infiltration of antitumoral immune cells, and the immunosuppressive tumor micro-environment (TME). Recent findings highlight the pivotal roles of stimulators of interferon gene (STING) activation, particularly in stimulating antigen-presenting cells (APCs) and TME reprogramming, addressing ICD limitations. Herein, we introduced 'tumor phagocytosis-driven STING activation', which involves the activation of STING in APCs during the recognition of ICD-induced cancer cells. We developed a polypeptide-based nanocarrier encapsulating both doxorubicin (DOX) and diABZI STING agonist 3 (dSA3) to facilitate this hypothesis in vitro and in vivo. After systemic administration, nanoparticles predominantly accumulated in tumor tissue and significantly enhanced anticancer efficacy by activating tumor phagocytosis-driven STING activation in MC38 and TC1 tumor models. Immunological activation of APCs occurred within 12 h, subsequently leading to the activation of T cells within 7 days, observed in both the TME and spleen. Furthermore, surface modification of nanoparticles with cyclic RGD (cRGD) moieties, which actively target integrin αvβ3, enhances tumor accumulation and eradication, thereby verifying the establishment of systemic immune memory. Collectively, this study proposes the concept of tumor phagocytosis-driven STING activation and its effectiveness in generating short-term and long-term immune responses.
Collapse
Affiliation(s)
- Susam Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Kyeong Hee Hong
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - Heewon Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - JongHoon Ha
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seung Eon Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea
| | - Dong Jin Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Dong Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Seohyeon Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Dahae Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - JiWon Ahn
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea
| | - Han-Woong Lee
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; GEMCRO, Inc., Seoul 03722, Republic of Korea
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Republic of Korea; Brain Korea 21 (BK21) FOUR Program, Yonsei Education & Research Center for Biosystems, Yonsei University, Seoul 03722, Republic of Korea.
| | - Yeu-Chun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea.
| |
Collapse
|
18
|
Guo Y, Lv T, Li Z, Wei X, Yang C, Li W, Hou X, Wang Z, Qian R. Acidity-activatable dynamic hybrid nanoplatforms derived from extracellular vesicles of M1 macrophages enhance cancer immunotherapy through synergistic triple immunotherapy. J Nanobiotechnology 2024; 22:430. [PMID: 39033108 PMCID: PMC11264854 DOI: 10.1186/s12951-024-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Immunotherapy exhibits considerable promise for sustained tumor reduction. However, current cancer immunotherapy methods elicit limited responses due to the inadequate immunogenicity exhibited by cancer cells. This obstacle may be addressed using nanoplatforms that can activate synergistic therapies (photodynamic therapy and ferroptosis) in response to the acidic pH of the tumor microenvironment. We previously developed an amphiphilic photosensitizer, SR780, which displays satisfactory photodynamic effects. This photosensitizer is inactivated when bound to Fe3+ (SR780Fe) but is activated upon release in mildly acidic conditions. In this study, M1 macrophage-derived extracellular vesicles (EVs) were fused with REV and SR780Fe-loaded liposomes (REV@SR780Fe@Lip) to form REV@SR780Fe@LEV hybrid nanovesicles. Further modification with the RS17 peptide for tumor targeting enabled a combination of photodynamic therapy, ferroptosis, and cGAS-STING pathway activation, resulting in enhanced antitumor efficacy through a synergistic effect. Upon laser irradiation, REV@SR780Fe@LEV-RS17 demonstrated antitumor effects in 4T1 breast cancer models, including the inhibition of lung and liver metastasis, as well as prevention of tumor recurrence.
Collapse
Affiliation(s)
- Yawen Guo
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Tingting Lv
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zijie Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xin Wei
- Department of Ultrasound, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, People's Republic of China
| | - Chunwang Yang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Wen Li
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Xiaoming Hou
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Zhiyu Wang
- Department of Immuno-Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050000, People's Republic of China
| | - Ruijie Qian
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450000, People's Republic of China.
| |
Collapse
|
19
|
Wang F, Qin S, Zhang J, Huang M, Liu Q, Xu P, Hu Y. Low-dose doxorubicin loaded extracellular vesicles combined Fas/FasL pathway-mediated chemo-sensitization and immunotherapy against tumor. Int J Pharm 2024; 660:124349. [PMID: 38885778 DOI: 10.1016/j.ijpharm.2024.124349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/20/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
The clinical application of doxorubicin (DOX) is mainly restricted by its serious side effects, poor drug delivery efficiency, and limited immunogenic death (ICD) effect. To improve DOX-based chemotherapy and ameliorate its adverse effects, we utilized 3LL cell-derived extracellular vesicles to encapsulate DOX and sodium nitroprusside (SNP) to obtain DOX/SNP@CM, which could effectively target the tumor site by harnessing the inherent homologous targeting property of tumor cell membranes. DOX performed its role on chemotherapy, and SNP successfully respond to the intracellular GSH to continuously generate nitric oxide (NO). The in situ-produced NO upregulated the Fas expression on the tumor cell surface, thereby sensitizing the Fas/FasL pathway-mediated tumor cell apoptosis of DOX. Furthermore, NO also boosted the intratumoral infiltration of cytotoxic T cells by promoted ICD effect towards tumor cells. Importantly, the anti-tumor immunity tightly cooperated with Fas/FasL mediated tumor cell apoptosis by NO-mediated manipulation on Fas/FasL interaction, collectively making DOX/SNP@CM exert significant tumor growth inhibition with low-dose DOX. Remarkably, DOX and SNP both are widely used clinical medicines, ensuring DOX/SNP@CM a potential opportunity for future practical applications.
Collapse
Affiliation(s)
- Fei Wang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shuheng Qin
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Jiejie Zhang
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210093, China
| | - Menglu Huang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qin Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210093, China.
| | - Peipei Xu
- Department of Hematology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210093, China.
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Renai Road 150, Suzhou Industrial Park, Suzhou 215123, China.
| |
Collapse
|
20
|
Liang H, Xu C, Guo D, Peng F, Chen N, Song H, Ji X. Dismantlable Coronated Nanoparticles for Coupling the Induction and Perception of Immunogenic Cell Death. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313097. [PMID: 38643386 DOI: 10.1002/adma.202313097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/18/2024] [Indexed: 04/22/2024]
Abstract
Therapy-induced immunogenic cell death (ICD) can initiate both innate and adaptive immune responses for amplified anti-tumor efficacy. However, dying cell-released ICD signals are prone to being sequestered by the TIM-3 receptors on dendritic cell (DC) surfaces, preventing immune surveillance. Herein, dismantlable coronated nanoparticles (NPs) are fabricated as a type of spatiotemporally controlled nanocarriers for coupling tumor cell-mediated ICD induction to DC-mediated immune sensing. These NPs are loaded with an ICD inducer, mitoxantrone (MTO), and wrapped by a redox-labile anti-TIM-3 (αTIM-3) antibody corona, forming a separable core-shell structure. The antibody corona disintegrates under high levels of extracellular reactive oxygen species in the tumor microenvironment, exposing the MTO-loaded NP core for ICD induction and releasing functional αTIM-3 molecules for DC sensitization. Systemic administration of the coronated NPs augments DC maturation, promotes cytotoxic T cell recruitment, enhances tumor susceptibility to immune checkpoint blockade, and prevents the side effects of MTO. This study develops a promising nanoplatform to unleash the potential of host immunity in cancer therapy.
Collapse
Affiliation(s)
- Huan Liang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunchen Xu
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Daoxia Guo
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fei Peng
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Nan Chen
- College of Chemistry and Materials Science, The Education Ministry Key Lab of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, Shanghai, 200234, China
| | - Haiyun Song
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaoyuan Ji
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
21
|
Ming L, Wu H, Fan Q, Dong Z, Huang J, Xiao Z, Xiao N, Huang H, Liu H, Li Z. Bio-inspired drug delivery systems: A new attempt from bioinspiration to biomedical applications. Int J Pharm 2024; 658:124221. [PMID: 38750980 DOI: 10.1016/j.ijpharm.2024.124221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Natural organisms have evolved sophisticated and multiscale hierarchical structures over time to enable survival. Currently, bionic design is revolutionizing drug delivery systems (DDS), drawing inspiration from the structure and properties of natural organisms that offer new possibilities to overcome the challenges of traditional drug delivery systems. Bionic drug delivery has contributed to a significant improvement in therapeutic outcomes, providing personalized regimens for patients with various diseases and enhancing both their quality of life and drug efficacy. Therefore, it is important to summarize the progress made so far and to discuss the challenges and opportunities for future development. Herein, we review the recent advances in bio-inspired materials, bio-inspired drug vehicles, and drug-loading platforms of biomimetic structures and properties, emphasizing the importance of adapting the structure and function of organisms to meet the needs of drug delivery systems. Finally, we highlight the delivery strategies of bionics in DDS to provide new perspectives and insights into the research and exploration of bionics in DDS. Hopefully, this review will provide future insights into utilizing biologically active vehicles, bio-structures, and bio-functions, leading to better clinical outcomes.
