1
|
Zhou Y, Li C, Chen X, Zhao Y, Liao Y, Huang P, Wu W, Nieto NS, Li L, Tang W. Development of folate receptor targeting chimeras for cancer selective degradation of extracellular proteins. Nat Commun 2024; 15:8695. [PMID: 39379374 PMCID: PMC11461649 DOI: 10.1038/s41467-024-52685-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Targeted protein degradation has emerged as a novel therapeutic modality to treat human diseases by utilizing the cell's own disposal systems to remove protein target. Significant clinical benefits have been observed for degrading many intracellular proteins. Recently, the degradation of extracellular proteins in the lysosome has been developed. However, there have been limited successes in selectively degrading protein targets in disease-relevant cells or tissues, which would greatly enhance the development of precision medicine. Additionally, most degraders are not readily available due to their complexity. We report a class of easily accessible Folate Receptor TArgeting Chimeras (FRTACs) to recruit the folate receptor, primarily expressed on malignant cells, to degrade extracellular soluble and membrane cancer-related proteins in vitro and in vivo. Our results indicate that FRTAC is a general platform for developing more precise and effective chemical probes and therapeutics for the study and treatment of cancers.
Collapse
Affiliation(s)
- Yaxian Zhou
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chunrong Li
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xuankun Chen
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yuan Zhao
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Yaxian Liao
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Wenxin Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nicholas S Nieto
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Lingjun Li
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Weiping Tang
- Lachman Institute of Pharmaceutical Development, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
2
|
Kong S, Peng Y, Liu Q, Xie Q, Qiu L, Lin J, Xie M. Preclinical Evaluation of a PSMA Aptamer-Based Bifunctional PET and Fluorescent Probe. Bioconjug Chem 2024; 35:1352-1362. [PMID: 39187748 DOI: 10.1021/acs.bioconjchem.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Prostate cancer is the most prevalent malignant tumor affecting male individuals worldwide. The accurate early detection of prostate cancer is crucial to preventing unnecessary diagnosis and subsequent excessive treatment. Prostate-specific membrane antigen (PSMA) has emerged as a promising biomarker for the diagnosis of prostate cancer. In this study, a dual-modality imaging probe utilizing aptamer technology was developed for positron emission tomography/near-infrared fluorescence (PET/NIRF) imaging, and the specificity and sensitivity of the probe toward PSMA were evaluated both in vitro and in vivo. The probe precursor NOTA-PSMA-Cy5 was synthesized via automated solid-phase oligonucleotide synthesis. Subsequently, the PET/NIRF dual-modality probe [68Ga]Ga-NOTA-PSMA-Cy5 was successfully prepared and exhibited favorable fluorescence properties and stability in vitro. The binding specificity of [68Ga]Ga-NOTA-PSMA-Cy5 to PSMA was assessed through flow cytometry, fluorescence imaging, and cellular uptake experiments in LNCaP cells and PC-3 cells. In vivo PET/NIRF imaging studies demonstrated the sensitive and specific binding of [68Ga]Ga-NOTA-PSMA-Cy5 to PSMA. Overall, the PET/NIRF dual-modality probe [68Ga]Ga-NOTA-PSMA-Cy5 shows promise for the diagnosis of prostate cancer and for the fluorescence-guided identification of PSMA-positive cancer lesions during surgical procedures.
Collapse
Affiliation(s)
- Sudong Kong
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
- Suzhou Biosyntech Co., Ltd., Suzhou 215300, China
| | - Ying Peng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Qingzhu Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Quan Xie
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Ling Qiu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jianguo Lin
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Minhao Xie
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| |
Collapse
|
3
|
Zhang B, Lu J, Lin X, Wang J, Li Q, Jin T, Shi Q, Lu Y, Zhang J, Deng J, Zhang Y, Guo Y, Gao J, Chen H, Yan Y, Wu J, Gao J, Che J, Dong X, Gu Z, Lin N. Injectable and Sprayable Fluorescent Nanoprobe for Rapid Real-Time Detection of Human Colorectal Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405275. [PMID: 38897213 DOI: 10.1002/adma.202405275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Indexed: 06/21/2024]
Abstract
The development of minimally invasive surgery has greatly advanced precision tumor surgery, but sometime suffers from restricted visualization of the surgical field, especially during the removal of abdominal tumors. A 3-D inspection of tumors could be achieved by intravenously injecting tumor-selective fluorescent probes, whereas most of which are unable to instantly distinguish tumors via in situ spraying, which is urgently needed in the process of surgery in a convenient manner. In this study, this work has designed an injectable and sprayable fluorescent nanoprobe, termed Poly-g-BAT, to realize rapid tumor imaging in freshly dissected human colorectal tumors and animal models. Mechanistically, the incorporation of γ-glutamyl group facilitates the rapid internalization of Poly-g-BAT, and these internalized nanoprobes can be subsequently activated by intracellular NAD(P)H: quinone oxidoreductase-1 to release near-infrared fluorophores. As a result, Poly-g-BAT can achieve a superior tumor-to-normal ratio (TNR) up to 12.3 and enable a fast visualization (3 min after in situ spraying) of tumor boundaries in the xenograft tumor models, Apcmin/+ mice models and fresh human tumor tissues. In addition, Poly-g-BAT is capable of identifying minimal premalignant lesions via intravenous injection.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Jialiang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinqiang Wang
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Li
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Tingting Jin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Qiuqiu Shi
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yang Lu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingyu Zhang
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun Deng
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yinqiong Zhang
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
| | - Yu Guo
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jian Gao
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Haifeng Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Youyou Yan
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| | - Jiahe Wu
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Nengming Lin
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou First People's Hospital, Cancer Center of Zhejiang University, Hangzhou, 310006, China
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China
| |
Collapse
|
4
|
Zhang J, Hu F, Aras O, Chai Y, An F. Small Molecule-Drug Conjugates: Opportunities for the Development of Targeted Anticancer Drugs. ChemMedChem 2024; 19:e202300720. [PMID: 38396351 DOI: 10.1002/cmdc.202300720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
Conventional chemotherapy is insufficient for precise cancer treatment due to its lack of selectivity and inevitable side effects. Targeted drugs have emerged as a promising solution for precise cancer treatment. A common strategy is to conjugate therapeutic agents with ligands that can specifically bind to tumor cells, providing targeted therapy. Similar to the more successful antibody drug conjugates (ADCs), small molecule drug conjugates (SMDCs) are another promising class of targeted drugs, consisting of three parts: targeting ligand, cleavable linker and payload. Compared to ADCs, SMDCs have the advantages of smaller size, better permeability, simpler preparation process and non-immunogenicity, making them a promising alternative to ADCs. This review describes the characteristics of the targeting ligand, linker and payload of SMDCs and the criteria for selecting a suitable one. We also discuss recently reported SMDCs and list some successful SMDCs that have entered clinical trials.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Fanchun Hu
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yichao Chai
- Department of Oncology, The Second Affiliated Hospital of Xi'an, Jiaotong University, No.157 Xiwu Road, Xincheng District, Xi'an, Shaanxi, 710004, China
| | - Feifei An
- School of Public Health, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
5
|
Novakova Z, Tehrani ZA, Jurok R, Motlova L, Kutil Z, Pavlicek J, Shukla S, Choy CJ, Havlinova B, Baranova P, Berkman CE, Kuchar M, Cerny J, Barinka C. Structural, Biochemical, and Computational Characterization of Sulfamides as Bimetallic Peptidase Inhibitors. J Chem Inf Model 2024; 64:1030-1042. [PMID: 38224368 PMCID: PMC10865363 DOI: 10.1021/acs.jcim.3c01542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/16/2024]
Abstract
The sulfonamide function is used extensively as a general building block in various inhibitory scaffolds and, more specifically, as a zinc-binding group (ZBG) of metalloenzyme inhibitors. Here, we provide biochemical, structural, and computational characterization of a metallopeptidase in complex with inhibitors, where the mono- and bisubstituted sulfamide functions are designed to directly engage zinc ions of a bimetallic enzyme site. Structural data showed that while monosubstituted sulfamides coordinate active-site zinc ions via the free negatively charged amino group in a canonical manner, their bisubstituted counterparts adopt an atypical binding pattern divergent from expected positioning of corresponding tetrahedral reaction intermediates. Accompanying quantum mechanics calculations revealed that electroneutrality of the sulfamide function is a major factor contributing to the markedly lower potency of bisubstituted compounds by considerably lowering their interaction energy with the enzyme. Overall, while bisubstituted uncharged sulfamide functions can bolster favorable pharmacological properties of a given inhibitor, their use as ZBGs in metalloenzyme inhibitors might be less advantageous due to their suboptimal metal-ligand properties.
