1
|
Li S, Yao Q, Li J, Yang H, Qian R, Zheng M, Wu N, Jiang H, Li L, Zeng Z. Inhibition of neutrophil swarming by type I interferon promotes intracellular bacterial evasion. Nat Commun 2024; 15:8663. [PMID: 39375351 PMCID: PMC11458870 DOI: 10.1038/s41467-024-53060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/27/2024] [Indexed: 10/09/2024] Open
Abstract
Listeria monocytogenes (LM) possesses the ability to breach multiple barriers and elicit intricate immune responses. However, there remains a lack of explicit understanding regarding how LM evades innate immune surveillance within the body. Here, we utilized liver intravital imaging to elucidate the dynamic process of LM during infection in the liver. We discovered that LM can rapidly escape from Kupffer cells (KCs) through listeriolysin O (LLO) and proliferate within hepatocytes. Upon LM exposure to the hepatic sinusoids, neutrophils rapidly aggregate at the site of infection. Subsequently, LM can induce type I interferon (IFN-I) production primarily in the spleen, which acts systemically on neutrophils to hamper their swarming by deactivating the ERK pathway, thus evading neutrophil-mediated eradication. Furthermore, our findings suggest that virus-induced IFN-I suppresses neutrophil swarming, and COVID-19 patients exhibit impaired neutrophil aggregation function. In conclusion, our findings provide compelling evidence demonstrating that intracellular bacteria represented by LM can hijack host defense mechanisms against viral infections to evade immune surveillance. Additionally, impaired neutrophil swarming caused by IFN-I is one of the significant factors contributing to the increased susceptibility to bacterial infections following viral infections.
Collapse
Affiliation(s)
- Shimin Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qi Yao
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiajia Li
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haoxiang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, China
| | - Rui Qian
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ning Wu
- The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology Anhui Medical University, Hefei, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, China
| | - Lu Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Zhutian Zeng
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Neuper T, Frauenlob T, Dang HH, Krenn PW, Posselt G, Regl C, Fortelny N, Schäpertöns V, Unger MS, Üblagger G, Neureiter D, Mühlbacher I, Weitzendorfer M, Singhartinger F, Emmanuel K, Huber CG, Wessler S, Aberger F, Horejs-Hoeck J. ADP-heptose attenuates Helicobacter pylori-induced dendritic cell activation. Gut Microbes 2024; 16:2402543. [PMID: 39288239 PMCID: PMC11409497 DOI: 10.1080/19490976.2024.2402543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Sophisticated immune evasion strategies enable Helicobacter pylori (H. pylori) to colonize the gastric mucosa of approximately half of the world's population. Persistent infection and the resulting chronic inflammation are a major cause of gastric cancer. To understand the intricate interplay between H. pylori and host immunity, spatial profiling was used to monitor immune cells in H. pylori infected gastric tissue. Dendritic cell (DC) and T cell phenotypes were further investigated in gastric organoid/immune cell co-cultures and mechanistic insights were acquired by proteomics of human DCs. Here, we show that ADP-heptose, a bacterial metabolite originally reported to act as a bona fide PAMP, reduces H. pylori-induced DC maturation and subsequent T cell responses. Mechanistically, we report that H. pylori uptake and subsequent DC activation by an ADP-heptose deficient H. pylori strain depends on TLR2. Moreover, ADP-heptose attenuates full-fledged activation of primary human DCs in the context of H. pylori infection by impairing type I IFN signaling. This study reveals that ADP-heptose mitigates host immunity during H. pylori infection.