Collapse
Affiliation(s)
- Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Zijian Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China
| | - Hao Huang
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, College of Pharmacy, Gannan Medical, University, Jiangxi, Ganzhou 341000, China.
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Jiangxi, Nanchang 330004, China.
| |
Collapse
|
22
|
Li B, Zu M, Jiang A, Cao Y, Wu J, Shahbazi MA, Shi X, Reis RL, Kundu SC, Xiao B. Magnetic natural lipid nanoparticles for oral treatment of colorectal cancer through potentiated antitumor immunity and microbiota metabolite regulation. Biomaterials 2024; 307:122530. [PMID: 38493672 DOI: 10.1016/j.biomaterials.2024.122530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/10/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024]
Abstract
The therapeutic efficacy of oral nanotherapeutics against colorectal cancer (CRC) is restricted by inadequate drug accumulation, immunosuppressive microenvironment, and intestinal microbiota imbalance. To overcome these challenges, we elaborately constructed 6-gingerol (Gin)-loaded magnetic mesoporous silicon nanoparticles and functionalized their surface with mulberry leaf-extracted lipids (MLLs) and Pluronic F127 (P127). In vitro experiments revealed that P127 functionalization and alternating magnetic fields (AMFs) promoted internalization of the obtained P127-MLL@Gins by colorectal tumor cells and induced their apoptosis/ferroptosis through Gin/ferrous ion-induced oxidative stress and magneto-thermal effect. After oral administration, P127-MLL@Gins safely passed to the colorectal lumen, infiltrated the mucus barrier, and penetrated into the deep tumors under the influence of AMFs. Subsequently, the P127-MLL@Gin (+ AMF) treatment activated antitumor immunity and suppressed tumor growth. We also found that this therapeutic modality significantly increased the abundance of beneficial bacteria (e.g., Bacillus and unclassified-c-Bacilli), reduced the proportions of harmful bacteria (e.g., Bacteroides and Alloprevotella), and increased lipid oxidation metabolites. Strikingly, checkpoint blockers synergistically improved the therapeutic outcomes of P127-MLL@Gins (+ AMF) against orthotopic and distant colorectal tumors and significantly prolonged mouse life spans. Overall, this oral therapeutic platform is a promising modality for synergistic treatment of CRC.
Collapse
Affiliation(s)
- Baoyi Li
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Menghang Zu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Aodi Jiang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yingui Cao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jiaxue Wu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, Netherlands
| | - Xiaoxiao Shi
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães, 4805-017, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, 4800-058, Portugal
| | - Bo Xiao
- State Key Laboratory of Resource Insects, College of Sericulture, Textile, and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
23
|
Yang Y, Wang Y, Zeng F, Chen Y, Chen Z, Yan F. Ultrasound-visible engineered bacteria for tumor chemo-immunotherapy. Cell Rep Med 2024; 5:101512. [PMID: 38640931 PMCID: PMC11148858 DOI: 10.1016/j.xcrm.2024.101512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/04/2024] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Our previous work developed acoustic response bacteria, which enable the precise tuning of transgene expression through ultrasound. However, it is still difficult to visualize these bacteria in order to guide the sound wave to precisely irradiate them. Here, we develop ultrasound-visible engineered bacteria and chemically modify them with doxorubicin (DOX) on their surfaces. These engineered bacteria (Ec@DIG-GVs) can produce gas vesicles (GVs), providing a real-time imaging guide for remote hyperthermia high-intensity focused ultrasound (hHIFU) to induce the expression of the interferon (IFN)-γ gene. The production of IFN-γ can kill tumor cells, induce macrophage polarization from the M2 to the M1 phenotype, and promote the maturation of dendritic cells. DOX can be released in the acidic tumor microenvironment, resulting in immunogenic cell death of tumor cells. The concurrent effects of IFN-γ and DOX activate a tumor-specific T cell response, producing the synergistic anti-tumor efficacy. Our study provides a promising strategy for bacteria-mediated tumor chemo-immunotherapy.
Collapse
Affiliation(s)
- Yaozhang Yang
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuanyuan Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fengyi Zeng
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuhao Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, University of South China, College of Hunan Province, Changsha, Hunan 410028, China; Institution of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China; The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, Hunan 410028, China.
| | - Fei Yan
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
24
|
Liang G, Cao W, Tang D, Zhang H, Yu Y, Ding J, Karges J, Xiao H. Nanomedomics. ACS NANO 2024; 18:10979-11024. [PMID: 38635910 DOI: 10.1021/acsnano.3c11154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Nanomaterials have attractive physicochemical properties. A variety of nanomaterials such as inorganic, lipid, polymers, and protein nanoparticles have been widely developed for nanomedicine via chemical conjugation or physical encapsulation of bioactive molecules. Superior to traditional drugs, nanomedicines offer high biocompatibility, good water solubility, long blood circulation times, and tumor-targeting properties. Capitalizing on this, several nanoformulations have already been clinically approved and many others are currently being studied in clinical trials. Despite their undoubtful success, the molecular mechanism of action of the vast majority of nanomedicines remains poorly understood. To tackle this limitation, herein, this review critically discusses the strategy of applying multiomics analysis to study the mechanism of action of nanomedicines, named nanomedomics, including advantages, applications, and future directions. A comprehensive understanding of the molecular mechanism could provide valuable insight and therefore foster the development and clinical translation of nanomedicines.
Collapse
Affiliation(s)
- Ganghao Liang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wanqing Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, P. R. China
| | - Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Liu Q, Xu R, Shen J, Tao Y, Shao J, Ke Y, Liu B. In situ chemoimmunotherapy hydrogel elicits immunogenic cell death and evokes efficient antitumor immune response. J Transl Med 2024; 22:341. [PMID: 38594751 PMCID: PMC11005214 DOI: 10.1186/s12967-024-05102-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/15/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Chemoimmunotherapy has shown promising advantages of eliciting immunogenic cell death and activating anti-tumor immune responses. However, the systemic toxicity of chemotherapy and tumor immunosuppressive microenvironment limit the clinical application. METHODS Here, an injectable sodium alginate hydrogel (ALG) loaded with nanoparticle albumin-bound-paclitaxel (Nab-PTX) and an immunostimulating agent R837 was developed for local administration. Two murine hepatocellular carcinoma and breast cancer models were established. The tumor-bearing mice received the peritumoral injection of R837/Nab-PTX/ALG once a week for two weeks. The antitumor efficacy, the immune response, and the tumor microenvironment were investigated. RESULTS This chemoimmunotherapy hydrogel with sustained-release character was proven to have significant effects on killing tumor cells and inhibiting tumor growth. Peritumoral injection of our hydrogel caused little harm to normal organs and triggered a potent antitumor immune response against both hepatocellular carcinoma and breast cancer. In the tumor microenvironment, enhanced immunogenic cell death induced by the combination of Nab-PTX and R837 resulted in 3.30-fold infiltration of effector memory T cells and upregulation of 20 biological processes related to immune responses. CONCLUSIONS Our strategy provides a novel insight into the combination of chemotherapy and immunotherapy and has the potential for clinical translation.
