1
|
Wu Y, Wang Y, Bao D, Deng X, Zhang S, Yu-Chun L, Ke S, Liu J, Liu Y, Wang Z, Ham P, Hanna A, Pan J, Hu X, Li Z, Zhou J, Wang C. Emerging probing perspective of two-dimensional materials physics: terahertz emission spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2024; 13:146. [PMID: 38951490 PMCID: PMC11217405 DOI: 10.1038/s41377-024-01486-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/09/2024] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Terahertz (THz) emission spectroscopy (TES) has emerged as a highly effective and versatile technique for investigating the photoelectric properties of diverse materials and nonlinear physical processes in the past few decades. Concurrently, research on two-dimensional (2D) materials has experienced substantial growth due to their atomically thin structures, exceptional mechanical and optoelectronic properties, and the potential for applications in flexible electronics, sensing, and nanoelectronics. Specifically, these materials offer advantages such as tunable bandgap, high carrier mobility, wideband optical absorption, and relatively short carrier lifetime. By applying TES to investigate the 2D materials, their interfaces and heterostructures, rich information about the interplay among photons, charges, phonons and spins can be unfolded, which provides fundamental understanding for future applications. Thus it is timely to review the nonlinear processes underlying THz emission in 2D materials including optical rectification, photon-drag, high-order harmonic generation and spin-to-charge conversion, showcasing the rich diversity of the TES employed to unravel the complex nature of these materials. Typical applications based on THz emissions, such as THz lasers, ultrafast imaging and biosensors, are also discussed. Step further, we analyzed the unique advantages of spintronic terahertz emitters and the future technological advancements in the development of new THz generation mechanisms leading to advanced THz sources characterized by wide bandwidth, high power and integration, suitable for industrial and commercial applications. The continuous advancement and integration of TES with the study of 2D materials and heterostructures promise to revolutionize research in different areas, including basic materials physics, novel optoelectronic devices, and chips for post-Moore's era.
Collapse
Affiliation(s)
- Yifei Wu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yuqi Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Di Bao
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xiaonan Deng
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Simian Zhang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Lin Yu-Chun
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Shengxian Ke
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jianing Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Yingjie Liu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zeli Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Pingren Ham
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Andrew Hanna
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Jiaming Pan
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Xinyue Hu
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Zhengcao Li
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China
| | - Chen Wang
- State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
- Beijing Advanced Innovation Center for Integrated Circuits, 100084, Beijing, China.
| |
Collapse
|
2
|
Guo L, Hu S, Gu X, Zhang R, Wang K, Yan W, Sun X. Emerging Spintronic Materials and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301854. [PMID: 37309258 DOI: 10.1002/adma.202301854] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/01/2023] [Indexed: 06/14/2023]
Abstract
The explosive growth of the information era has put forward urgent requirements for ultrahigh-speed and extremely efficient computations. In direct contrary to charge-based computations, spintronics aims to use spins as information carriers for data storage, transmission, and decoding, to help fully realize electronic device miniaturization and high integration for next-generation computing technologies. Currently, many novel spintronic materials have been developed with unique properties and multifunctionalities, including organic semiconductors (OSCs), organic-inorganic hybrid perovskites (OIHPs), and 2D materials (2DMs). These materials are useful to fulfill the demand for developing diverse and advanced spintronic devices. Herein, these promising materials are systematically reviewed for advanced spintronic applications. Due to the distinct chemical and physical structures of OSCs, OIHPs, and 2DMs, their spintronic properties (spin transport and spin manipulation) are discussed separately. In addition, some multifunctionalities due to photoelectric and chiral-induced spin selectivity (CISS) are overviewed, including the spin-filter effect, spin-photovoltaics, spin-light emitting devices, and spin-transistor functions. Subsequently, challenges and future perspectives of using these multifunctional materials for the development of advanced spintronics are presented.