Collapse
Affiliation(s)
- Zora Novakova
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Zahra Aliakbar Tehrani
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Radek Jurok
- Forensic
Laboratory of Biologically Active Substances, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Lucia Motlova
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Zsofia Kutil
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Jiri Pavlicek
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Shivam Shukla
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Cindy J. Choy
- Department
of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Barbora Havlinova
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Petra Baranova
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Clifford E. Berkman
- Department
of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Martin Kuchar
- Forensic
Laboratory of Biologically Active Substances, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague 6, Czech Republic
| | - Jiri Cerny
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| | - Cyril Barinka
- Institute
of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech
Republic
| |
Collapse
|
6
|
Yang Y, Jiang Q, Zhang F. Nanocrystals for Deep-Tissue In Vivo Luminescence Imaging in the Near-Infrared Region. Chem Rev 2024; 124:554-628. [PMID: 37991799 DOI: 10.1021/acs.chemrev.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
In vivo imaging technologies have emerged as a powerful tool for both fundamental research and clinical practice. In particular, luminescence imaging in the tissue-transparent near-infrared (NIR, 700-1700 nm) region offers tremendous potential for visualizing biological architectures and pathophysiological events in living subjects with deep tissue penetration and high imaging contrast owing to the reduced light-tissue interactions of absorption, scattering, and autofluorescence. The distinctive quantum effects of nanocrystals have been harnessed to achieve exceptional photophysical properties, establishing them as a promising category of luminescent probes. In this comprehensive review, the interactions between light and biological tissues, as well as the advantages of NIR light for in vivo luminescence imaging, are initially elaborated. Subsequently, we focus on achieving deep tissue penetration and improved imaging contrast by optimizing the performance of nanocrystal fluorophores. The ingenious design strategies of NIR nanocrystal probes are discussed, along with their respective biomedical applications in versatile in vivo luminescence imaging modalities. Finally, thought-provoking reflections on the challenges and prospects for future clinical translation of nanocrystal-based in vivo luminescence imaging in the NIR region are wisely provided.
Collapse
Affiliation(s)
- Yang Yang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Qunying Jiang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
| | - Fan Zhang
- College of Energy Materials and Chemistry, State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010021, China
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Kuriki Y, Sogawa M, Komatsu T, Kawatani M, Fujioka H, Fujita K, Ueno T, Hanaoka K, Kojima R, Hino R, Ueo H, Ueo H, Kamiya M, Urano Y. Modular Design Platform for Activatable Fluorescence Probes Targeting Carboxypeptidases Based on ProTide Chemistry. J Am Chem Soc 2024; 146:521-531. [PMID: 38110248 DOI: 10.1021/jacs.3c10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Carboxypeptidases (CPs) are a family of hydrolases that cleave one or more amino acids from the C-terminal of peptides or proteins and play indispensable roles in various physiological and pathological processes. However, only a few highly activatable fluorescence probes for CPs have been reported, and there is a need for a flexibly tunable molecular design platform to afford a range of fluorescence probes for CPs for biological and medical research. Here, we focused on the unique activation mechanism of ProTide-based prodrugs and established a modular design platform for CP-targeting florescence probes based on ProTide chemistry. In this design, probe properties such as fluorescence emission wavelength, reactivity/stability, and target CP can be readily tuned and optimized by changing the four probe modules: the fluorophore, the substituent on the phosphorus atom, the linker amino acid at the P1 position, and the substrate amino acid at the P1' position. In particular, switching the linker amino acid at position P1 enabled us to precisely optimize the reactivity for target CPs. As a proof-of-concept, we constructed probes for carboxypeptidase M (CPM) and prostate-specific membrane antigen (also known as glutamate carboxypeptidase II). The developed probes were applicable for the imaging of CP activities in live cells and in clinical specimens from patients. This design strategy should be useful in studying CP-related biological and pathological phenomena.
Collapse
Affiliation(s)
- Yugo Kuriki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mari Sogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toru Komatsu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Minoru Kawatani
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyoshi Fujioka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kyohhei Fujita
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tasuku Ueno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ryosuke Kojima
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Rumi Hino
- Department of Sports and Health Science, Daito Bunka University, 560 Iwadono, Higashimatsuyama, Saitama 355-8501, Japan
| | - Hiroki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Hiroaki Ueo
- Ueo Breast Cancer Hospital, 1-3-5 Futamatacho, Oita, Oita 870-0887, Japan
| | - Mako Kamiya
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Life Science and Technology, Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
- Living Systems Materialogy (LiSM) Research Group, International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259, Nagatsuda-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Yasuteru Urano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
8
|
Sang D, Luo X, Liu J. Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles. NANO-MICRO LETTERS 2023; 16:44. [PMID: 38047998 PMCID: PMC10695915 DOI: 10.1007/s40820-023-01266-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The ultrasmall gold nanoparticles (AuNPs), serving as a bridge between small molecules and traditional inorganic nanoparticles, create significant opportunities to address many challenges in the health field. This review discusses the recent advances in the biological interactions and imaging of ultrasmall AuNPs. The challenges and the future development directions of the ultrasmall AuNPs are presented.