Collapse
Affiliation(s)
- Qin Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Rui Xu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingwen Shen
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yaping Tao
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jingyi Shao
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yaohua Ke
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Zhang MR, Fang LL, Guo Y, Wang Q, Li YJ, Sun HF, Xie SY, Liang Y. Advancements in Stimulus-Responsive Co-Delivery Nanocarriers for Enhanced Cancer Immunotherapy. Int J Nanomedicine 2024; 19:3387-3404. [PMID: 38617801 PMCID: PMC11012697 DOI: 10.2147/ijn.s454004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/14/2024] [Indexed: 04/16/2024] Open
Abstract
Cancer immunotherapy has emerged as a novel therapeutic approach against tumors, with immune checkpoint inhibitors (ICIs) making significant clinical practice. The traditional ICIs, PD-1 and PD-L1, augment the cytotoxic function of T cells through the inhibition of tumor immune evasion pathways, ultimately leading to the initiation of an antitumor immune response. However, the clinical implementation of ICIs encounters obstacles stemming from the existence of an immunosuppressive tumor microenvironment and inadequate infiltration of CD8+T cells. Considerable attention has been directed towards advancing immunogenic cell death (ICD) as a potential solution to counteract tumor cell infiltration and the immunosuppressive tumor microenvironment. This approach holds promise in transforming "cold" tumors into "hot" tumors that exhibit responsiveness to antitumor. By combining ICD with ICIs, a synergistic immune response against tumors can be achieved. However, the combination of ICD inducers and PD-1/PD-L1 inhibitors is hindered by issues such as poor targeting and uncontrolled drug release. An advantageous solution presented by stimulus-responsive nanocarrier is integrating the physicochemical properties of ICD inducers and PD-1/PD-L1 inhibitors, facilitating precise delivery to specific tissues for optimal combination therapy. Moreover, these nanocarriers leverage the distinct features of the tumor microenvironment to accomplish controlled drug release and regulate the kinetics of drug delivery. This article aims to investigate the advancement of stimulus-responsive co-delivery nanocarriers utilizing ICD and PD-1/PD-L1 inhibitors. Special focus is dedicated to exploring the advantages and recent advancements of this system in enabling the combination of ICIs and ICD inducers. The molecular mechanisms of ICD and ICIs are concisely summarized. In conclusion, we examine the potential research prospects and challenges that could greatly enhance immunotherapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Meng-Ru Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
- Department of Clinical Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Lin-Lin Fang
- RemeGen Co., Ltd, YanTai, ShanDong, 264000, People’s Republic of China
| | - Yang Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - You-Jie Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Hong-Fang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Shu-Yang Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| | - Yan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Binzhou Medical University, YanTai, ShanDong, 264003, People’s Republic of China
| |
Collapse
|
27
|
Guo X, Chen X, Ding J, Zhang F, Chen S, Hu X, Fang S, Shen L, Lu C, Zhao Z, Tu J, Shu G, Chen M, Ji J. Acidic/hypoxia dual-alleviated nanoregulators for enhanced treatment of tumor chemo-immunotherapy. Asian J Pharm Sci 2024; 19:100905. [PMID: 38595332 PMCID: PMC11002573 DOI: 10.1016/j.ajps.2024.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 04/11/2024] Open
Abstract
Chemotherapy plays a crucial role in triple-negative breast cancer (TNBC) treatment as it not only directly kills cancer cells but also induces immunogenic cell death. However, the chemotherapeutic efficacy was strongly restricted by the acidic and hypoxic tumor environment. Herein, we have successfully formulated PLGA-based nanoparticles concurrently loaded with doxorubicin (DOX), hemoglobin (Hb) and CaCO3 by a CaCO3-assisted emulsion method, aiming at the effective treatment of TNBC. We found that the obtained nanomedicine (DHCaNPs) exhibited effective drug encapsulation and pH-responsive drug release behavior. Moreover, DHCaNPs demonstrated robust capabilities in neutralizing protons and oxygen transport. Consequently, DHCaNPs could not only serve as oxygen nanoshuttles to attenuate tumor hypoxia but also neutralize the acidic tumor microenvironment (TME) by depleting lactic acid, thereby effectively overcoming the resistance to chemotherapy. Furthermore, DHCaNPs demonstrated a notable ability to enhance antitumor immune responses by increasing the frequency of tumor-infiltrating effector lymphocytes and reducing the frequency of various immune-suppressive cells, therefore exhibiting a superior efficacy in suppressing tumor growth and metastasis when combined with anti-PD-L1 (αPD-L1) immunotherapy. In summary, this study highlights that DHCaNPs could effectively attenuate the acidic and hypoxic TME, offering a promising strategy to figure out an enhanced chemo-immunotherapy to benefit TNBC patients.
Collapse
Affiliation(s)
- Xiaoju Guo
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiaoxiao Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Jiayi Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Feng Zhang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shunyang Chen
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xin Hu
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
| | - Lin Shen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Chenying Lu
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Zhongwei Zhao
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Jianfei Tu
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Gaofeng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Jiansong Ji
- Lishui Central Hospital, Shaoxing University, Shaoxing 312000, China
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, Imaging Diagnosis and Interventional Minimally Invasive Institute, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| |
Collapse
|
28
|
Huang S, Zhou C, Song C, Zhu X, Miao M, Li C, Duan S, Hu Y. In situ injectable hydrogel encapsulating Mn/NO-based immune nano-activator for prevention of postoperative tumor recurrence. Asian J Pharm Sci 2024; 19:100901. [PMID: 38645467 PMCID: PMC11031726 DOI: 10.1016/j.ajps.2024.100901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 04/23/2024] Open
Abstract
Postoperative tumor recurrence remains a predominant cause of treatment failure. In this study, we developed an in situ injectable hydrogel, termed MPB-NO@DOX + ATRA gel, which was locally formed within the tumor resection cavity. The MPB-NO@DOX + ATRA gel was fabricated by mixing a thrombin solution, a fibrinogen solution containing all-trans retinoic acid (ATRA), and a Mn/NO-based immune nano-activator termed MPB-NO@DOX. ATRA promoted the differentiation of cancer stem cells, inhibited cancer cell migration, and affected the polarization of tumor-associated macrophages. The outer MnO2 shell disintegrated due to its reaction with glutathione and hydrogen peroxide in the cytoplasm to release Mn2+ and produce O2, resulting in the release of doxorubicin (DOX). The released DOX entered the nucleus and destroyed DNA, and the fragmented DNA cooperated with Mn2+ to activate the cGAS-STING pathway and stimulate an anti-tumor immune response. In addition, when MPB-NO@DOX was exposed to 808 nm laser irradiation, the Fe-NO bond was broken to release NO, which downregulated the expression of PD-L1 on the surface of tumor cells and reversed the immunosuppressive tumor microenvironment. In conclusion, the MPB-NO@DOX + ATRA gel exhibited excellent anti-tumor efficacy. The results of this study demonstrated the great potential of in situ injectable hydrogels in preventing postoperative tumor recurrence.
Collapse
Affiliation(s)
- Shengnan Huang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Chenyang Zhou
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Chengzhi Song
- Center for Quantitative Biology, Peking University, Beijing 100871, China
| | - Xiali Zhu
- School of Pharmaceutical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mingsan Miao
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Chunming Li
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Shaofeng Duan
- School of Pharmaceutical Sciences, Henan University, Zhengzhou 450046, China
| | - Yurong Hu
- School of Pharmaceutical Sciences, Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
29
|
Fang S, Zheng L, Shu GF, Xiaoxiao C, Guo X, Ding Y, Yang W, Chen J, Zhao Z, Tu J, Chen M, Ji JS. Multiple Immunomodulatory Strategies Based on Targeted Regulation of Proprotein Convertase Subtilisin/Kexin Type 9 and Immune Homeostasis against Hepatocellular Carcinoma. ACS NANO 2024; 18:8811-8826. [PMID: 38466366 DOI: 10.1021/acsnano.3c11775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Immunotherapy is the most promising systemic therapy for hepatocellular carcinoma. However, the outcome remains poor. Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a role in altering cell-surface protein levels, potentially undermining the efficacy of immunotherapy against tumors. This highlights its potential as a target for antitumor therapy. Herein, CaCO3-based nanoparticles coencapsulated with DOX, an immunogenic cell death (ICD) inducer, and evolocumab was developed to enhanced the efficacy of immunotherapy. The obtained DOX/evolocumab-loaded CaCO3 nanoparticle (named DECP) exhibits a good capacity of acid neutralization and causes ICD of cancer cells. In addition, DECP is able to evaluate the cell-surface level of MHC-I, a biomarker that correlates positively with patients' overall survival. Upon intravenous injection, DECP accumulates within the tumor site, leading to growth inhibition of hepa1-6 bearing subcutaneous tumors. Specifically, DECP treatment causes augmented ratios of matured dendritic cells, tumor-infiltrating CD8+ T cells and natural killing cells, while concurrently depleting Foxp3+ regulatory T cells. Peritumoral delivery of DECP enhances the immune response of distant tumors and exhibits antitumor effects when combined with intravenous αPD-L1 therapy in a bilateral tumor model. This study presents CaCO3-based nanoparticles with multiple immunomodulatory strategies against hepatocellular carcinoma by targeting PCSK9 inhibition and modulating immune homeostasis in the unfavorable TME.