Collapse
Affiliation(s)
- Theresa Neuper
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Tobias Frauenlob
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Peter W Krenn
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Gernot Posselt
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Nikolaus Fortelny
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Veronika Schäpertöns
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Michael S Unger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Gunda Üblagger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
| | - Daniel Neureiter
- Cancer Cluster Salzburg, Salzburg, Austria
- Institute of Pathology, Uniklinikum Salzburg, Salzburg, Austria
| | - Iris Mühlbacher
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Michael Weitzendorfer
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Franz Singhartinger
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Klaus Emmanuel
- Cancer Cluster Salzburg, Salzburg, Austria
- Department of General, Visceral and Thoracic Surgery, Paracelsus Medical University/Salzburger Landeskliniken (SALK), Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Silja Wessler
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris-Lodron University Salzburg, Salzburg, Austria
- Center for Tumor Biology and Immunology, Paris-Lodron University Salzburg, Salzburg, Austria
- Cancer Cluster Salzburg, Salzburg, Austria
| |
Collapse
|
3
|
Tang M, Zhao Y, Zhai Y, Zhang Y, Liu Y, Liu T, Wu J, He L, Yao Y, Xue P, He M, Xu Y, Feng S, Qu W, Zhang Y. Mercury chloride activates the IFNγ-IRF1 signaling in myeloid progenitors and promotes monopoiesis in mice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122583. [PMID: 37741541 DOI: 10.1016/j.envpol.2023.122583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/21/2023] [Accepted: 09/17/2023] [Indexed: 09/25/2023]
Abstract
Inorganic mercury (Hg2+) is a highly toxic heavy metal in the environment. To date, the impacts of Hg2+ on the development of monocytes, or monopoiesis, have not been fully addressed. The aim of the present study was to investigate the impact of Hg2+ on monopoiesis. In this study, we treated B10.S mice and DBA/2 mice with 10 μM or 50 μM HgCl2 via drinking water for 4 wk, and we then evaluated the development of monocytes. Treatment with 50 μM HgCl2, but not 10 μM HgCl2, increased the number of monocytes in the blood, spleen and bone marrow (BM) of B10.S mice. Accordingly, treatment with 50 μM HgCl2, but not 10 μM HgCl2, increased the number of common myeloid progenitors (CMP) and granulocyte-macrophage progenitors (GMP) in the BM. Functional analyses indicated that treatment with 50 μM HgCl2 promoted the differentiation of CMP and GMP to monocytes in the BM of B10.S mice. Mechanistically, treatment with 50 μM HgCl2 induced the production of IFNγ, which activated the Jak1/3-STAT1/3-IRF1 signaling in CMP and GMP and enhanced their differentiation potential for monocytes in the BM, thus likely leading to increased number of mature monocytes in B10.S mice. Moreover, the increased monopoiesis by Hg2+ was associated with the increased inflammatory status in B10.S mice. In contrast, treatment with 50 μM HgCl2 did not impact the monopoiesis in DBA/2 mice. Our study reveals the impact of Hg on the development of monocytes.
Collapse
Affiliation(s)
- Mengke Tang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yifan Zhao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yue Zhai
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yufan Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yalin Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Ting Liu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Jiaojiao Wu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Leyi He
- China Medical University-The Queen's University of Belfast Joint College, China Medical University, Shenyang, 110121, China
| | - Ye Yao
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Peng Xue
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Miao He
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yanyi Xu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Shaoqing Feng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Weidong Qu
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China
| | - Yubin Zhang
- School of Public Health and Key Laboratory of Public Health Safety, MOE, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Bhosle VK, Tan JM, Li T, Hua R, Kwon H, Li Z, Patel S, Tessier-Lavigne M, Robinson LA, Kim PK, Brumell JH. SLIT2/ROBO1 signaling suppresses mTORC1 for organelle control and bacterial killing. Life Sci Alliance 2023; 6:e202301964. [PMID: 37311584 PMCID: PMC10264968 DOI: 10.26508/lsa.202301964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/31/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
SLIT/ROBO signaling impacts many aspects of tissue development and homeostasis, in part, through the regulation of cell growth and proliferation. Recent studies have also linked SLIT/ROBO signaling to the regulation of diverse phagocyte functions. However, the mechanisms by which SLIT/ROBO signaling acts at the nexus of cellular growth control and innate immunity remain enigmatic. Here, we show that SLIT2-mediated activation of ROBO1 leads to inhibition of mTORC1 kinase activity in macrophages, leading to dephosphorylation of its downstream targets, including transcription factor EB and ULK1. Consequently, SLIT2 augments lysosome biogenesis, potently induces autophagy, and robustly promotes the killing of bacteria within phagosomes. Concordant with these results, we demonstrate decreased lysosomal content and accumulated peroxisomes in the spinal cords of embryos from Robo1 -/- , Robo2 -/- double knockout mice. We also show that impediment of auto/paracrine SLIT-ROBO signaling axis in cancer cells leads to hyperactivation of mTORC1 and inhibition of autophagy. Together, these findings elucidate a central role of chemorepellent SLIT2 in the regulation of mTORC1 activity with important implications for innate immunity and cancer cell survival.
