1
|
Migliavacca M, Cedrún-Morales M, Ceballos M, Soprano E, Polo E, Pelaz B, Pino PD. Engineered cell membrane-cloaked metal-organic framework nanocrystals for intracellular cargo delivery. J Colloid Interface Sci 2025; 682:31-40. [PMID: 39612761 DOI: 10.1016/j.jcis.2024.11.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 11/07/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024]
Abstract
This investigation demonstrates the development and functionality of cell membrane-cloaked UiO-67 nanosized metal-organic frameworks (NMOFs), which are engineered for precise intracellular delivery of encapsulated cargoes. Utilizing the robust and porous nature of UiO-67, we enveloped these NMOFs with fusogenic cell membrane-derived nanovesicles (FCSMs) sourced from adenocarcinomic human alveolar basal epithelial (A549) cells. This biomimetic coating enhances biocompatibility and leverages the homotypic targeting capabilities of the cell-derived coatings, facilitating direct cytoplasmic delivery and avoiding endolysosomal entrapment. Our nanoplatform exhibited high efficiency in loading and releasing two model cargoes: cresyl violet (CV), a staining agent, and carboplatin (CbPt), a chemotherapeutic agent. This approach demonstrated substantial potential in drug delivery in both 2D cell cultures and 3D spheroids. This study underscores the enhanced cellular uptake facilitated by the engineered biomimetic shell and highlights the system's capacity for sustained release, offering a promising strategy for targeted drug delivery.
Collapse
Affiliation(s)
- Martina Migliavacca
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Manuela Cedrún-Morales
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Manuel Ceballos
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Enrica Soprano
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Ester Polo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Bioquímica y Biología Molecular, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | - Pablo Del Pino
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15705 Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Jing D, Zhang J, Li Z, Yan W, Guo Y. Nanomotors activating both cGAS-STING pathway and immune checkpoint blockade for tumor therapy and bioimaging. Talanta 2025; 284:127258. [PMID: 39586211 DOI: 10.1016/j.talanta.2024.127258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Cellular innate immune response is closely related to cGAS-STING pathway and PD-1/PD-L1 immune checkpoint blockade. The lack of tissue penetration of STING agonists and nanomedicines in conventional approaches reduces their immunotherapeutic efficacy. At the same time, because the cGAS-STING signaling pathway is silent in many breast cancer cells, it cannot play its role. To address these challenges, here, we developed a silica nanomotor based on bubble propulsion. Its hollow structure was packed with the photosensitizer Ce6 molecule. Under 808 nm laser irradiation, Ce6 produced 1O2, which lead to intracellular DNA damage and further activated the cGAS-STING pathway, stimulating the maturation of DC cells, and enhancing the tumor infiltration of CD8+ T cells. The nanomotor had an asymmetrical structure. One side of the nanomotor was modified with Pt nanoparticle. This asymmetric modification can catalyze H2O2 in the environment, producing an asymmetric concentration of O2, which realized the bubble driving nanomotor movement and enhances penetration into breast cancer cells of nanomotor. The other side of the nanomotor was modified the LXL-1 aptamer, triphenylphosphine and peptide CLP002. Peptide CLP002 specifically bound residues of PD-L1 interaction with PD-1, blocked the mutual binding between PD-1 and PD-L1, and further improved the immune response ability of tumor infiltrating T cells. In this study, we developed a multi-pronged immunotherapy strategy of intelligent target finding, breaking through the physiological barrier through kinetic energy, accurately intervening the target and bioimaging, providing a new idea for breast cancer cells targeted therapy.
Collapse
Affiliation(s)
- Dan Jing
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ji Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Ziyi Li
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Wennan Yan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yingshu Guo
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
| |
Collapse
|
3
|
Qiu P, Wen M, Zhuang Z, Niu S, Tao C, Yu N, Chen Z. Biomimetic polymeric nanoreactors with photooxidation-initiated therapies and reinvigoration of antigen-dependent and antigen-free immunity. Biomaterials 2025; 314:122884. [PMID: 39405823 DOI: 10.1016/j.biomaterials.2024.122884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 11/10/2024]
Abstract
Immune cell-mediated anticancer modalities usually suffer from immune cell exhaustion and limited efficacy in solid tumors. Herein, the oxygen-carrying biomimetic nanoreactors (BNR2(O2)) have been developed with photooxidation-driven therapies and antigen-dependent/antigen-free immune reinvigoration against xenograft tumors. The BNR2(O2) composes polymeric nanoreactors camouflaged with cancer cell membranes can efficiently target homotypic tumors. It continuously releases O2 to boost intracellular reactive oxygen species (ROS) to oxide diselenide bonds, which controllably releases seleninic acids and anti-folate Pemetrexed compared to hydrogen peroxide and glutathione incubation. The O2-rich microenvironment sensitizes Pemetrexed and blocks programmed cell-death ligand 1 (PD-L1) to reverse T cell immunosuppression. The ROS and Pemetrexed upregulate pro-apoptosis proteins and inhibit folate-related enzymes, which cause significant apoptosis and immunogenic cell death to stimulate dendritic cell maturation for improved secretion of cytokines, expanding antigen-dependent T cell immunity. Furthermore, by regulating the release of seleninic acids, the checkpoint receptor human leukocyte antigen E of tumor cells can be blocked to reinvigorate antigen-free natural killer cell immunity. This work offers an advanced antitumor strategy by bridging biomimetic nanoreactors and modulation of multiple immune cells.