Collapse
Affiliation(s)
- Shiji Fang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Liyun Zheng
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Gao-Feng Shu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| | - Chen Xiaoxiao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Xiaoju Guo
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
| | - Yiming Ding
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Wenjing Yang
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jiale Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Zhongwei Zhao
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jianfei Tu
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Minjiang Chen
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
| | - Jian-Song Ji
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
- Clinical College of The Affiliated Central Hospital, School of Medcine, Lishui University, Lishui 323000, China
- Department of radiology, Lishui Hospital of Zhejiang University, School of Medicine, Lishui 323000, China
- Key Laboratory of Precision Medicine of Lishui, Lishui 323000, China
| |
Collapse
|
30
|
Li M, Jiang H, Hu P, Shi J. Nanocatalytic Anti-Tumor Immune Regulation. Angew Chem Int Ed Engl 2024; 63:e202316606. [PMID: 38212843 DOI: 10.1002/anie.202316606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/30/2023] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
Immunotherapy has brought a new dawn for human being to defeat cancer. Although existing immunotherapy regimens (CAR-T, etc.) have made breakthroughs in the treatments of hematological cancer and few solid tumors such as melanoma, the therapeutic efficacy on most solid tumors is still far from being satisfactory. In recent years, the researches on tumor immunotherapy based on nanocatalytic materials are under rapid development, and significant progresses have been made. Nanocatalytic medicine has been demonstrated to be capable of overcoming the limitations of current clinicnal treatments by using toxic chemodrugs, and exhibits highly attractive advantages over traditional therapies, such as the enhanced and sustained therapeutic efficacy based on the durable catalytic activity, remarkably reduced harmful side-effects without using traditional toxic chemodrugs, and so on. Most recently, nanocatalytic medicine has been introduced in the immune-regulation for disease treatments, especially, in the immunoactivation for tumor therapies. This article presents the most recent progresses in immune-response activations by nanocatalytic medicine-initiated chemical reactions for tumor immunotherapy, and elucidates the mechanism of nanocatalytic medicines in regulating anti-tumor immunity. By reviewing the current research progress in the emerging field, this review will further highlight the great potential and broad prospects of nanocatalysis-based anti-tumor immune-therapeutics.
Collapse
Affiliation(s)
- Mingyuan Li
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Han Jiang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| | - Ping Hu
- State Key Laboratory of High Performance Ceramics and Superfine, Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 200050, Shanghai, P. R. China
| | - Jianlin Shi
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 100049, Beijing, P R. China
| |
Collapse
|
31
|
Li X, Huntoon K, Wang Y, Lee D, Dong S, Antony A, Walkey C, Kim BYS, Jiang W. Radiation Synergizes with IL2/IL15 Stimulation to Enhance Innate Immune Activation and Antitumor Immunity. Mol Cancer Ther 2024; 23:330-342. [PMID: 37956421 DOI: 10.1158/1535-7163.mct-23-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/24/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Ionizing radiation is known to possess immune modulatory properties. However, how radiotherapy (RT) may complement with different types of immunotherapies to boost antitumor responses is unclear. In mice implanted with EO771 syngeneic tumors, NL-201 a stable, highly potent CD25-independent agonist to IL2 and IL15 receptors with enhanced affinity for IL2Rβγ was given with or without RT. Flow analysis and Western blot analysis was performed to determine the mechanisms involved. STING (-/-) and CD11c+ knockout mice were implanted with EO771 tumors to confirm the essential signaling and cell types required to mediate the effects seen. Combination of RT and NL-201 to enhance systemic immunotherapy with an anti-PD-1 checkpoint inhibitor was utilized to determine tumor growth inhibition and survival, along characterization of tumor microenvironment as compared with all other treatment groups. Here, we showed that RT, synergizing with NL-201 produced enhanced antitumor immune responses in murine breast cancer models. When given together, RT and NL-201 enhanced activation of the cytosolic DNA sensor cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) pathway, resulting in increased type I IFN production in dendritic cells (DC), and consequently greater tumor infiltration and more efficient priming of antigen-specific T cells. The immune stimulatory mechanisms triggered by NL-201 and RT resulted in superior tumor growth inhibition and survival benefit in both localized and metastatic cancers. Our results support further preclinical and clinical investigation of this novel synergism regimen in locally advanced and metastatic settings.
Collapse
Affiliation(s)
- Xuefeng Li
- Cancer Center, the First Hospital of Jilin University, Changchun, P.R. China
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - DaeYong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shiyan Dong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abin Antony
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carl Walkey
- Neoleukin Therapeutics, Inc., Seattle, Washington
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
32
|
Fu Z, Wang L, Guo H, Lin S, Huang W, Pang Y. Bacterial Flagellum-Drug Nanoconjugates for Carrier-Free Immunochemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306303. [PMID: 37919854 DOI: 10.1002/smll.202306303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 11/04/2023]
Abstract
The combination of immunotherapy and chemotherapy to ablate tumors has attracted substantial attention due to the ability to simultaneously elicit antitumor immune responses and trigger direct tumor cell death. However, conventional combinational strategies mainly focus on the employment of drug carriers to deliver immunomodulators, chemotherapeutics, or their combinations, always suffering from complicated preparation and carrier-relevant side effects. Here, the fabrication of bacterial flagellum-drug nanoconjugates (FDNCs) for carrier-free immunochemotherapy is described. FDNCs are simply prepared by attaching chemotherapeutics to amine residues of flagellin through an acid-sensitive and traceless cis-aconityl linker. By virtue of native nanofibrous structure and immunogenicity, bacterial flagella not only show long-term tumor retention and highly efficient cell internalization, but also provoke robust systemic antitumor immune responses. Meanwhile, conjugated chemotherapeutics exhibit an acid-mediated release profile and durable intratumoral exposure, which can induce potent tumor cell inhibition via direct killing. More importantly, this combination is able to augment immunoactivation effects associated with chemotherapy-enabled immunogenic tumor cell death to further enhance antitumor efficacy. By leveraging the innate response of the immune system to pathogens, the conjugation of therapeutic agents with self-adjuvant bacterial flagella provides an alternative approach to develop carrier-free nanotherapeutics for tumor immunochemotherapy.
Collapse
Affiliation(s)
- Zhenzhen Fu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Haiyan Guo
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| |
Collapse
|
33
|
Zhang Z, Xu X, Du J, Chen X, Xue Y, Zhang J, Yang X, Chen X, Xie J, Ju S. Redox-responsive polymer micelles co-encapsulating immune checkpoint inhibitors and chemotherapeutic agents for glioblastoma therapy. Nat Commun 2024; 15:1118. [PMID: 38320994 PMCID: PMC10847518 DOI: 10.1038/s41467-024-44963-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Immunotherapy with immune checkpoint blockade (ICB) for glioblastoma (GBM) is promising but its clinical efficacy is seriously challenged by the blood-tumor barrier (BTB) and immunosuppressive tumor microenvironment. Here, anti-programmed death-ligand 1 antibodies (aPD-L1) are loaded into a redox-responsive micelle and the ICB efficacy is further amplified by paclitaxel (PTX)-induced immunogenic cell death (ICD) via a co-encapsulation approach for the reinvigoration of local anti-GBM immune responses. Consequently, the micelles cross the BTB and are retained in the reductive tumor microenvironment without altering the bioactivity of aPD-L1. The ICB efficacy is enhanced by the aPD-L1 and PTX combination with suppression of primary and recurrent GBM, accumulation of cytotoxic T lymphocytes, and induction of long-lasting immunological memory in the orthotopic GBM-bearing mice. The co-encapsulation approach facilitating efficient antibody delivery and combining with chemotherapeutic agent-induced ICD demonstrate that the chemo-immunotherapy might reprogram local immunity to empower immunotherapy against GBM.