Collapse
Affiliation(s)
- Lidan Guo
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Shunhua Hu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xianrong Gu
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Rui Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Wenjing Yan
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG9 2RD, UK
| | - Xiangnan Sun
- Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
3
|
Abdukayumov K, Mičica M, Ibrahim F, Vojáček L, Vergnaud C, Marty A, Veuillen JY, Mallet P, de Moraes IG, Dosenovic D, Gambarelli S, Maurel V, Wright A, Tignon J, Mangeney J, Ouerghi A, Renard V, Mesple F, Li J, Bonell F, Okuno H, Chshiev M, George JM, Jaffrès H, Dhillon S, Jamet M. Atomic-Layer Controlled Transition from Inverse Rashba-Edelstein Effect to Inverse Spin Hall Effect in 2D PtSe 2 Probed by THz Spintronic Emission. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304243. [PMID: 38160244 DOI: 10.1002/adma.202304243] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 11/09/2023] [Indexed: 01/03/2024]
Abstract
2D materials, such as transition metal dichalcogenides, are ideal platforms for spin-to-charge conversion (SCC) as they possess strong spin-orbit coupling (SOC), reduced dimensionality and crystal symmetries as well as tuneable band structure, compared to metallic structures. Moreover, SCC can be tuned with the number of layers, electric field, or strain. Here, SCC in epitaxially grown 2D PtSe2 by THz spintronic emission is studied since its 1T crystal symmetry and strong SOC favor SCC. High quality of as-grown PtSe2 layers is demonstrated, followed by in situ ferromagnet deposition by sputtering that leaves the PtSe2 unaffected, resulting in well-defined clean interfaces as evidenced with extensive characterization. Through this atomic growth control and using THz spintronic emission, the unique thickness-dependent electronic structure of PtSe2 allows the control of SCC. Indeed, the transition from the inverse Rashba-Edelstein effect (IREE) in 1-3 monolayers (ML) to the inverse spin Hall effect (ISHE) in multilayers (>3 ML) of PtSe2 enabling the extraction of the perpendicular spin diffusion length and relative strength of IREE and ISHE is demonstrated. This band structure flexibility makes PtSe2 an ideal candidate to explore the underlying mechanisms and engineering of the SCC as well as for the development of tuneable THz spintronic emitters.
Collapse
Affiliation(s)
- Khasan Abdukayumov
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| | - Martin Mičica
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, 75005, France
| | - Fatima Ibrahim
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| | - Libor Vojáček
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| | - Céline Vergnaud
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| | - Alain Marty
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| | - Jean-Yves Veuillen
- CNRS, Université Grenoble Alpes, Grenoble INP-UGA, Institut NéeL, Grenoble, 38000, France
| | - Pierre Mallet
- CNRS, Université Grenoble Alpes, Grenoble INP-UGA, Institut NéeL, Grenoble, 38000, France
| | | | | | - Serge Gambarelli
- CEA, CNRS, IRIG-SYMMES, Université Grenoble Alpes, Grenoble, 38000, France
| | - Vincent Maurel
- CEA, CNRS, IRIG-SYMMES, Université Grenoble Alpes, Grenoble, 38000, France
| | - Adrien Wright
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, 75005, France
| | - Jérôme Tignon
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, 75005, France
| | - Juliette Mangeney
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, 75005, France
| | - Abdelkarim Ouerghi
- CNRS, Centre de Nanosciences et de Nanotechnologies, Université Paris-Saclay, Palaiseau, 91120, France
| | - Vincent Renard
- CEA, IRIG-Pheliqs, Université Grenoble Alpes, Grenoble, 38000, France
| | - Florie Mesple
- CEA, IRIG-Pheliqs, Université Grenoble Alpes, Grenoble, 38000, France
| | - Jing Li
- CEA, Leti, Université Grenoble Alpes, Grenoble, 38000, France
| | - Frédéric Bonell
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| | - Hanako Okuno
- CEA, IRIG-MEM, Université Grenoble Alpes, Grenoble, 38000, France
| | - Mairbek Chshiev
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
- Institut Universitaire de France, Paris, 75231, France
| | - Jean-Marie George
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, F-91767, France
| | - Henri Jaffrès
- Unité Mixte de Physique, CNRS, Thales, Université Paris-Saclay, Palaiseau, F-91767, France
| | - Sukhdeep Dhillon
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, 75005, France
| | - Matthieu Jamet
- CEA, CNRS, Université Grenoble Alpes, Grenoble INP, IRIG-Spintec, Grenoble, 38000, France
| |
Collapse
|
4
|
Liu C, Vella J, Eedugurala N, Mahalingavelar P, Bills T, Salcido‐Santacruz B, Sfeir MY, Azoulay JD. Ultrasensitive Room Temperature Infrared Photodetection Using a Narrow Bandgap Conjugated Polymer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304077. [PMID: 37888896 PMCID: PMC10754133 DOI: 10.1002/advs.202304077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Photodetectors operating across the short-, mid-, and long-wave infrared (SWIR-LWIR, λ = 1-14 µm) underpin modern science, technology, and society in profound ways. Narrow bandgap semiconductors that form the basis for these devices require complex manufacturing, high costs, cooling, and lack compatibility with silicon electronics, attributes that remain prohibitive for their widespread usage and the development of emerging technologies. Here, a photoconductive detector, fabricated using a solution-processed narrow bandgap conjugated polymer is demonstrated that enables charge carrier generation in the infrared and ultrasensitive SWIR-LWIR photodetection at room temperature. Devices demonstrate an ultralow electronic noise that enables outstanding performance from a simple, monolithic device enabling a high detectivity (D*, the figure of merit for detector sensitivity) >2.44 × 109 Jones (cm Hz1/2 W-1 ) using the ultralow flux of a blackbody that mirrors the background emission of objects. These attributes, ease of fabrication, low dark current characteristics, and highly sensitive operation overcome major limitations inherent within modern narrow-bandgap semiconductors, demonstrate practical utility, and suggest that uncooled detectivities superior to many inorganic devices can be achieved at high operating temperatures.