Collapse
Affiliation(s)
- Vikrant K Bhosle
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Joel Mj Tan
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Taoyingnan Li
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Rong Hua
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Hyunwoo Kwon
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Zhubing Li
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Sajedabanu Patel
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
| | - Marc Tessier-Lavigne
- Laboratory of Brain Development and Repair, Rockefeller University, New York, NY, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lisa A Robinson
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- Division of Nephrology, The Hospital for Sick Children, Toronto, Canada
- Department of Paediatrics, Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Peter K Kim
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
| | - John H Brumell
- Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
- SickKids IBD Centre, Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
5
|
Chalenko YM, Slonova DA, Kechko OI, Kalinin EV, Mitkevich VA, Ermolaeva SA. Natural Isoforms of Listeria monocytogenes Virulence Factor Inlb Differ in c-Met Binding Efficiency and Differently Affect Uptake and Survival Listeria in Macrophage. Int J Mol Sci 2023; 24:ijms24087256. [PMID: 37108418 PMCID: PMC10139187 DOI: 10.3390/ijms24087256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Listeria monocytogenes virulence factor InlB specifically interacts with the receptors c-Met and gC1q-R. Both receptors are present in non-professional and professional phagocytes, including macrophages. Phylogenetically defined InlB isoforms differently support invasion into non-professional phagocytes. This work deals with the effects of InlB isoforms on L. monocytogenes uptake and intracellular proliferation in human macrophages. Three isoforms of the receptor binding domain (idInlB) were derived from phylogenetically distinct L. monocytogenes strains belonging to the highly virulent CC1 (idInlBCC1), medium-virulence CC7 (idInlBCC7), and low-virulence CC9 (idInlBCC9) clonal complexes. The constant dissociation increased in the order idInlBCC1 << idInlBCC7 < idInlBCC9 for interactions with c-Met, and idInlBCC1 ≈ idInlBCC7 < idInlBCC9 for interactions with gC1q-R. The comparison of uptake and intracellular proliferation of isogenic recombinant strains which expressed full-length InlBs revealed that the strain expressing idInlBCC1 proliferated in macrophages twice as efficiently as other strains. Macrophage pretreatment with idInlBCC1 followed by recombinant L. monocytogenes infection disturbed macrophage functions decreasing pathogen uptake and improving its intracellular multiplication. Similar pretreatment with idInlBCC7 decreased bacterial uptake but also impaired intracellular multiplication. The obtained results demonstrated that InlB impaired macrophage functions in an idInlB isoform-dependent manner. These data suggest a novel InlB function in L. monocytogenes virulence.