Collapse
Affiliation(s)
- Zhiqi Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaoxuan Xu
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Jiawei Du
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xin Chen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Yonger Xue
- Center for BioDelivery Sciences, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianqiong Zhang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, 210009, China
| | - Xue Yang
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore.
| | - Jinbing Xie
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| | - Shenghong Ju
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
34
|
Hu C, Liu Y, Cao W, Li N, Gao S, Wang Z, Gu F. Efficacy and Mechanism of a Biomimetic Nanosystem Carrying Doxorubicin and an IDO Inhibitor for Treatment of Advanced Triple-Negative Breast Cancer. Int J Nanomedicine 2024; 19:507-526. [PMID: 38260240 PMCID: PMC10800289 DOI: 10.2147/ijn.s440332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Introduction Chemotherapy is still the treatment of choice for advanced triple-negative breast cancer. Chemotherapy combined with immunotherapy is being tried in patients with triple-negative breast cancer. As a kind of "cold tumor", triple-negative breast cancer has a bottleneck in immunotherapy. Indoleamine 2, 3-dioxygenase-1 inhibitors can reverse the immunosuppressive state and enhance the immune response. Methods In this study, mesoporous silica nanoparticles were coated with the chemotherapeutic drug doxorubicin and indoleamine 2, 3-dioxygenase 1 inhibitor 1-Methyl-DL-tryptophan (1-MT), and then encapsulate the surfaces of a triple-negative breast cancer cell membrane to construct the tumor dual-targeted delivery system CDIMSN for chemotherapy and immunotherapy, and to investigate the immunogenic death effect of CDIMSN. Results and discussion The CDIMSN could target the tumor microenvironment. Doxorubicin induced tumor immunogenic death, while 1-MT reversed immunosuppression. In vivo findings showed that the tumor size in the CDIMSN group was 2.66-fold and 1.56-fold smaller than that in DOX and DIMSN groups, respectively. CDIMSN group was better than naked DIMSN in stimulating CD8+T cells, CD4+T cells and promoting Dendritic Cells(DC) maturation. In addition, blood analysis, biochemical analysis and Hematoxylin staining analysis of mice showed that the bionic nanoparticles had good biological safety.
Collapse
Affiliation(s)
- Chuling Hu
- Department of Pharmacy, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children’s Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| | - Wei Cao
- Department of Neurovascular Disease, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Na Li
- Department of Pathology, Jiaxing Maternity and Child Health Care Hospital, Affiliated Women and Children’s Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Shen Gao
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Zhuo Wang
- Department of Pharmacy, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Fenfen Gu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
35
|
Udofa E, Zhao Z. In situ cellular hitchhiking of nanoparticles for drug delivery. Adv Drug Deliv Rev 2024; 204:115143. [PMID: 38008185 PMCID: PMC10841869 DOI: 10.1016/j.addr.2023.115143] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/04/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
Since the inception of the concept of "magic bullet", nanoparticles have evolved to be one of the most effective carriers in drug delivery. Nanoparticles improve the therapeutic efficacy of drugs offering benefits to treating various diseases. Unlike free drugs which freely diffuse and distribute through the body, nanoparticles protect the body from the drug by reducing non-specific interactions while also improving the drug's pharmacokinetics. Despite acquiring some FDA approvals, further clinical application of nanoparticles is majorly hindered by its limited ability to overcome biological barriers resulting in uncontrolled biodistribution and high clearance. The use of cell-inspired systems has emerged as a promising approach to overcome this challenge as cells are biocompatible and have improved access to tissues and organs. One of such is the hitchhiking of nanoparticles to circulating cells such that they are recognized as 'self' components evading clearance and resulting in site-specific drug delivery. In this review, we discuss the concept of nanoparticle cellular hitchhiking, highlighting its advantages, the principles governing the process and the challenges currently limiting its clinical translation. We also discuss in situ hitchhiking as a tool for overcoming these challenges and the considerations to be taken to guide research efforts in advancing this promising technology.
Collapse
Affiliation(s)
- Edidiong Udofa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA; Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Li Y, Zhu J, Yang Y, Chen Y, Liu L, Tao J, Chen H, Deng Y. Long-Acting Nanohybrid Hydrogel Induces Persistent Immunogenic Chemotherapy for Suppressing Postoperative Tumor Recurrence and Metastasis. Mol Pharm 2023; 20:6345-6357. [PMID: 37942616 DOI: 10.1021/acs.molpharmaceut.3c00746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Despite the continuous advancement of surgical resection techniques, postoperative tumor recurrence and metastasis remain a huge challenge. Here, we constructed an injectable curcumin/doxorubicin-loaded nanoparticle (NanoCD) hydrogel, which could effectively inhibit tumor regrowth and metastasis via reshaping the tumor immune microenvironment (TIME) for highly effective postsurgical cancer treatment. NanoCD was prepared by the controlled assembly of curcumin (CUR) and doxorubicin (DOX) via π-π stacking and hydrogen bonding in the presence of human serum albumin. To facilitate prolonged treatment of postsurgical tumors, NanoCD was further incorporated into the temperature-sensitive Poloxamer 407 gel (NanoCD@Gel) for intracavity administration. Mechanistically, DOX induced the generation of intracellular reactive oxygen species (ROS) and CUR reduced the ROS metabolism by inhibiting thioredoxin reductase (TrxR). The synergy of DOX and CUR amplified intracellular ROS levels and thus resulted in enhanced immunogenic cell death (ICD) of tumor cells. Upon being injected into the tumor cavity after resection, the in situ-generated NanoCD@Gel allowed the local release of CUR and DOX in a controlled manner to induce local chemotherapy and persistently activate the antitumor immune response, thereby achieving enhanced immunogenic chemotherapy with reduced systemic toxicity. Our work provides an elegant strategy for persistently stimulating effective antitumor immunity to prevent postsurgical tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yaoqi Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yifan Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Lishan Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Jing Tao
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- State Key Laboratory of Radiation Medicine and Protection, and School of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
37
|
Dong X, Xia S, Du S, Zhu MH, Lai X, Yao SQ, Chen HZ, Fang C. Tumor Metabolism-Rewriting Nanomedicines for Cancer Immunotherapy. ACS CENTRAL SCIENCE 2023; 9:1864-1893. [PMID: 37901179 PMCID: PMC10604035 DOI: 10.1021/acscentsci.3c00702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Indexed: 10/31/2023]
Abstract
Cancer immunotherapy has become an established therapeutic paradigm in oncologic therapy, but its therapeutic efficacy remains unsatisfactory in the majority of cancer patients. Accumulating evidence demonstrates that the metabolically hostile tumor microenvironment (TME), characterized by acidity, deprivation of oxygen and nutrients, and accumulation of immunosuppressive metabolites, promotes the dysfunction of tumor-infiltrating immune cells (TIICs) and thereby compromises the effectiveness of immunotherapy. This indicates the potential role of tumor metabolic intervention in the reinvigoration of antitumor immunity. With the merits of multiple drug codelivery, cell and organelle-specific targeting, controlled drug release, and multimodal therapy, tumor metabolism-rewriting nanomedicines have recently emerged as an attractive strategy to strengthen antitumor immune responses. This review summarizes the current progress in the development of multifunctional tumor metabolism-rewriting nanomedicines for evoking antitumor immunity. A special focus is placed on how these nanomedicines reinvigorate innate or adaptive antitumor immunity by regulating glucose metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism at the tumor site. Finally, the prospects and challenges in this emerging field are discussed.