Collapse
Affiliation(s)
- Chih‐Ting Liu
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Jarrett Vella
- Sensor DirectorateAir Force Research LaboratoryWright‐Patterson Air Force BaseDaytonOH45433USA
| | - Naresh Eedugurala
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Paramasivam Mahalingavelar
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Tyler Bills
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Bernardo Salcido‐Santacruz
- Photonics InitiativeAdvanced Science Research CenterCity University of New YorkNew YorkNY10031USA
- Department of ChemistryThe Graduate CenterCity University of New YorkNew YorkNY10016USA
| | - Matthew Y. Sfeir
- Photonics InitiativeAdvanced Science Research CenterCity University of New YorkNew YorkNY10031USA
- Department of ChemistryThe Graduate CenterCity University of New YorkNew YorkNY10016USA
- Department of PhysicsThe Graduate CenterCity University of New YorkNew YorkNY10016USA
| | - Jason D. Azoulay
- School of Chemistry and Biochemistry and School of Materials Science and EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| |
Collapse
|
5
|
Liu Y, Gong Y, Geng S, Feng M, Manidaki D, Deng Z, Stoumpos CC, Canepa P, Xiao Z, Zhang W, Mao L. Hybrid Germanium Bromide Perovskites with Tunable Second Harmonic Generation. Angew Chem Int Ed Engl 2022; 61:e202208875. [DOI: 10.1002/anie.202208875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Yang Liu
- Department of Chemistry SUSTech Energy Institute for Carbon Neutrality Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| | - Ya‐Ping Gong
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou Guangdong 510275 P. R. China
| | - Shining Geng
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Mei‐Ling Feng
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| | - Despoina Manidaki
- Department of Materials Science and Technology University of Crete Heraklion 70013 Greece
| | - Zeyu Deng
- Department of Materials Science and Engineering National University of Singapore Singapore 117575 Singapore
| | | | - Pieremanuele Canepa
- Department of Materials Science and Engineering National University of Singapore Singapore 117575 Singapore
- Department of Chemical and Biomolecular Engineering National University of Singapore Singapore 117585 Singapore
| | - Zewen Xiao
- Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Wei‐Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat-Sen University Guangzhou Guangdong 510275 P. R. China
| | - Lingling Mao
- Department of Chemistry SUSTech Energy Institute for Carbon Neutrality Southern University of Science and Technology Shenzhen Guangdong 518055 P. R. China
| |
Collapse
|
6
|
Liu Y, Gong YP, Geng S, Feng ML, Manidaki D, Deng Z, Stoumpos CC, Canepa P, Xiao Z, Zhang WX, Mao L. Hybrid Germanium Bromide Perovskites with Tunable Second Harmonic Generation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yang Liu
- Southern University of Science and Technology Chemistry CHINA
| | | | - Shining Geng
- Huazhong University of Science and Technology Wuhan National Laboratory for Optoelectronics CHINA
| | - Mei-Ling Feng
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter Chemistry CHINA
| | - Despoina Manidaki
- University of Crete Heraklion Campus: Panepistemio Kretes Panepistemioupole Bouton Materials Science and Technology GREECE
| | - Zeyu Deng
- National University of Singapore Materials Science and Engineering SINGAPORE
| | - Constantinos C. Stoumpos
- University of Crete Heraklion Campus: Panepistemio Kretes Panepistemioupole Bouton Materials Science and Technology GREECE
| | - Pieremanuele Canepa
- National University of Singapore Materials Science and Engineering SINGAPORE
| | - Zewen Xiao
- Huazhong University of Science and Technology Wuhan National Laboratory for Optoelectronics CHINA
| | | | - Lingling Mao
- Southern University of Science and Technology Chemistry No. 1088 Xueyuan Avenue, Nanshan District, Shenzhen, Guangdong Province 518055 Shenzhen CHINA
| |
Collapse
|
7
|