Collapse
Affiliation(s)
- Dongmiao Sang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Xiaoxi Luo
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Jinbin Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China.
| |
Collapse
|
9
|
Pal R, Lwin TM, Krishnamoorthy M, Collins HR, Chan CD, Prilutskiy A, Nasrallah MP, Dijkhuis TH, Shukla S, Kendall AL, Marshall MS, Carp SA, Hung YP, Shih AR, Martinez-Lage M, Zukerberg L, Sadow PM, Faquin WC, Nahed BV, Feng AL, Emerick KS, Mieog JSD, Vahrmeijer AL, Rajasekaran K, Lee JYK, Rankin KS, Lozano-Calderon S, Varvares MA, Tanabe KK, Kumar ATN. Fluorescence lifetime of injected indocyanine green as a universal marker of solid tumours in patients. Nat Biomed Eng 2023; 7:1649-1666. [PMID: 37845517 DOI: 10.1038/s41551-023-01105-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 09/10/2023] [Indexed: 10/18/2023]
Abstract
The surgical resection of solid tumours can be enhanced by fluorescence-guided imaging. However, variable tumour uptake and incomplete clearance of fluorescent dyes reduces the accuracy of distinguishing tumour from normal tissue via conventional fluorescence intensity-based imaging. Here we show that, after systemic injection of the near-infrared dye indocyanine green in patients with various types of solid tumour, the fluorescence lifetime (FLT) of tumour tissue is longer than the FLT of non-cancerous tissue. This tumour-specific shift in FLT can be used to distinguish tumours from normal tissue with an accuracy of over 97% across tumour types, and can be visualized at the cellular level using microscopy and in larger specimens through wide-field imaging. Unlike fluorescence intensity, which depends on imaging-system parameters, tissue depth and the amount of dye taken up by tumours, FLT is a photophysical property that is largely independent of these factors. FLT imaging with indocyanine green may improve the accuracy of cancer surgeries.
Collapse
Affiliation(s)
- Rahul Pal
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Thinzar M Lwin
- Department of Surgical Oncology, City of Hope Hospital, Duarte, CA, USA
| | - Murali Krishnamoorthy
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hannah R Collins
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Corey D Chan
- Newcastle University Centre for Cancer, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Andrey Prilutskiy
- Department of Pathology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - MacLean P Nasrallah
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Tom H Dijkhuis
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Shriya Shukla
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Amy L Kendall
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michael S Marshall
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan A Carp
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Yin P Hung
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Angela R Shih
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Martinez-Lage
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Lawrence Zukerberg
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Peter M Sadow
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - William C Faquin
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Brian V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Allen L Feng
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kevin S Emerick
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - J Sven D Mieog
- Department of Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Karthik Rajasekaran
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - John Y K Lee
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth S Rankin
- The North of England Bone and Soft Tissue Tumour Service, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Santiago Lozano-Calderon
- Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark A Varvares
- Department of Otolaryngology and Head and Neck Surgery, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA
| | - Kenneth K Tanabe
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anand T N Kumar
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| |
Collapse
|
10
|
Yang X, Nao SC, Lin C, Kong L, Wang J, Ko CN, Liu J, Ma DL, Leung CH, Wang W. A cell-impermeable luminogenic probe for near-infrared imaging of prostate-specific membrane antigen in prostate cancer microenvironments. Eur J Med Chem 2023; 259:115659. [PMID: 37499288 DOI: 10.1016/j.ejmech.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Prostate-specific membrane antigen (PSMA) imaging probes are a promising tool for the diagnosis and image-guided surgery of prostate cancer (PCa). However, PSMA-specific luminescence probes for PCa detection and heterogeneity studies with high imaging contrast are lacking. Here, we report the first near-infrared (NIR) iridium(III) complex for the wash-free and specific imaging of PSMA in PCa cells and spheroids. The conjugation of a PSMA inhibitor, Lys-urea-Glu, to an iridium(III) complex synergizes the PSMA-specific affinity and biocompatibility of the inhibitor with the desirable photophysical properties of the iridium(III) complex, including NIR emission (670 nm), high photostability and a large Stokes shift. The cellular impermeability of the probe along with its strong binding affinity to PSMA enhances its specificity for PSMA, enabling the washing-free luminescent imaging of membrane PSMA with lower cytotoxicity. The probe was successfully applied for selectively visualizing PSMA-expressing cells and for the imaging of PSMA in a multicellular PCa model with good imaging penetration, indicating its potential use in complicated and heterogeneous tumor microenvironments. Furthermore, the probe showed good imaging performance in the PCa-bearing tumor mice via targeting PSMA in vivo. This work provides a novel strategy for the development of highly sensitive and specific NIR probes for PSMA in biological systems in vitro, which is of great significance for the precise diagnosis of PCa and for elucidating PCa heterogeneity.
Collapse
Affiliation(s)
- Xifang Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Chuankai Lin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Lingtan Kong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinbiao Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau.
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China.
| |
Collapse
|
11
|
Zhang F, Chen F, Zhong M, Shen R, Zhao Z, Wei H, Zhang B, Fang J. Imaging of Carbonic Anhydrase Level in Epilepsy with an Environment-Sensitive Fluorescent Probe. Anal Chem 2023; 95:14833-14841. [PMID: 37747928 DOI: 10.1021/acs.analchem.3c01368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Carbonic anhydrases (CAs) participate in various physiological and pathological activities by catalyzing the interconversion between carbon dioxide and bicarbonate ions. Under normal circumstances, they guarantee that the relevant biological reactions in our body occur within an appropriate time scale. Abnormal expression or activity alteration of CAs is closely related to the pathogenesis of diverse diseases. This work reports an inhibitor-directed fluorescent probe FMRs-CA for the detection of CAs. Excellent selectivity, favorable biocompatibility, and desirable blood-brain barrier (BBB) penetration endow the probe with the ability to image the fluctuation of CAs in cells and mice. We achieved in situ visualization of the increased CAs in hypoxic cells with this probe. Additionally, probe FMRs-CA was mainly enriched within the liver and gradually metabolized by the liver. With the help of FMRs-CA, the increase of CAs in epileptic mouse brains was revealed first from the perspective of imaging, providing the mechanism connection between abnormal CA expressions and epilepsy.