Collapse
Affiliation(s)
- Xiao Dong
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shu Xia
- Department
of Pharmacy, School of Medicine, Shanghai
University, Shanghai 200444, China
| | - Shubo Du
- School
of Bioengineering, Dalian University of
Technology, Dalian 116024, China
| | - Mao-Hua Zhu
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Xing Lai
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
| | - Shao Q. Yao
- Department
of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Hong-Zhuan Chen
- Institute
of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203 China
| | - Chao Fang
- Hongqiao
International Institute of Medicine, Tongren Hospital and State Key
Laboratory of Systems Medicine for Cancer, Department of Pharmacology
and Chemical Biology, Shanghai Jiao Tong
University School of Medicine, Shanghai, 200025 China
- Key
Laboratory of Basic Pharmacology of Ministry of Education & Joint
International Research Laboratory of Ethnomedicine of Ministry of
Education, Zunyi Medical University, Zunyi 563003, China
| |
Collapse
|
38
|
Tang N, Zhu Y, Lu Z, Deng J, Guo J, Ding X, Wang J, Cao R, Chen A, Huang Z, Lu H, Wang Z. pH-Responsive doxorubicin-loaded magnetosomes for magnetic resonance-guided focused ultrasound real-time monitoring and ablation of breast cancer. Biomater Sci 2023; 11:7158-7168. [PMID: 37718624 DOI: 10.1039/d3bm00789h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
MR-guided focused ultrasound surgery (MRgFUS) is driving a new direction in non-invasive thermal ablation therapy with spatial specificity and real-time temperature monitoring. Although widely used in clinical practice, it remains challenging to completely ablate the tumor margin due to fear of damaging the surrounding tissues, thus leading to low efficacy and a series of complications. Herein, we have developed novel pH-responsive drug-loading magnetosomes (STPSD nanoplatform) for increasing the T2-contrast and improved the ablation efficiency with a clinical MRgFUS system. Specifically, this STPSD nanoplatform is functionalized by pH-responsive peptides (STP-TPE), encapsulating superparamagnetic iron oxide (SPIO) and doxorubicin (DOX), which can cause drug release and SPIO deposition at the tumor site triggered by acidity and MRgFUS. Under MRgFUS treatment, the increased vascular permeability caused by hyperthermia can improve the uptake of SPIO and DOX by tumor cells, so as to enhance ultrasound energy absorption and further enhance the efficacy of chemotherapy to completely ablate tumor margins. Moreover, we demonstrated that a series of MR sequences including T2-weighted imaging (T2WI), contrast-enhanced T1WI imaging (T1WI C+), maximum intensity projection (MIP), volume rendering (VR) and ADC mapping can be further utilized to monitor the MRgFUS ablation effect in rat models. Overall, this smart nanoplatform has the capacity to be a powerful tool to promote the therapeutic MRgFUS effect and minimize the side effects to surrounding tissues.
Collapse
Affiliation(s)
- Na Tang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Yi Zhu
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Ziwei Lu
- Department of Radiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Jiali Deng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jiajing Guo
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Xinyi Ding
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Jingyi Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Rong Cao
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - An Chen
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Zhongyi Huang
- Department of Neurology, School of Medicine, New York University, New York, 10016, USA
| | - Hongwei Lu
- Department of Biomedical Engineering, College of Engineering, Shantou University, Shantou, 515063, China.
| | - Zhongling Wang
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| |
Collapse
|
39
|
Chen W, Li Y, Liu C, Kang Y, Qin D, Chen S, Zhou J, Liu HJ, Ferdows BE, Patel DN, Huang X, Koo S, Kong N, Ji X, Cao Y, Tao W, Xie T. In situ Engineering of Tumor-Associated Macrophages via a Nanodrug-Delivering-Drug (β-Elemene@Stanene) Strategy for Enhanced Cancer Chemo-Immunotherapy. Angew Chem Int Ed Engl 2023; 62:e202308413. [PMID: 37380606 DOI: 10.1002/anie.202308413] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 06/30/2023]
Abstract
Tumor-associated macrophages (TAMs) play a critical role in the immunosuppressive solid tumor microenvironment (TME), yet in situ engineering of TAMs for enhanced tumor immunotherapy remains a significant challenge in translational immuno-oncology. Here, we report an innovative nanodrug-delivering-drug (STNSP@ELE) strategy that leverages two-dimensional (2D) stanene-based nanosheets (STNSP) and β-Elemene (ELE), a small-molecule anticancer drug, to overcome TAM-mediated immunosuppression and improve chemo-immunotherapy. Our results demonstrate that both STNSP and ELE are capable of polarizing the tumor-supportive M2-like TAMs into a tumor-suppressive M1-like phenotype, which acts with the ELE chemotherapeutic to boost antitumor responses. In vivo mouse studies demonstrate that STNSP@ELE treatment can reprogram the immunosuppressive TME by significantly increasing the intratumoral ratio of M1/M2-like TAMs, enhancing the population of CD4+ and CD8+ T lymphocytes and mature dendritic cells, and elevating the expression of immunostimulatory cytokines in B16F10 melanomas, thereby promoting a robust antitumor response. Our study not only demonstrates that the STNSP@ELE chemo-immunotherapeutic nanoplatform has immune-modulatory capabilities that can overcome TAM-mediated immunosuppression in solid tumors, but also highlights the promise of this nanodrug-delivering-drug strategy in developing other nano-immunotherapeutics and treating various types of immunosuppressive tumors.
Collapse
Affiliation(s)
- Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Chuang Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Duotian Qin
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Shuying Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Jun Zhou
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Hai-Jun Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Bijan Emiliano Ferdows
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Dylan Neal Patel
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiangang Huang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xiaoyuan Ji
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
40
|
Banstola A, Pandit M, Duwa R, Chang J, Jeong J, Yook S. Reactive oxygen species-responsive dual-targeted nanosystem promoted immunogenic cell death against breast cancer. Bioeng Transl Med 2023; 8:e10379. [PMID: 37693071 PMCID: PMC10487313 DOI: 10.1002/btm2.10379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 09/12/2023] Open
Abstract
The development of an optimal treatment modality to improve the therapeutic outcome of breast cancer patients is still difficult. Poor antigen presentation to T cells is a major challenge in cancer immunotherapy. In this study, a synergistic immunotherapy strategy for breast cancer incorporating immune cell infiltration, immunogenic cell death (ICD), and dendritic cell (DC) maturation through a reactive oxygen species (ROS)-responsive dual-targeted smart nanosystem (anti-PD-L1-TKNP) for the simultaneous release of DOX, R848, and MIP-3α in the tumor microenvironment is reported. Following local injection, anti-PD-L1-DOX-R848-MIP-3α/thioketal nanoparticle (TKNP) converts tumor cells to a vaccine owing to the combinatorial effect of DOX-induced ICD, R848-mediated immunostimulatory properties, and MIP-3α-induced immune cell recruitment in the tumor microenvironment. Intratumoral injection of anti-PD-L1-DOX-R848-MIP-3α/TKNP caused significant regression of breast cancer. Mechanistic studies reveal that anti-PD-L1-DOX-R848-MIP-3α/TKNP specifically targets tumor tissue, resulting in maximum exposure of calreticulin (CRT) and HMGB1 in tumors, and significantly enhances intratumoral infiltration of CD4+ and CD8+ T cells in tumors. Therefore, a combined strategy using dual-targeted ROS-responsive TKNP highlights the significant application of nanoparticles in modulating the tumor microenvironment and could be a clinical treatment strategy for effective breast cancer management.
Collapse
Affiliation(s)
- Asmita Banstola
- College of PharmacyKeimyung UniversityDaeguSouth Korea
- Department of Dermatology, Harvard Medical SchoolWellman Center for Photomedicine, Massachusetts General HospitalBostonMassachusettsUSA
| | - Mahesh Pandit
- College of PharmacyYeungnam UniversityGyeongsanGyeongbukSouth Korea
| | - Ramesh Duwa
- College of PharmacyKeimyung UniversityDaeguSouth Korea
| | - Jae‐Hoon Chang
- College of PharmacyYeungnam UniversityGyeongsanGyeongbukSouth Korea
| | - Jee‐Heon Jeong
- Department of Precision Medicine, School of MedicineSungkyunkwan UniversitySuwonSouth Korea
| | - Simmyung Yook
- College of PharmacyKeimyung UniversityDaeguSouth Korea
| |
Collapse
|
41
|
Guo Y, Ma R, Zhang M, Cao Y, Zhang Z, Yang W. Nanotechnology-Assisted Immunogenic Cell Death for Effective Cancer Immunotherapy. Vaccines (Basel) 2023; 11:1440. [PMID: 37766117 PMCID: PMC10534761 DOI: 10.3390/vaccines11091440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
Tumor vaccines have been used to treat cancer. How to efficiently induce tumor-associated antigens (TAAs) secretion with host immune system activation is a key issue in achieving high antitumor immunity. Immunogenic cell death (ICD) is a process in which tumor cells upon an external stimulus change from non-immunogenic to immunogenic, leading to enhanced antitumor immune responses. The immune properties of ICD are damage-associated molecular patterns and TAA secretion, which can further promote dendritic cell maturation and antigen presentation to T cells for adaptive immune response provocation. In this review, we mainly summarize the latest studies focusing on nanotechnology-mediated ICD for effective cancer immunotherapy as well as point out the challenges.