Chen Z, Liu Y, Gong S, Zhang Z, Cao Q, Mao L, Chen X, Lu H. Expanding the Absorption and Photoresponse of 1D Lead-Halide Perovskites via Ultrafast Charge Transfer. J Chem Phys 2022; 157:084705. [DOI: 10.1063/5.0105878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Low-dimensional metal halide perovskites are attracting extensive attentions due to their enhanced quantum confinement and stability compared to three-dimensional perovskites. However, low dimensional connectivity in the inorganic frameworks leads to strongly bounded excitons with limited absorption properties, which impedes their application in photovoltaic devices. Here, we show that by incorporating a strong electron accepting methylviologen (MV) cation, charge transfer (CT) at the organic/inorganic interface can effectively tune the optical properties in one-dimensional (1D) lead-halide perovskites. Both 1D MVPb2I6 and MVPb2Br6 display expanded absorption and photoresponse activity compared to CT inactive cations. The photoinduced CT process in MVPb2I6 was further characterized by transient absorption spectroscopy, which shows an ultrafast CT process within 1 ps, generating charge separated states. Our work unveils the interesting photophysics of these unconventional 1D perovskites with functional organic chromophores.
Collapse
Affiliation(s)
- Zhongwei Chen
- The Hong Kong University of Science and Technology, Hong Kong
| | - Yang Liu
- Southern University of Science and Technology, China
| | - Shaokuan Gong
- Southern University of Science and Technology, China
| | - Zixuan Zhang
- The Hong Kong University of Science and Technology, Hong Kong
| | - Qinxuan Cao
- The Hong Kong University of Science and Technology, Hong Kong
| | - Lingling Mao
- Southern University of Science and Technology, China
| | - Xihan Chen
- Southern University of Science and Technology, China
| | - Haipeng Lu
- The Hong Kong University of Science and Technology, Hong Kong
| |
Collapse
|
8
|
Meng Q, Ding J, Peng B, Zhang B, Qian S, Su B, Zhang C. Terahertz modulation characteristics of three nanosols under external field control based on microfluidic chip. iScience 2022; 25:104898. [PMID: 36043051 PMCID: PMC9420507 DOI: 10.1016/j.isci.2022.104898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 11/26/2022] Open
Abstract
Recently, with the widespread application of metamaterials in the terahertz (THz) modulation field, solid-state THz modulators have made breakthrough progress; however, there are still challenges in preparing flexible THz modulators with wide modulation bandwidths. In this study, a THz microfluidic chip was fabricated using cycloolefin copolymers with high transmission (90%) of THz waves. The THz modulation characteristics of TiO2, Ag, and Fe3O4 nanosols under the control of an optical field, electric field, and magnetic field, respectively, were investigated. Under the action of photogenerated carrier migration, colloidal electrophoresis, and magneto-optical effect, all three nanosols exhibit broadband modulation performance in the frequency range of 0.3–2.4 THz, and the maximum modulation depth is 24%, 33%, and 54%, respectively. Contrary to previous studies based on traditional solid-state materials, this study innovatively explores the possibility of modulating THz waves with liquid materials, laying the foundation for the application of flexible liquid-film THz modulators. THz broadband amplitude modulation of liquid nanosols under external fields Using a microfluidic chip to reduce the absorption of THz waves by hydrogen bonds The experimental results lay a foundation for liquid-film THz modulators
Collapse
|
9
|
Yumoto G, Sekiguchi F, Hashimoto R, Nakamura T, Wakamiya A, Kanemitsu Y. Rapidly expanding spin-polarized exciton halo in a two-dimensional halide perovskite at room temperature. SCIENCE ADVANCES 2022; 8:eabp8135. [PMID: 35905182 PMCID: PMC9337763 DOI: 10.1126/sciadv.abp8135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Monitoring of the spatially resolved exciton spin dynamics in two-dimensional semiconductors has revealed the formation of a spatial pattern and long-range transport of the spin-polarized excitons, which holds promise for exciton-based spin-optoelectronic applications. However, the spatial evolution has been restricted to cryogenic temperatures because of the short exciton spin relaxation times at room temperature. Here, we report that two-dimensional halide perovskites can overcome this limitation owing to their relatively long exciton spin relaxation times and substantial exciton-exciton interactions. We demonstrate the emergence of a halo-like spatial profile in spin-polarized exciton population and its ultrafast expansion at room temperature by performing time-resolved Faraday rotation imaging of spin-polarized excitons in two-dimensional perovskite (C4H9NH3)2(CH3NH3)3Pb4I13. Exciton-exciton exchange interactions induce density-dependent nonlinear relaxation and ultrafast transport of exciton spins and give rise to a rapidly expanding halo-like spatial pattern. The density-dependent spatial control suggests the potential of using two-dimensional halide perovskites for spin-optoelectronic applications.