Collapse
Affiliation(s)
- Fang Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ruipeng Shen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Haopai Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Baoxin Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jianguo Fang
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, Jiangsu 210094, China
| |
Collapse
|
12
|
Luo D, Wang X, Ramamurthy G, Walker E, Zhang L, Shirke A, Naidu NG, Burda C, Shakya R, Hostnik E, Joseph M, Ponsky L, Ponomarev V, Rosol TJ, Tweedle MF, Basilion JP. Evaluation of a photodynamic therapy agent using a canine prostate cancer model. Prostate 2023; 83:1176-1185. [PMID: 37211857 PMCID: PMC11135201 DOI: 10.1002/pros.24560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Accepted: 05/04/2023] [Indexed: 05/23/2023]
Abstract
BACKGROUND Male dogs can develop spontaneous prostate cancer, which is similar physiologically to human disease. Recently, Tweedle and coworkers have developed an orthotopic canine prostate model allowing implanted tumors and therapeutic agents to be tested in a more translational large animal model. We used the canine model to evaluate prostate-specific membrane antigen (PSMA)-targeted gold nanoparticles as a theranostic approach for fluorescence (FL) imaging and photodynamic therapy (PDT) of early stage prostate cancer. METHODS Dogs (four in total) were immunosuppressed with a cyclosporine-based immunosuppressant regimen and their prostate glands were injected with Ace-1-hPSMA cells using transabdominal ultrasound (US) guidance. Intraprostatic tumors grew in 4-5 weeks and were monitored by ultrasound (US). When tumors reached an appropriate size, dogs were injected intravenously (iv) with PSMA-targeted nano agents (AuNPs-Pc158) and underwent surgery 24 h later to expose the prostate tumors for FL imaging and PDT. Ex vivo FL imaging and histopathological studies were performed to confirm PDT efficacy. RESULTS All dogs had tumor growth in the prostate gland as revealed by US. Twenty-four hours after injection of PSMA-targeted nano agents (AuNPs-Pc158), the tumors were imaged using a Curadel FL imaging device. While normal prostate tissue had minimal fluorescent signal, the prostate tumors had significantly increased FL. PDT was activated by irradiating specific fluorescent tumor areas with laser light (672 nm). PDT bleached the FL signal, while fluorescent signals from the other unexposed tumor tissues were unaffected. Histological analysis of tumors and adjacent prostate revealed that PDT damaged the irradiated areas to a depth of 1-2 mms with the presence of necrosis, hemorrhage, secondary inflammation, and occasional focal thrombosis. The nonirradiated areas showed no visible damages by PDT. CONCLUSION We have successfully established a PSMA-expressing canine orthotopic prostate tumor model and used the model to evaluate the PSMA-targeted nano agents (AuNPs-Pc158) in the application of FL imaging and PDT. It was demonstrated that the nano agents allowed visualization of the cancer cells and enabled their destruction when they were irradiated with a specific wavelength of light.
Collapse
Affiliation(s)
- Dong Luo
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Science and Engineering, South China University of Technology, Guangzhou, China
| | - Xinning Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | - Ethan Walker
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Lifang Zhang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Aditi Shirke
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Naraen G. Naidu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
| | - Clemens Burda
- Department of Chemistry, Case Western Reserve University, Cleveland, OH, USA
| | - Reena Shakya
- Target Validation Shared Resource, James Comprehensive Cancer Center, The Ohio State University, Columbus Ohio, USA
| | - Eric Hostnik
- College of Veterinary Medicine- Veterinary Medical Center, The Ohio State University, Columbus, OH, USA
| | - Mathew Joseph
- Interventional Cardiology Cath Core Lab, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA
| | - Lee Ponsky
- Department of Urology, University Hospitals, Cleveland Medical Center and Case Western Reserve University, Cleveland, OH, USA
| | | | - Thomas J. Rosol
- Department of Biomedical Sciences, Ohio University, Athens, OH, USA
| | - Michael F. Tweedle
- Deptartment of Radiology, The Wright Center for Innovation in Biomolecular Imaging, The Ohio State University, Columbus, OH, USA
| | - James P. Basilion
- Department of Radiology, Case Western Reserve University, Cleveland, OH, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
13
|
Uspenskaia AA, Krasnikov PA, Majouga AG, Beloglazkina EK, Machulkin AE. Fluorescent Conjugates Based on Prostate-Specific Membrane Antigen Ligands as an Effective Visualization Tool for Prostate Cancer. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:953-967. [PMID: 37751866 DOI: 10.1134/s0006297923070088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 09/28/2023]
Abstract
Fluorescent dyes are widely used in histological studies and in intraoperative imaging, including surgical treatment of prostate cancer (PC), which is one of the most common types of cancerous tumors among men today. Targeted delivery of fluorescent conjugates greatly improves diagnostic efficiency and allows for timely correct diagnosis. In the case of PC, the protein marker is a prostate-specific membrane antigen (PSMA). To date, a large number of diagnostic conjugates targeting PSMA have been created based on modified urea. The review focuses on the conjugates selectively binding to PSMA and answers the following questions: What fluorescent dyes are already in use in the field of PC diagnosis? What factors influence the structure-activity ratio of the final molecule? What features should be considered when selecting a fluorescent tag to create new diagnostic conjugates? And what could be suggested to further development in this field at the present time?
Collapse
Affiliation(s)
| | - Pavel A Krasnikov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexander G Majouga
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- National University of Science and Technology "MISiS", Moscow, 119049, Russia
- Dmitry Mendeleev University of Chemical Technology of Russia, Moscow, 125047, Russia
| | | | - Aleksei E Machulkin
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
- RUDN University, Moscow, 117198, Russia
| |
Collapse
|
14
|
Banushi B, Joseph SR, Lum B, Lee JJ, Simpson F. Endocytosis in cancer and cancer therapy. Nat Rev Cancer 2023:10.1038/s41568-023-00574-6. [PMID: 37217781 DOI: 10.1038/s41568-023-00574-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/24/2023]
Abstract
Endocytosis is a complex process whereby cell surface proteins, lipids and fluid from the extracellular environment are packaged, sorted and internalized into cells. Endocytosis is also a mechanism of drug internalization into cells. There are multiple routes of endocytosis that determine the fate of molecules, from degradation in the lysosomes to recycling back to the plasma membrane. The overall rates of endocytosis and temporal regulation of molecules transiting through endocytic pathways are also intricately linked with signalling outcomes. This process relies on an array of factors, such as intrinsic amino acid motifs and post-translational modifications. Endocytosis is frequently disrupted in cancer. These disruptions lead to inappropriate retention of receptor tyrosine kinases on the tumour cell membrane, changes in the recycling of oncogenic molecules, defective signalling feedback loops and loss of cell polarity. In the past decade, endocytosis has emerged as a pivotal regulator of nutrient scavenging, response to and regulation of immune surveillance and tumour immune evasion, tumour metastasis and therapeutic drug delivery. This Review summarizes and integrates these advances into the understanding of endocytosis in cancer. The potential to regulate these pathways in the clinic to improve cancer therapy is also discussed.
Collapse
Affiliation(s)
- Blerida Banushi
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Shannon R Joseph
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Benedict Lum
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Jason J Lee
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia
| | - Fiona Simpson
- Frazer Institute, University of Queensland, Woolloongabba, Queensland, Australia.
| |
Collapse
|
15
|
Ni Y, Fang W, Olson MA. Fluorescent Molecular Rotors Based on Hinged Anthracene Carboxyimides. Molecules 2023; 28:molecules28073217. [PMID: 37049979 PMCID: PMC10096540 DOI: 10.3390/molecules28073217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/20/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and synthesized. Their photophysical properties were studied in various solvents, such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-propanol, ethanol, dimethyl sulfoxide, methanol, and water. Solvent polarizability resulted in a solvatochromism effect for all three rotors and their absorption and emission spectra were analyzed via the Lippert-Mataga equation and multilinear analysis using Kamlet-Taft and Catalán parameters. The rotors exhibited red-shifted absorption and emission bands in solution on account of differences in their torsion angle. The three rotors demonstrated strong fluorescence in a high-viscosity environment due to restricted intramolecular rotation. Investigations carried out under varying ratios of water to glycerol were explored to probe the viscosity-based changes in their optical properties. A good linear correlation between the logarithms of fluorescence intensity and solution viscosity for two rotors, namely 2DiAC∙Cl and 9DiAC∙Cl, was observed as the percentage of glycerol increased. Excellent exponential regression between the viscosity-related temperature and emission intensity was observed for all three investigated rotors.