Collapse
Affiliation(s)
- Yichen Guo
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Rong Ma
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Mengzhe Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Yongjian Cao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| | - Weijing Yang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; (Y.G.); (R.M.); (M.Z.); (Y.C.)
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou 450001, China
| |
Collapse
|
42
|
Su Y, Gao J, Dong X, Wheeler KA, Wang Z. Neutrophil-Mediated Delivery of Nanocrystal Drugs via Photoinduced Inflammation Enhances Cancer Therapy. ACS NANO 2023; 17:15542-15555. [PMID: 37577982 PMCID: PMC10480050 DOI: 10.1021/acsnano.3c02013] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
The efficient delivery of anticancer agents into tumor microenvironments is critical for the success of cancer therapies, but it is a prerequisite that drug carriers should overcome tumor vasculature and possess high drug contents. Here, we found that photoinduced inflammation response caused the migration of neutrophils into tumor microenvironments and neutrophils transported neutrophil-targeted nanoparticles (NPs) across the tumor blood barrier. The results showed that tumor delivery efficiencies of NPs were 5% ID/g, and they were independent of particle sizes (30-200 nm) and their doses (108-1011 NPs). To efficiently deliver anticancer agents into tumors via neutrophils, we fabricated carrier-free paclitaxel nanocrystals (PTX NC). The results showed that neutrophil uptake of PTX NC did not impair neutrophil tumor infiltration, and the sustainable release of PTX from PTX NC in tumors was regulated by paclitaxel protein complexes, thus improving the mouse survival in two preclinical models. Our studies demonstrate that delivery of nanocrystal drugs via neutrophils is a promising method to effectively treat a wide range of cancers, and we have also identified a mechanism of drug release from neutrophils in tumors.
Collapse
Affiliation(s)
- Yujie Su
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Jin Gao
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Xinyue Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Kraig A Wheeler
- Department of Chemistry, Whitworth University, Spokane, Washington 99251, United States
| | - Zhenjia Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
43
|
Perdyan A, Sobocki BK, Balihodzic A, Dąbrowska A, Kacperczyk J, Rutkowski J. The Effectiveness of Cancer Immune Checkpoint Inhibitor Retreatment and Rechallenge-A Systematic Review. Cancers (Basel) 2023; 15:3490. [PMID: 37444600 DOI: 10.3390/cancers15133490] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Despite a great success of immunotherapy in cancer treatment, a great number of patients will become resistant. This review summarizes recent reports on immune checkpoint inhibitor retreatment or rechallenge in order to overcome primary resistance. The systematic review was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. The search was performed using PubMed, Web of Science and Scopus. In total, 31 articles were included with a total of 812 patients. There were 16 retreatment studies and 13 rechallenge studies. We identified 15 studies in which at least one parameter (overall response rate or disease control rate) improved or was stable at secondary treatment. Interval treatment, primary response to and the cause of cessation for the first immune checkpoint inhibitors seem to be promising predictors of secondary response. However, high heterogeneity of investigated cohorts and lack of reporting guidelines are limiting factors for current in-depth analysis.
Collapse
Affiliation(s)
- Adrian Perdyan
- 3P-Medicine Laboratory, Medical University of Gdansk, 80-210 Gdansk, Poland
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Bartosz Kamil Sobocki
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Amar Balihodzic
- Division of Oncology, Department of Internal Medicine, Comprehensive Cancer Center Graz, Medical University of Graz, 8036 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
| | - Anna Dąbrowska
- Student Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Justyna Kacperczyk
- The University Clinical Centre in Gdansk, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Jacek Rutkowski
- Department of Oncology and Radiotherapy, Medical University of Gdansk, 80-210 Gdansk, Poland
| |
Collapse
|
44
|
Song M, Fang Z, Wang J, Liu K. A Nano-targeted Co-delivery System Based on Gene Regulation and Molecular Blocking Strategy for Synergistic Enhancement of Platinum Chemotherapy Sensitivity in Ovarian Cancer. Int J Pharm 2023; 640:123022. [PMID: 37156306 DOI: 10.1016/j.ijpharm.2023.123022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/18/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023]
Abstract
Ovarian cancer (OC) has a low five-year survival rate, mainly because of its drug resistance to chemotherapy. It is the key to reverse drug resistance to combine multiple sensitization pathways to play a synergistic role. A nano scaled targeted co-delivery system (P123-PEI-G12, PPG) modified by bifunctional peptide tLyP-1-NLS (G12) was fabricated by using Pluronic P123 conjugated with low molecular weight polyethyleneimine (PEI). This delivery system can co-delivery Olaparib (Ola) and p53 plasmids to synergistically enhance the sensitivity of OC to platinum-based chemotherapy. P53@P123-PEI-G2/Ola (Co-PPGs) can achieve efficient tumor accumulation and cellular internalization through G12-mediated targeting. Co-PPGs then break down in the tumor cells, releasing the drug. Co-PPGs significantly enhanced the sensitivity of cisplatin (DDP) in platinum-resistant ovarian cancer (PROC) and synergistically inhibited the proliferation of PROC in vitro and in vivo. The sensitizing and synergistic effects of Co-PPGs were related to the activation of p53, inhibition of poly-ADP-ribose polymerase (PARP) and p-glycoprotein (P-gp) expression. This work provides a promising strategy for the effective treatment of PROC.
Collapse
Affiliation(s)
- Mengdi Song
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Zhou Fang
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| | - Jun Wang
- The International Peace Maternal and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Kehai Liu
- Department of Biopharmaceutical Sciences, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
45
|
Huang G, Liu L, Pan H, Cai L. Biomimetic Active Materials Guided Immunogenic Cell Death for Enhanced Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201412. [PMID: 36572642 DOI: 10.1002/smtd.202201412] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/22/2022] [Indexed: 05/17/2023]
Abstract
Despite immunotherapy emerging as a vital approach to improve cancer treatment, the activation of efficient immune responses is still hampered by immunosuppression, especially due to the low tumor immunogenicity. Immunogenic cell death (ICD) is a promising strategy to reshape the tumor microenvironment (TME) for achieving high immunogenicity. Various stimuli are able to effectively initiate their specific ICD by utilizing the corresponding ICD-inducer. However, the ICD-guided antitumor immune effects are usually impaired by various biological barriers and TME-associated immune resistance. Biomimetic active materials are being extensively explored as guided agents for ICD due to their unique advantages. In this review, two major strategies are systematically introduced that have been employed to exploit biomimetic active materials guided ICD for cancer immunotherapy, mainly including naive organism-derived nanoagents and engineered bioactive platforms. This review outlines the recent advances in the field at biomimetic active materials guided physiotherapy, chemotherapy, and biotherapy for ICD induction. The advances and challenges of biomimetic active materials guided ICD for cancer immunotherapy applications are further discussed in future clinical practice. This review provides an overview of the advances of biomimetic active materials for targeting immunoregulation and treatment and can contribute to the future of advanced antitumor combination therapy.
Collapse
Affiliation(s)
- Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanlan Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Chen W, Li C, Jiang X. Advanced Biomaterials with Intrinsic Immunomodulation Effects for Cancer Immunotherapy. SMALL METHODS 2023; 7:e2201404. [PMID: 36811240 DOI: 10.1002/smtd.202201404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/17/2023] [Indexed: 05/17/2023]
Abstract
In recent years, tumor immunotherapy has achieved significant success in tumor treatment based on immune checkpoint blockers and chimeric antigen receptor T-cell therapy. However, about 70-80% of patients with solid tumors do not respond to immunotherapy due to immune evasion. Recent studies found that some biomaterials have intrinsic immunoregulatory effects, except serve as carriers for immunoregulatory drugs. Moreover, these biomaterials have additional advantages such as easy functionalization, modification, and customization. In this review, the recent advances of these immunoregulatory biomaterials in cancer immunotherapy and their interaction with cancer cells, immune cells, and the immunosuppressive tumor microenvironment are summarized. Finally, the opportunities and challenges of immunoregulatory biomaterials used in the clinic and the prospect of their future in cancer immunotherapy are discussed.