Collapse
|
10
|
Xiong H, Sun H, Zhou J, Li H, Zhang H, Liu S, Cai J, Feng L, Miao J, Chen S, Wu X. Terahertz anisotropy in fascia and lean meat tissues. BIOMEDICAL OPTICS EXPRESS 2022; 13:2605-2615. [PMID: 35774311 PMCID: PMC9203107 DOI: 10.1364/boe.454338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Terahertz (THz) spectroscopy provides multifaceted capabilities for observing low-energy responses of macromolecules, cells and tissues, understanding THz biophysical effects, and expecting to realize the application of THz technology in biomedicine. However, its high-frequency characteristics of limited penetration depth and strong absorption of water in the body comparable to microwaves are impeding the proliferation of THz spectroscopy. Here we show that THz spectroscopy makes possible the observation of THz anisotropy phenomena for the first time in fascia and lean tissue. Through optical microscopy, we infer that the microscopic mechanism of THz anisotropy comes from the periodic stripe structure of the biological tissue. The above related experimental findings may be expected to promote the application of THz technology in biomedicine.
Collapse
Affiliation(s)
- Hongting Xiong
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University (Shahe Campus), 9 Nansan Street, Shahe Higher Education Park, Changping, Beijing 102206, China
| | - Jiangping Zhou
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Haotian Li
- SHENYUAN Honors College, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Hao Zhang
- SHENYUAN Honors College, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Shaojie Liu
- School of Cyber Science and Technology, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Jiahua Cai
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University (Shahe Campus), 9 Nansan Street, Shahe Higher Education Park, Changping, Beijing 102206, China
| | - Jungang Miao
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Sai Chen
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| | - Xiaojun Wu
- School of Electronic and Information Engineering, Beihang University, 37 Xueyuan Road, Beijing 100191, China
| |
Collapse
|
11
|
Ge F, Li BH, Cheng P, Li G, Ren Z, Xu J, Bu XH. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angew Chem Int Ed Engl 2022; 61:e202115024. [PMID: 35001461 DOI: 10.1002/anie.202115024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 12/21/2022]
Abstract
Chiral hybrid organic-inorganic metal halides (HOMHs) with intrinsic noncentrosymmetry have shown great promise for applications in second-order nonlinear optics (NLO). However, established chiral HOMHs often suffer from their relatively small band gaps, which lead to negative impacts on transparent window and laser-induced damage thresholds (LDT). Here, we have synthesized two chiral HOMHs based on CuI halides, namely (R-/S-MBA)CuBr2 , which feature well-balanced NLO performances with a highly efficient SHG response, outstanding optical transparency, and high LDT. The effective second-order NLO coefficient of (R-MBA)CuBr2 has been determined to be ≈24.7 pm V-1 , which is two orders of magnitude higher than that of their CuII counterparts. This work shows the promising potential of CuI -based chiral HOMHs for nonlinear photonic applications in wide wavelength regions.
Collapse
Affiliation(s)
- Fei Ge
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Bo-Han Li
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Geng Li
- National Supercomputer Center in Tianjin, Tianjin, 300457, China
| | - Zefeng Ren
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Tianjin, 300350, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Weijin Road 94, Tianjin, 300071, P. R. China
| |
Collapse
|
12
|
Ge F, Li BH, Cheng P, Li G, Ren Z, Xu J, Bu XH. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fei Ge
- Nankai University School of Mathematical Sciences CHINA
| | - Bo-Han Li
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Puxin Cheng
- Nankai University School of Mathematical Sciences CHINA
| | - Geng Li
- National Supercomputer Centre in Linkoping national supercomputer Center in Tianjin CHINA
| | - Zefeng Ren
- Chinese Academy of Sciences Dalian Institute of Chemical Physics CHINA
| | - Jialiang Xu
- Nankai University School of Materials Science and Engineering Tongyan Road 38 300350 Tianjin CHINA
| | - Xian-He Bu
- Nankai University School of Mathematical Sciences CHINA
| |
Collapse
|