Collapse
Affiliation(s)
- Yaroslava M Chalenko
- Laboratory of Ecology of Pathogenic Bacteria, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Daria A Slonova
- Laboratory of Metagenome Analysis, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Olga I Kechko
- Laboratory of Conformational Polymorphism of Proteins in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Egor V Kalinin
- Laboratory of Ecology of Pathogenic Bacteria, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| | - Vladimir A Mitkevich
- Laboratory of Conformational Polymorphism of Proteins in Health and Disease, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Svetlana A Ermolaeva
- Laboratory of Ecology of Pathogenic Bacteria, Gamaleya Research Center of Epidemiology and Microbiology, 123098 Moscow, Russia
| |
Collapse
|
6
|
IFITM proteins: Understanding their diverse roles in viral infection, cancer, and immunity. J Biol Chem 2022; 299:102741. [PMID: 36435199 PMCID: PMC9800550 DOI: 10.1016/j.jbc.2022.102741] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/27/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Interferon-induced transmembrane proteins (IFITMs) are broad spectrum antiviral factors that inhibit the entry of a wide range of clinically important pathogens including influenza A virus, HIV-1, and Dengue virus. IFITMs are thought to act primarily by antagonizing virus-cell membrane fusion in this regard. However, recent work on these proteins has uncovered novel post-entry viral restriction mechanisms. IFITMs are also increasingly thought to have a role regulating immune responses, including innate antiviral and inflammatory responses as well as adaptive T-cell and B-cell responses. Further, IFITMs may have pathological activities in cancer, wherein IFITM expression can be a marker of therapeutically resistant and aggressive disease courses. In this review, we summarize the respective literatures concerning these apparently diverse functions with a view to identifying common themes and potentially yielding a more unified understanding of IFITM biology.
Collapse
|
7
|
Xiong F, Wang Q, Wu GH, Liu WZ, Wang B, Chen YJ. Direct and indirect effects of IFN-α2b in malignancy treatment: not only an archer but also an arrow. Biomark Res 2022; 10:69. [PMID: 36104718 PMCID: PMC9472737 DOI: 10.1186/s40364-022-00415-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/22/2022] [Indexed: 12/02/2022] Open
Abstract
Interferon-α2b (IFN-α2b) is a highly active cytokine that belongs to the interferon-α (IFN-α) family. IFN-α2b has beneficial antiviral, antitumour, antiparasitic and immunomodulatory activities. Direct and indirect antiproliferative effects of IFN-α2b have been found to occur via multiple pathways, mainly the JAK-STAT pathway, in certain cancers. This article reviews mechanistic studies and clinical trials on IFN-α2b. Potential regulators of the function of IFN-α2b were also reviewed, which could be utilized to relieve the poor response to IFN-α2b. IFN-α2b can function not only by enhancing the systematic immune response but also by directly killing tumour cells. Different parts of JAK-STAT pathway activated by IFN-α2b, such as interferon alpha and beta receptors (IFNARs), Janus kinases (JAKs) and IFN‐stimulated gene factor 3 (ISGF3), might serve as potential target for enhancing the pharmacological action of IFN-α2b. Despite some issues that remain to be solved, based on current evidence, IFN-α2b can inhibit disease progression and improve the survival of patients with certain types of malignant tumours. More efforts should be made to address potential adverse effects and complications.