Collapse
Affiliation(s)
- Weizhi Chen
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| | - Cheng Li
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology and Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
47
|
Zhan M, Wang F, Liu Y, Zhou J, Zhao W, Lu L, Li J, He X. Dual-Cascade Activatable Nanopotentiators Reshaping Adenosine Metabolism for Sono-Chemodynamic-Immunotherapy of Deep Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207200. [PMID: 36727824 PMCID: PMC10074132 DOI: 10.1002/advs.202207200] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Indexed: 06/18/2023]
Abstract
Immunotherapy is an attractive treatment strategy for cancer, while its efficiency and safety need to be improved. A dual-cascade activatable nanopotentiator for sonodynamic therapy (SDT) and chemodynamic therapy (CDT)-cooperated immunotherapy of deep tumors via reshaping adenosine metabolism is herein reported. This nanopotentiator (NPMCA ) is constructed through crosslinking adenosine deaminase (ADA) with chlorin e6 (Ce6)-conjugated manganese dioxide (MnO2 ) nanoparticles via a reactive oxygen species (ROS)-cleavable linker. In the tumor microenvironment with ultrasound (US) irradiation, NPMCA mediates CDT and SDT concurrently in deep tumors covered with 2-cm tissues to produce abundant ROS, which results in dual-cascade scissoring of ROS-cleavable linkers to activate ADA within NCMCA to block adenosine metabolism. Moreover, immunogenic cell death (ICD) of dying tumor cells and upregulation of the stimulator of interferon genes (STING) is triggered by the generated ROS and Mn2+ from NPMCA , respectively, leading to activation of antitumor immune response. The potency of immune response is further reinforced by reducing the accumulation of adenosine in tumor microenvironment by the activated ADA. As a result, NPMCA enables CDT and SDT-cooperated immunotherapy, showing an obviously improved therapeutic efficacy to inhibit the growths of bilateral tumors, in which the primary tumors are covered with 2-cm tissues.
Collapse
Affiliation(s)
- Meixiao Zhan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Fengshuo Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Yao Liu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Jianhui Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Ligong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| | - Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of Biological Science and Medical EngineeringDonghua UniversityShanghai201620China
| | - Xu He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University)Jinan UniversityZhuhaiGuangdong519000China
| |
Collapse
|
48
|
Liu S, Wu J, Feng Y, Guo X, Li T, Meng M, Chen J, Chen D, Tian H. CD47KO/CRT dual-bioengineered cell membrane-coated nanovaccine combined with anti-PD-L1 antibody for boosting tumor immunotherapy. Bioact Mater 2023; 22:211-224. [PMID: 36246666 PMCID: PMC9535270 DOI: 10.1016/j.bioactmat.2022.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Tumor vaccines trigger tumor-specific immune responses to prevent or treat tumors by activating the hosts' immune systems, and therefore, these vaccines have potential clinical applications. However, the low immunogenicity of the tumor antigen itself and the low efficiency of the vaccine delivery system hinder the efficacy of tumor vaccines that cannot produce high-efficiency and long-lasting antitumor immune effects. Here, we constructed a nanovaccine by integrating CD47KO/CRT dual-bioengineered B16F10 cancer cell membranes and the unmethylated cytosine-phosphate-guanine (CpG) adjuvant. Hyperbranched PEI25k was used to load unmethylated cytosine-phosphate-guanine (CpG) through electrostatic adsorption to prepare PEI25k/CpG nanoparticles (PEI25k/CpG-NPs). CD47KO/CRT dual-bioengineered cells were obtained by CRISPR-Cas9 gene editing technology, followed by the cell surface translocation of calreticulin (CRT) to induce immunogenic cell death (ICD) in vitro. Finally, the extracted cell membranes were coextruded with PEI25k/CpG-NPs to construct the CD47KO/CRT dual-bioengineered cancer cell membrane-coated nanoparticles (DBE@CCNPs). DBE@CCNPs could promote endocytosis of antigens and adjuvants in murine bone marrow derived dendritic cells (BMDCs) and induce their maturation and antigen cross-presentation. To avoid immune checkpoint molecule-induced T cell dysfunction, the immune checkpoint inhibitor, the anti-PD-L1 antibody, was introduced to boost tumor immunotherapy through a combination with the DBE@CCNPs nanovaccine. This combination therapy strategy can significantly alleviate tumor growth and may open up a potential strategy for clinical tumor immunotherapy.
Collapse
Affiliation(s)
- Shengyang Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Jiayan Wu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Yuanji Feng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Tong Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
| | - Daquan Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, PR China
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, PR China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, PR China
| |
Collapse
|
49
|
He M, Wang M, Xu T, Zhang M, Dai H, Wang C, Ding D, Zhong Z. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges. J Control Release 2023; 356:623-648. [PMID: 36868519 DOI: 10.1016/j.jconrel.2023.02.040] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023]
Abstract
Reactive oxygen species (ROS) are crucial signaling molecules that can arouse immune system. In recent decades, ROS has emerged as a unique therapeutic strategy for malignant tumors as (i) it can not only directly reduce tumor burden but also trigger immune responses by inducing immunogenic cell death (ICD); and (ii) it can be facilely generated and modulated by radiotherapy, photodynamic therapy, sonodynamic therapy and chemodynamic therapy. The anti-tumor immune responses are, however, mostly downplayed by the immunosuppressive signals and dysfunction of effector immune cells within the tumor microenvironment (TME). The past years have seen fierce developments of various strategies to power ROS-based cancer immunotherapy by e.g. combining with immune checkpoints inhibitors, tumor vaccines, and/or immunoadjuvants, which have shown to potently inhibit primary tumors, metastatic tumors, and tumor relapse with limited immune-related adverse events (irAEs). In this review, we introduce the concept of ROS-powered cancer immunotherapy, highlight the innovative strategies to boost ROS-based cancer immunotherapy, and discuss the challenges in terms of clinical translation and future perspectives.
Collapse
Affiliation(s)
- Mengying He
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Mengyuan Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland (RCSI), Dublin D02 NY74, Ireland
| | - Mengyao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China.
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Zhiyuan Zhong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
50
|
Tang Y, Bisoyi HK, Chen XM, Liu Z, Chen X, Zhang S, Li Q. Pyroptosis-Mediated Synergistic Photodynamic and Photothermal Immunotherapy Enabled by a Tumor-Membrane-Targeted Photosensitive Dimer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300232. [PMID: 36921347 DOI: 10.1002/adma.202300232] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Indexed: 06/18/2023]
Abstract
Overcoming the resistance to apoptosis and immunosuppression of tumor cells is a significant challenge in augmenting the effect of cancer immunotherapy. Pyroptosis, a lytic programmed cell-death pathway unlike apoptosis, is considered a type of immunogenic cell death (ICD) that can intensify the ICD process in tumor cells, releasing dramatically increased tumor-associated antigens and damage-associated molecular patterns to promote cancer immunotherapy. Herein, a tumor cell membrane-targeted aggregation-induced emission photosensitive dimer is found to be able to achieve highly efficient ICD under the synergistic effect of photodynamic and photothermal therapy. The photosensitive dimer can efficiently produce type-I reactive oxygen species (ROS) by photodynamic therapy in hypoxic tumor tissue, leading to pyroptosis by direct cell membrane damage, which is further reinforced by its photothermal effect. Furthermore, the enhanced ICD effect based on the dimer can completely eliminate the primary tumor on the seventh day of treatment and can also boost systemic antitumor immunity by generating immune memory, which is demonstrated by the superior antitumor therapeutic effects on both solid tumors and metastatic tumors when healing 4T1 tumor mouse models with poor immunogenicity.
Collapse
Affiliation(s)
- Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Hari Krishna Bisoyi
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| | - Xu-Man Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiao Chen
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shu Zhang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Advanced Materials and Liquid Crystal Institute and Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA
| |
Collapse
|