Collapse
Affiliation(s)
- Yanhai Ni
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Wangjian Fang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
16
|
Xu L, Zou Y, Wu K, Han R, Huang Y, Yi X. Polydatin-based natural product as an activatable molecular sensor toward viscosity detection in liquid. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2023. [DOI: 10.1007/s11694-023-01920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
17
|
Cai X, Zhang Z, Dong Y, Hao T, Yi L, Yang X. A biotin-guided near-infrared fluorescent probe for imaging hydrogen sulfide and differentiating cancer cells. Org Biomol Chem 2023; 21:332-338. [PMID: 36533549 DOI: 10.1039/d2ob02034c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Imaging cancer specific biomarkers with near-infrared (NIR) fluorescent probes can help inaccurate diagnosis. Hydrogen sulfide (H2S) has been reported to be involved in many physiological and pathological processes and is considered as one of the key gasotransmitters during the development of cancer. To achieve specific H2S detection in cancer cells, we reported a biotin-guided NIR fluorescent sensor P1 targeting a cancer cell surface biomarker, based on the H2S-specific thiolysis of the NBD-amine-hemicyanine conjugate. The probe showed a fast turn-on signal at 754 nm upon H2S activation and good selectivity towards H2S over millimolar levels of other biothiols. We successfully employed P1 to image endogenous H2S and demonstrated its tumor-targeting ability in live cells. P1 could differentiate multiple cancer cells with various levels of H2S from normal cells, indicating its potential for cancer imaging.
Collapse
Affiliation(s)
- Xuekang Cai
- Beijing University of Chemical Technology (BUCT), Beijing 100029, China. .,Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| | - Zhuochen Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| | - Yalun Dong
- Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Tingting Hao
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| | - Long Yi
- Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xing Yang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
18
|
Wang J, Li L, Li Y, Liu L, Li J, Li X, Zhu Y, Zhang X, Lu H. PSMA1-mediated ultrasmall gold nanoparticles facilitate tumor targeting and MR/CT/NIRF multimodal detection of early-stage prostate cancer. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 47:102617. [PMID: 36280043 DOI: 10.1016/j.nano.2022.102617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/10/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is a prominent biomarker for prostate cancer (PCa) diagnosis. Safe contrast agents able to render the expression and distribution of PSMA would facilitate early accurate screening and prognostic prediction of PCa. However, current Gd-containing nanoparticles are often limited by nonspecific redistribution in mononuclear phagocyte system (MPS) and inadequate perfusion to target sites. Besides, intrinsic defects of magnetic resonance (MR) equipment also hamper their use for precisely depicting PSMA details. Herein, we devised a novel noninvasive MR/CT/NIRF multimodal contrast agent (AGGP) coordinated to a high-affinity PSMA ligand (PSMA1) to specifically detect and quantify PSMA expression in PCa lesions, which exhibited formidable tripe-modal signal augments, preferential PSMA targeting, effective MPS escaping and profitable renal-clearable behavior in living mice. Biocompatibility and histopathological studies substantiated high security of AGGP in vivo, opening the door to future opportunities for improving early-stage PCa detection and clinical implementation of more effective multifunctional nanotherapeutics.
Collapse
Affiliation(s)
- Jiahui Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Liang Li
- Department of Radiology, Second Hospital of Tianjin Medical University, Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, PR China
| | - Yanbo Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Liangsheng Liu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Junnan Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Xiaokang Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Ying Zhu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China
| | - Xuening Zhang
- Department of Radiology, Second Hospital of Tianjin Medical University, Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin, PR China.
| | - Hong Lu
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, PR China.
| |
Collapse
|
19
|
Du Y, Chen Z, Hussain MI, Yan P, Zhang C, Fan Y, Kang L, Wang R, Zhang J, Ren X, Ge C. Evaluation of cytotoxicity and biodistribution of mesoporous carbon nanotubes (pristine/-OH/-COOH) to HepG2 cells in vitro and healthy mice in vivo. Nanotoxicology 2022; 16:895-912. [PMID: 36704847 DOI: 10.1080/17435390.2023.2170836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Mesoporous carbon nanotubes (mCNTs) hold great promise interests, owing to their superior nano-platform properties for biomedicine. To fully utilize this potential, the toxicity and biodistribution of pristine and surface-modified mCNTs (-OH/-COOH) should preferentially be addressed. The results of cell viability suggested that pristine mCNTs induced cell death in a concentration-dependent manner. As evidence of reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD), pristine mCNTs induced noticeable redox imbalance. 99mTc tracing data suggested that the cellular uptake of pristine mCNTs posed a concentrate-dependent and energy-dependent manner via macropinocytotic and clathrin-dependent pathways, and the main accumulated organs were lung, liver and spleen. With OH modification, the ROS generation, MDA deposition and SOD consumption were evidently reduced compared with the pristine mCNTs at 24/48 h high-dose exposure. With COOH modification, the modified mCNTs only showed a significant difference in SOD consumption at 24/48 h exposure, but there was no significant difference in the measurement of ROS and MDA. The internalization mechanism and organ distribution of modified mCNTs were basically invariant. Together, our study provides evidence that mCNTs and the modified mCNTs all could induce oxidative damage and thereby impair cells. 99mTc-mCNTs can effectively trace the distribution of nanotubes in vivo.
Collapse
Affiliation(s)
- Yujing Du
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Zhipei Chen
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - M Irfan Hussain
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Ping Yan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Chunli Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Yan Fan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Lei Kang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Rongfu Wang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China.,Department of Nuclear Medicine, Peking University International Hospital, Beijing, China
| | - Jianhua Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing, China
| | - Xiaona Ren
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| | - Changchun Ge
- Institute of Nuclear Energy and New Energy System Materials, School of Materials Sciences and Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
20
|
Sun J, Huangfu Z, Yang J, Wang G, Hu K, Gao M, Zhong Z. Imaging-guided targeted radionuclide tumor therapy: From concept to clinical translation. Adv Drug Deliv Rev 2022; 190:114538. [PMID: 36162696 DOI: 10.1016/j.addr.2022.114538] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 09/03/2022] [Accepted: 09/11/2022] [Indexed: 01/24/2023]
Abstract
Since the first introduction of sodium iodide I-131 for use with thyroid patients almost 80 years ago, more than 50 radiopharmaceuticals have reached the markets for a wide range of diseases, especially cancers. The nuclear medicine paradigm also shifts from solely molecular imaging or radionuclide therapy to imaging-guided radionuclide therapy, which is deemed a vital component of precision cancer therapy and an emerging medical modality for personalized medicine. The imaging-guided radionuclide therapy highlights the systematic integration of targeted nuclear diagnostics and radionuclide therapeutics. Regarding this, nuclear imaging serves to "visualize" the lesions and guide the therapeutic strategy, followed by administration of a precise patient specific dose of radiotherapeutics for treatment according to the absorbed dose to different organs and tumors calculated by dosimetry tools, and finally repeated imaging to predict the prognosis. This strategy leads to significantly enhanced therapeutic efficacy, improved patient outcomes, and manageable adverse events. In this review, we provide an overview of imaging-guided targeted radionuclide therapy for different tumors such as advanced prostate cancer and neuroendocrine tumors, with a focus on development of new radioligands and their preclinical and clinical results, and further discuss about challenges and future perspectives.