Collapse
|
8
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
9
|
Garlant HN, Ellappan K, Hewitt M, Perumal P, Pekeleke S, Wand N, Southern J, Kumar SV, Belgode H, Abubakar I, Sinha S, Vasan S, Joseph NM, Kempsell KE. Evaluation of Host Protein Biomarkers by ELISA From Whole Lysed Peripheral Blood for Development of Diagnostic Tests for Active Tuberculosis. Front Immunol 2022; 13:854327. [PMID: 35720382 PMCID: PMC9205408 DOI: 10.3389/fimmu.2022.854327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Tuberculosis (TB) remains a significant global health crisis and the number one cause of death for an infectious disease. The health consequences in high-burden countries are significant. Barriers to TB control and eradication are in part caused by difficulties in diagnosis. Improvements in diagnosis are required for organisations like the World Health Organisation (WHO) to meet their ambitious target of reducing the incidence of TB by 50% by the year 2025, which has become hard to reach due to the COVID-19 pandemic. Development of new tests for TB are key priorities of the WHO, as defined in their 2014 report for target product profiles (TPPs). Rapid triage and biomarker-based confirmatory tests would greatly enhance the diagnostic capability for identifying and diagnosing TB-infected individuals. Protein-based test methods e.g. lateral flow devices (LFDs) have a significant advantage over other technologies with regard to assay turnaround time (minutes as opposed to hours) field-ability, ease of use by relatively untrained staff and without the need for supporting laboratory infrastructure. Here we evaluate the diagnostic performance of nine biomarkers from our previously published biomarker qPCR validation study; CALCOCO2, CD274, CD52, GBP1, IFIT3, IFITM3, SAMD9L, SNX10 and TMEM49, as protein targets assayed by ELISA. This preliminary evaluation study was conducted to quantify the level of biomarker protein expression across latent, extra-pulmonary or pulmonary TB groups and negative controls, collected across the UK and India, in whole lysed blood samples (WLB). We also investigated associative correlations between the biomarkers and assessed their suitability for ongoing diagnostic test development, using receiver operating characteristic/area under the curve (ROC) analyses, singly and in panel combinations. The top performing single biomarkers for pulmonary TB versus controls were CALCOCO2, SAMD9L, GBP1, IFITM3, IFIT3 and SNX10. TMEM49 was also significantly differentially expressed but downregulated in TB groups. CD52 expression was not highly differentially expressed across most of the groups but may provide additional patient stratification information and some limited use for incipient latent TB infection. These show therefore great potential for diagnostic test development either in minimal configuration panels for rapid triage or more complex formulations to capture the diversity of disease presentations.
Collapse
Affiliation(s)
- Harriet N. Garlant
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Kalaiarasan Ellappan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Matthew Hewitt
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Prem Perumal
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Simon Pekeleke
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Nadina Wand
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
| | - Jo Southern
- School of Life & Medical Sciences, Mortimer Market Centre, University College London, London, United Kingdom
| | - Saka Vinod Kumar
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Harish Belgode
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Ibrahim Abubakar
- School of Life & Medical Sciences, Mortimer Market Centre, University College London, London, United Kingdom
| | - Sanjeev Sinha
- Department of Medicine, All India Institute for Medical Sciences, New Delhi, India
| | - Seshadri Vasan
- Department of Health Sciences, University of York, York, United Kingdom
| | - Noyal Mariya Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Karen E. Kempsell
- Science Group: Research and Evaluation, UK Health Security Agency, Salisbury, United Kingdom
- *Correspondence: Karen E. Kempsell,
| |
Collapse
|
10
|
Xu M, Meng Y, Li Q, Charwudzi A, Qin H, Xiong S. Identification of biomarkers for early diagnosis of multiple myeloma by weighted gene co-expression network analysis and their clinical relevance. Hematology 2022; 27:322-331. [PMID: 35231203 DOI: 10.1080/16078454.2022.2046326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Multiple myeloma is an incurable hematologic malignancy, its early diagnosis is important. However, the biomarker for early diagnosis is limited; hence more need to be identified. The present study aimed to explore the easily tested new biomarker in multiple myeloma by weighted gene co-expression network analysis (WGCNA). METHODS Differentially expressed genes (DEGs) were screened using GSE47552. WGCNA was used to screen hub genes. Subsequently. Hub genes of multiple myeloma were obtained by intersection of DEGs and WGCNA. We used the T-test to screen highly expressed genes. Then, the diagnostic value of key genes was evaluated by the receiver operating characteristic (ROC) curve. Finally, expression levels of key genes were tested and proved by RT-PCR. RESULTS 278 DEGs were screened by Limma package. Three modules were most significantly correlated with multiple myeloma. 238 key genes were screened after the intersection of WGCNA with DEGs. In addition, SNORNA is rarely studied in multiple myeloma, and ROC curve analysis in our prediction model showed that SNORA71A had a good prediction effect (p = 0.07). The expression of SNORA71A was increased in samples of multiple myeloma (P = 0.05). RT-PCR results showed that SNORA71A was upregulated in 51 patient specimens compared to the healthy group (P < 0.05). Linear correlation analysis showed that creatinine was positively correlated with SNORA71A (r = 0.49 P = 0.0002). CONCLUSIONS This study found that SNORA71A was up-regulated and associated with the clinical stages in multiple myeloma; it suggests that SNORA71A could be used as a novel biomarker for early diagnosis and a potential therapeutic target in multiple myeloma.
Collapse
Affiliation(s)
- Mengling Xu
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Ye Meng
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Qian Li
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Alice Charwudzi
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Hui Qin
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Shudao Xiong
- Department of Hematology/Hematological Lab, The Second Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
11
|
Impact of STING Inflammatory Signaling during Intracellular Bacterial Infections. Cells 2021; 11:cells11010074. [PMID: 35011636 PMCID: PMC8750390 DOI: 10.3390/cells11010074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
The early detection of bacterial pathogens through immune sensors is an essential step in innate immunity. STING (Stimulator of Interferon Genes) has emerged as a key mediator of inflammation in the setting of infection by connecting pathogen cytosolic recognition with immune responses. STING detects bacteria by directly recognizing cyclic dinucleotides or indirectly by bacterial genomic DNA sensing through the cyclic GMP-AMP synthase (cGAS). Upon activation, STING triggers a plethora of powerful signaling pathways, including the production of type I interferons and proinflammatory cytokines. STING activation has also been associated with the induction of endoplasmic reticulum (ER) stress and the associated inflammatory responses. Recent reports indicate that STING-dependent pathways participate in the metabolic reprogramming of macrophages and contribute to the establishment and maintenance of a robust inflammatory profile. The induction of this inflammatory state is typically antimicrobial and related to pathogen clearance. However, depending on the infection, STING-mediated immune responses can be detrimental to the host, facilitating bacterial survival, indicating an intricate balance between immune signaling and inflammation during bacterial infections. In this paper, we review recent insights regarding the role of STING in inducing an inflammatory profile upon intracellular bacterial entry in host cells and discuss the impact of STING signaling on the outcome of infection. Unraveling the STING-mediated inflammatory responses can enable a better understanding of the pathogenesis of certain bacterial diseases and reveal the potential of new antimicrobial therapy.
Collapse
|
12
|
Kammoun H, Kim M, Hafner L, Gaillard J, Disson O, Lecuit M. Listeriosis, a model infection to study host-pathogen interactions in vivo. Curr Opin Microbiol 2021; 66:11-20. [PMID: 34923331 DOI: 10.1016/j.mib.2021.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/27/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
Listeria monocytogenes (Lm) is a foodborne pathogen and the etiological agent of listeriosis. This facultative intracellular Gram-positive bacterium has the ability to colonize the intestinal lumen, cross the intestinal, blood-brain and placental barriers, leading to bacteremia, neurolisteriosis and maternal-fetal listeriosis. Lm is a model microorganism for the study of the interplay between a pathogenic microbe, host tissues and microbiota in vivo. Here we review how animal models permissive to Lm-host interactions allow deciphering some of the key steps of the infectious process, from the intestinal lumen to the crossing of host barriers and dissemination within the host. We also highlight recent investigations using tagged Lm and clinically relevant strains that have shed light on within-host dynamics and the purifying selection of Lm virulence factors. Studying Lm infection in vivo is a way forward to explore host biology and unveil the mechanisms that have selected its capacity to closely associate with its vertebrate hosts.
Collapse
Affiliation(s)
- Hana Kammoun
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Minhee Kim
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Lukas Hafner
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Julien Gaillard
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Olivier Disson
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France
| | - Marc Lecuit
- Institut Pasteur, Université de Paris, Inserm U1117, Biology of Infection Unit, 75015 Paris, France; Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, 75015 Paris, France; Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Institut Imagine, 75006 Paris, France.
| |
Collapse
|