Collapse
Affiliation(s)
- Juan Sun
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhenyuan Huangfu
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jiangtao Yang
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China.
| | - Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology, Chiba 263-8555, Japan.
| | - Mingyuan Gao
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, People's Republic of China
| | - Zhiyuan Zhong
- College of Pharmaceutical Sciences, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, People's Republic of China; Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
21
|
Xing M, Han Y, Zhu Y, Sun Y, Shan Y, Wang KN, Liu Q, Dong B, Cao D, Lin W. Two Ratiometric Fluorescent Probes Based on the Hydroxyl Coumarin Chalcone Unit with Large Fluorescent Peak Shift for the Detection of Hydrazine in Living Cells. Anal Chem 2022; 94:12836-12844. [PMID: 36062507 DOI: 10.1021/acs.analchem.2c02798] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrazine is widely used in industrial and agricultural production, but excessive hydrazine possesses a serious threat to human health and environment. Here two new ratiometric fluorescence probes, DDP and DDC, with the hydroxyl coumarin chalcone unit as the sensing site are developed, which can achieve colorimetric and ratiometric recognition for hydrazine with good sensitivity, excellent selectivity, and anti-interference. The calculated fluorescence limits of detections are 0.26 μM (DDC) and 0.14 μM (DDP). The ratiometric fluorescence response to hydrazine is realized through the adjustment of donor and receptor units in coumarin conjugate structure terminals, accompanied by fluorescence peak shift about 200 nm (DDC, 188 nm; DDP, 229 nm). Stronger electropositivity in the carbon-carbon double bond is helpful to the first phase addition reaction between the probe and hydrazine. Higher phenol activity in the hydroxyl coumarin moiety will facilitate the following dihydro-pyrazole cyclization reaction. In addition, both of these probes realized the convenient detection of hydrazine vapor. The probes were also successfully applied to detect hydrazine in actual water samples, different soils, and living cells.
Collapse
Affiliation(s)
- Miaomiao Xing
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Han
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yilin Zhu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yatong Sun
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Yanyan Shan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Kang-Nan Wang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Qiuxin Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Baoli Dong
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China
| | - Weiying Lin
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, Shandong, China.,Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China
| |
Collapse
|
22
|
Zhang W, Wang H, Wang T, Ding D, Hou J, Shi Y, Huang Y. A Supramolecular Self-Assembling Nanoagent by Inducing Intracellular Aggregation of PSMA for Prostate Cancer Molecularly Targeted Theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203325. [PMID: 35986691 DOI: 10.1002/smll.202203325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Prostate cancer (PCa) with prostate-specific membrane antigen (PSMA)-specific high expression is well suited for molecularly targeted theranostics. PSMA expression correlates with the malignancy of PCa, and its dimeric form can promote tumor progression by exerting enzymatic activity to activate downstream signal transduction. However, almost no studies have shown that arresting the procancer signaling of the PSMA receptors themselves can cause tumor cell death. Meanwhile, supramolecular self-assembling peptides are widely used to design anticancer agents due to their unique and excellent properties. Here, a PSMA-targeting supramolecular self-assembling nanotheranostic agent, DBT-2FFGACUPA, which actively targets PSMA receptors on PCa cell membranes and induces them to enter the cell and form large aggregates, is developed. This process not only selectively images PSMA-positive tumor cells but also suppresses the downstream procancer signals of PSMA, causing tumor cell death. This work provides an alternative approach and an advanced agent for molecularly targeted theranostics options in PCa that can induce tumor cell death without relying on any reported anticancer drugs.
Collapse
Affiliation(s)
- Weijie Zhang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - He Wang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| | - Tianjiao Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Jianquan Hou
- Department of Urology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, 215006, P. R. China
| | - Yang Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, P. R. China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, P. R. China
| |
Collapse
|
23
|
Yuan D, Pan K, Xu S, Wang L. Dual-Channel Recognition of Human Serum Albumin and Glutathione by Fluorescent Probes with Site-Dependent Responsive Features. Anal Chem 2022; 94:12391-12397. [PMID: 36048720 DOI: 10.1021/acs.analchem.2c02025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Design of chemical probes with high specificity and responses are particularly intriguing. In this work, a fluorescent probe (M-OH-SO3) with dual-channel spectral responses toward human serum albumin (HSA) is presented. By employing dinitrobenzenesulfonate as a recognition site as well as a fluorescence quencher, probe M-OH-SO3 displayed weak fluorescence, which, nevertheless, exhibits extensive yellow (575 nm) and red (660 nm) fluorescence emissions toward HSA under excitations at 400 and 500 nm, respectively. Interestingly, M-OH-SO3 displayed the best performance toward HSA with distinctly higher selectivity than that of its counterparts M-SO3, M-H-SO3, and M-F-SO3, which were prepared simply by modulating the functional group at the ortho position of the dicyanoisophorone core. Molecular docking results revealed that M-OH-SO3 possesses the lowest binding energy among the tested derivatives and accordingly the strongest binding affinity. Probe M-OH-SO3 showed a good linear relationship toward HSA in a range of 0.5-18 μM with a limit of detection of 35 nM. Cell imaging results demonstrated that probe M-OH-SO3 could visualize the variation HSA levels in hepatocarcinoma cells. In addition, probe M-OH-SO3 could also be employed for the recognition of glutathione through the cleavage of the dinitrobenzenesulfonate group along with an enhancement of emission at 575 nm. The site-dependent properties inspired a novel paradigm for design of fluorescent probes with optimized selectivity and responses.
Collapse
Affiliation(s)
- Di Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Kexin Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Suying Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Leyu Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
24
|
Guimarães CF, Cruz-Moreira D, Caballero D, Pirraco RP, Gasperini L, Kundu SC, Reis RL. Shining a Light on Cancer - Photonics in Microfluidic Tumor Modelling and Biosensing. Adv Healthc Mater 2022:e2201442. [PMID: 35998112 DOI: 10.1002/adhm.202201442] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Indexed: 11/08/2022]
Abstract
Microfluidic platforms represent a powerful approach to miniaturizing important characteristics of cancers, improving in vitro testing by increasing physiological relevance. Different tools can manipulate cells and materials at the microscale, but few offer the efficiency and versatility of light and optical technologies. Moreover, light-driven technologies englobe a broad toolbox for quantifying critical biological phenomena. Herein, we review the role of photonics in microfluidic 3D cancer modeling and biosensing from three major perspectives. First, we look at optical-driven technologies that allow biomaterials and living cells to be manipulated with micro-sized precision and the opportunities to advance 3D microfluidic models by engineering cancer microenvironments' hallmarks, such as their architecture, cellular complexity, and vascularization. Second, we delve into the growing field of optofluidics, exploring how optical tools can directly interface microfluidic chips, enabling the extraction of relevant biological data, from single fluorescent signals to the complete 3D imaging of diseased cells within microchannels. Third, we review advances in optical cancer biosensing, focusing on how light-matter interactions can detect biomarkers, rare circulating tumor cells, and cell-derived structures such as exosomes. We overview photonic technologies' current challenges and caveats in microfluidic 3D cancer models, outlining future research avenues that may catapult the field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Carlos F Guimarães
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Daniela Cruz-Moreira
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - David Caballero
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rogério P Pirraco
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Luca Gasperini
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Subhas C Kundu
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group -Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Barco, Guimarães, 4805-017, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga and Guimarães, Portugal
| |
Collapse
|
25
|
Wu LL, Zhao Q, Wang Q, Zhang Q, Yang F, Zheng B, Hu HY, Xing N. Membrane dual-targeting probes: A promising strategy for fluorescence-guided prostate cancer surgery and lymph node metastases detection. Acta Pharm Sin B 2022; 13:1204-1215. [PMID: 36970202 PMCID: PMC10031145 DOI: 10.1016/j.apsb.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/02/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Fluorescence-guided surgery (FGS) with tumor-targeted imaging agents, particularly those using the near-infrared wavelength, has emerged as a real-time technique to highlight the tumor location and margins during a surgical procedure. For accurate visualization of prostate cancer (PCa) boundary and lymphatic metastasis, we developed a new approach involving an efficient self-quenched near-infrared fluorescence probe, Cy-KUE-OA, with dual PCa-membrane affinity. Cy-KUE-OA specifically targeted the prostate-specific membrane antigen (PSMA), anchored into the phospholipids of the cell membrane of PCa cells and consequently showed a strong Cy7-de-quenching effect. This dual-membrane-targeting probe allowed us to detect PSMA-expressing PCa cells both in vitro and in vivo and enabled clear visualization of the tumor boundary during fluorescence-guided laparoscopic surgery in PCa mouse models. Furthermore, the high PCa preference of Cy-KUE-OA was confirmed on surgically resected patient specimens of healthy tissues, PCa, and lymph node metastases. Taken together, our results serve as a bridge between preclinical and clinical research in FGS of PCa and lay a solid foundation for further clinical research.
Collapse
Affiliation(s)
- Ling-Ling Wu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qinxin Zhao
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
- Corresponding authors.
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- Department of Urology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan 030013, China
- Corresponding authors.
| |
Collapse
|
26
|
Li Y, Duan X, Xu H, Zhang J, Zhou H, Zhang X, Zhang J, Yang Z, Hu Z, Zhang N, Tian J, Yang X. Optimization of ODAP-Urea-based dual-modality PSMA targeting probes for sequential PET-CT and optical imaging. Bioorg Med Chem 2022; 66:116810. [PMID: 35580538 DOI: 10.1016/j.bmc.2022.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022]
Abstract
Prostate-specific membrane antigen (PSMA) is emerging as a promising target to specifically image prostate cancer. Dual-modality probe combining radionuclide imaging and near-infrared fluorescence navigation targeting PSMA would enable both the preoperative staging and intraoperative detection of the tumor lesions. To overcome one of the key barriers for achieving high contrast imaging at both early and late time points, we optimized the pharmacokinetics of dual-modality probes based on oxalyldiaminopropionic acid-urea (ODAP-Urea) PSMA inhibitors recently developed. Four dual-modality probes with variable hydrophilicity were synthesized and evaluated. They displayed good optical properties (λem max = 835 nm, QY = 0.67%-1.50%), high affinity to PSMA (Ki = 2.09 ± 1.71-4.15 ± 2.20 nM) and PSMA specific cellular uptake (0.48 ± 0.01% - 0.64 ± 0.04% IA/105 LNCaP cells) upon labeled with 68Ga. In vivo studies showed that [68Ga]Ga-P3 exhibited an optimum pharmacokinetic property with high specific tumor uptake (SUVmax = 1.88 ± 0.36, at 1 h) in medium level PSMA expressing 22Rv1 tumor model and high tumor-to-muscle ratio (12.56 ± 2.63, at 1 h). Specific fluorescence imaging could also be achieved with high contrast for later time points (tumor-to-background ratio = 11.63 ± 4.16 at 24 h). This study demonstrates that ODAP-Urea-based P3 has the potential for PET imaging and intraoperative optical imaging of prostate cancer.
Collapse
Affiliation(s)
- Yuan Li
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Xiaojiang Duan
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China; NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China
| | - Hongchuang Xu
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Jingming Zhang
- Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China
| | - Haoxi Zhou
- Department of Nuclear Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaojun Zhang
- Department of Nuclear Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Jinming Zhang
- Department of Nuclear Medicine, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Zhi Yang
- NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zhenhua Hu
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Ning Zhang
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, The State Key Laboratory of Management and Control for Complex Systems, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710071, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China.
| | - Xing Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Nuclear Medicine, Peking University First Hospital, Beijing 100034, China; NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Beijing 100142, China.
| |
Collapse
|
27
|
Liu J, Zhang W, Zhou C, Li M, Wang X, Zhang W, Liu Z, Wu L, James TD, Li P, Tang B. Precision Navigation of Hepatic Ischemia-Reperfusion Injury Guided by Lysosomal Viscosity-Activatable NIR-II Fluorescence. J Am Chem Soc 2022; 144:13586-13599. [PMID: 35793548 PMCID: PMC9354259 DOI: 10.1021/jacs.2c03832] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is responsible for postoperative liver dysfunction and liver failure. Precise and rapid navigation of HIRI lesions is critical for early warning and timely development of pretreatment plans. Available methods for assaying liver injury fail to provide the exact location of lesions in real time intraoperatively. HIRI is intimately associated with oxidative stress which impairs lysosomal degradative function, leading to significant changes in lysosomal viscosity. Therefore, lysosomal viscosity is a potential biomarker for the precise targeting of HIRI. Hence, we developed a viscosity-activatable second near-infrared window fluorescent probe (NP-V) for the detection of lysosomal viscosity in hepatocytes and mice during HIRI. A reactive oxygen species-malondialdehyde-cathepsin B signaling pathway during HIRI was established. We further conducted high signal-to-background ratio NIR-II fluorescence imaging of HIRI mice. The contour and boundary of liver lesions were delineated, and as such the precise intraoperative resection of the lesion area was implemented. This research demonstrates the potential of NP-V as a dual-functional probe for the elucidation of HIRI pathogenesis and the direct navigation of HIRI lesions in clinical applications.
Collapse
Affiliation(s)
- Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Chunmiao Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Mengmei Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Zhenzhen Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Luling Wu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Tony D James
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China.,Department of Chemistry, University of Bath, Bath BA2 7AY, U.K.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan 250014, People's Republic of China
| |
Collapse
|
28
|
Li S, Li Q, Chen W, Song Z, An Y, Chen P, Wu Y, Wang G, He Y, Miao Q. A Renal-Clearable Activatable Molecular Probe for Fluoro-Photacoustic and Radioactive Imaging of Cancer Biomarkers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201334. [PMID: 35723177 DOI: 10.1002/smll.202201334] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In vivo simultaneous visualization of multiple biomarkers is critical to accurately diagnose disease and decipher fundamental processes at a certain pathological evolution, which however is rarely exploited. Herein, a multimodal activatable imaging probe (P-125 I) is reported with activatable fluoro-photoacoustic and radioactive signal for in vivo imaging of biomarkers (i.e., hepsin and prostate-specific membrane antigen (PSMA)) associated with prostate cancer diagnosis and prognosis. P-125 I contains a near-infrared (NIR) dye that is caged with a hepsin-cleavable peptide sequence and linked with a radiolabeled PSMA-targeted ligand (PSMAL). After systemic administration, P-125 I actively targets the tumor site via specific recognition between PSMA and PSMAL moiety and in-situ generates of activated fluoro-photoacoustic signal after reacting with hepsin to release the free dye (uncaged state). P-125 I achieves precisely early detection of prostate cancer and renal clearance to alleviate toxicity issues. In addition, the accumulated radioactive and activated photoacoustic signal of probe correlates well with the respective expression level of PSMA and hepsin, which provides valuable foreseeability for cancer progression and prognosis. Thus, this study presents a multimodal activatable probe for early detection and in-depth deciphering of prostate cancer.
Collapse
Affiliation(s)
- Shenhua Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Zhuorun Song
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yi An
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yan Wu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guanglin Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
29
|
He H, Zhang X, Du L, Ye M, Lu Y, Xue J, Wu J, Shuai X. Molecular imaging nanoprobes for theranostic applications. Adv Drug Deliv Rev 2022; 186:114320. [PMID: 35526664 DOI: 10.1016/j.addr.2022.114320] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/11/2022] [Accepted: 04/30/2022] [Indexed: 12/13/2022]
Abstract
As a non-invasive imaging monitoring method, molecular imaging can provide the location and expression level of disease signature biomolecules in vivo, leading to early diagnosis of relevant diseases, improved treatment strategies, and accurate assessment of treating efficacy. In recent years, a variety of nanosized imaging probes have been developed and intensively investigated in fundamental/translational research and clinical practice. Meanwhile, as an interdisciplinary discipline, this field combines many subjects of chemistry, medicine, biology, radiology, and material science, etc. The successful molecular imaging not only requires advanced imaging equipment, but also the synthesis of efficient imaging probes. However, limited summary has been reported for recent advances of nanoprobes. In this paper, we summarized the recent progress of three common and main types of nanosized molecular imaging probes, including ultrasound (US) imaging nanoprobes, magnetic resonance imaging (MRI) nanoprobes, and computed tomography (CT) imaging nanoprobes. The applications of molecular imaging nanoprobes were discussed in details. Finally, we provided an outlook on the development of next generation molecular imaging nanoprobes.
Collapse
Affiliation(s)
- Haozhe He
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Xindan Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lihua Du
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China
| | - Minwen Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yonglai Lu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jun Wu
- PCFM Lab of Ministry of Education, School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510260, China.
| |
Collapse
|
30
|
Luo D, Wang X, Walker E, Springer S, Ramamurthy G, Burda C, Basilion JP. Targeted Chemoradiotherapy of Prostate Cancer Using Gold Nanoclusters with Protease Activatable Monomethyl Auristatin E. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14916-14927. [PMID: 35316026 PMCID: PMC9153066 DOI: 10.1021/acsami.1c23780] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Combined radiotherapy (RT) and chemotherapy are prescribed to patients with advanced prostate cancer (PCa) to increase their survival; however, radiation-related side effects and systematic toxicity caused by chemotherapeutic drugs are unavoidable. To improve the precision and efficacy of concurrent RT and chemotherapy, we have developed a PCa-targeted gold nanocluster radiosensitizer conjugated with a highly potent cytotoxin, monomethyl auristatin E, PSMA-AuNC-MMAE, for RT and chemotherapy of PCa. This approach resulted in enhanced uptake of NCs by PSMA-positive cancer cells, targeted chemotherapy, and increased efficacy of RT both in vitro and in vivo. In addition, the combination of gold and MMAE further increased the efficacy of either of the agents delivered alone or simultaneously but not covalently linked. The PSMA-AuNC-MMAE conjugates improve the specificity and efficacy of radiation and chemotherapy, potentially reducing the toxicity of each therapy and making this an attractive avenue for clinical treatment of advanced PCa.
Collapse
|
31
|
Chen Y, Minn I, Rowe SP, Lisok A, Chatterjee S, Brummet M, Banerjee SR, Mease RC, Pomper MG. A Series of PSMA-Targeted Near-Infrared Fluorescent Imaging Agents. Biomolecules 2022; 12:biom12030405. [PMID: 35327597 PMCID: PMC8946146 DOI: 10.3390/biom12030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023] Open
Abstract
We have synthesized a series of 10 new, PSMA-targeted, near-infrared imaging agents intended for use in vivo for fluorescence-guided surgery (FGS). Compounds were synthesized from the commercially available amine-reactive active NHS ester of DyLight800. We altered the linker between the PSMA-targeting urea moiety and the fluorophore with a view to improve the pharmacokinetics. Chemical yields for the conjugates ranged from 51% to 86%. The Ki values ranged from 0.10 to 2.19 nM. Inclusion of an N-bromobenzyl substituent at the ε-amino group of lysine enhanced PSMA+ PIP tumor uptake, as did hydrophilic substituents within the linker. The presence of a polyethylene glycol chain within the linker markedly decreased renal uptake. In particular, DyLight800-10 demonstrated high specific uptake relative to background signal within kidney, confirmed by immunohistochemistry. These compounds may be useful for FGS in prostate, renal or other PSMA-expressing cancers.
Collapse
|
32
|
Doan TKD, Umezawa M, Kobayashi H, Oshima A, Ikeda K, Okubo K, Kamimura M, Soga K. Influence of physiological media on over-1000 nm NIR fluorescent DSPE-PEG micelles for bio-imaging. CHEM LETT 2022. [DOI: 10.1246/cl.210700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Thi Kim Dung Doan
- Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022 Japan
- Division of Functional Imaging, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 6-5-1 Kashiwanoha, Kashiwa 277-8577, Japan
| | - Masazaku Umezawa
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Hisanori Kobayashi
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Atsushi Oshima
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kazuno Ikeda
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kyohei Okubo
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Masao Kamimura
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Kohei Soga
- Research Institute for Biomedical Science, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022 Japan
- Department of Material Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| |
Collapse
|
33
|
Xu L, Peng X, Ma G, Zeng M, Wu K, Liu L. Naphthalene anhydride triphenylamine as a viscosity-sensitive molecular rotor for liquid safety inspection. NEW J CHEM 2022. [DOI: 10.1039/d1nj04953d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Naphthalene anhydride triphenylamine as a viscosity-sensitive rotor was designed for carrying out fluorescence investigations on beverage deterioration.
Collapse
Affiliation(s)
- Lingfeng Xu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
- State Key Laboratory of Luminescent Materials & Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinkang Peng
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Gengxiang Ma
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253026, China
| | - Mei Zeng
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Kui Wu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| | - Limin Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji’an, Jiangxi 343009, China
| |
Collapse
|