Collapse
Affiliation(s)
- Pu Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Mei Wen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zixuan Zhuang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Shining Niu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Cheng Tao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Nuo Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Zhigang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
4
|
Wang Z, Chen J, Wang J, Xu M, Yang H, Yang H, Zhao C, Sun P, Ji H, Liu J, Shan J, Tian J, Li S, Yu D, Wang C, Yu X, Ding S, Xu W, Zhang Y, Leng X, R-Porter T. MSCs biomimetic ultrasonic phase change nanoparticles promotes cardiac functional recovery after acute myocardial infarction. Biomaterials 2025; 313:122775. [PMID: 39241549 DOI: 10.1016/j.biomaterials.2024.122775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 09/09/2024]
Abstract
Acute Myocardial Infarction (AMI) has seen rising cases, particularly in younger people, leading to public health concerns. Standard treatments, like coronary artery recanalization, often don't fully repair the heart's microvasculature, risking heart failure. Advances show that Mesenchymal Stromal Cells (MSCs) transplantation improves cardiac function after AMI, but the harsh microenvironment post-AMI impacts cell survival and therapeutic results. MSCs aid heart repair via their membrane proteins and paracrine extracellular vesicles that carry microRNA-125b, which regulates multiple targets, preventing cardiomyocyte death, limiting fibroblast growth, and combating myocardial remodeling after AMI. This study introduces ultrasound-responsive phase-change bionic nanoparticles, leveraging MSCs' natural properties. These particles contain MSC membrane and microRNA-125b, with added macrophage membrane for stability. Using Ultrasound Targeted Microbubble Destruction (UTMD), this method targets the delivery of MSC membrane proteins and microRNA-125b to AMI's inflamed areas. This aims to enhance cardiac function recovery and provide precise, targeted AMI therapy.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Jianfeng Chen
- Laboratory Animal Center, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jiaxu Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Mingyuan Xu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Haichao Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Haobo Yang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Chen Zhao
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Ping Sun
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China; Key Laboratories of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, 150086, China
| | - Huan Ji
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Jinhong Liu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Jiaxin Shan
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Jiawei Tian
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Shouqiang Li
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China
| | - Dandan Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Chao Wang
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Xinhong Yu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Shuo Ding
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Wenjun Xu
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
| | - Ying Zhang
- Ultrasound Imaging Department of the Second Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.
| | - Xiaoping Leng
- Department of Ultrasound, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province (International Cooperation), Harbin, 150086, China.
| | - Thomas R-Porter
- Department of Cardiology, University of Nebraska Medical Center, Omaha, NE, NE 68198, USA
| |
Collapse
|
5
|
Huang G, He Y, Chen X, Yin T, Ma A, Zhu L, Chen L, Liang R, Zhang P, Pan H, Cai L. Bioorthogonal oncolytic-virus nanovesicles combined bio-immunotherapy with CAR-T cells for solid tumors. Biomater Sci 2025; 13:457-465. [PMID: 39607022 DOI: 10.1039/d4bm01305k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Various oncolytic viruses (OVs) have been adopted as therapeutic tools to increase the efficacy of chimeric antigen receptor (CAR)-T cells against solid tumors. However, the therapeutic effect of OVs has been limited by pre-existing neutralizing antibodies and poor targeting delivery for systemic administration. Herein, we propose using bioorthogonal OV nanovesicles to boost the antitumor effects of CAR-T cells in solid tumors by reshaping the tumor microenvironment. Using a cell-membrane nanomimetic technique, we embedded artificial chemical ligands on cancer cell surfaces and then encapsulated lysoviral particles to obtain dual-targeted OV nanovesicles with bioorthogonal targeting and homologous recognition. OVs can be directly encapsulated into cancer cell nanovesicles and exhibit a liposome-like nanostructure, efficient loading, and excellent tumor-targeting capability. Encouragingly, OV nanovesicles efficiently induced tumor-cell apoptosis while sparing normal tissues and cells, thereby inhibiting tumor growth. Administration of viral nanovesicles effectively increased the secretion of anti-tumor cytokines such as IL-2, TNF-α and IFN-γ, and significantly promoted the infiltration and activation of CD8+CAR-T cells in tumors. Our data suggest that bioorthogonal OV nanovesicles hold great potential to overcome the limitations of CAR-T cells as monotherapies against solid tumors and, thus, drive the clinical application of combination therapy.
Collapse
Affiliation(s)
- Guojun Huang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Yiran He
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaocong Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Ting Yin
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Aiqing Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
| | - Liqi Chen
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruijing Liang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Sino-European Center of Biomedicine and Health, Luohu, Shenzhen 518024, China
| |
Collapse
|
6
|
Liang C, Ding X, Li X, Jiang X, Yang H, Yang H, Liu K, Hou L. In situ self-reassembling nanosystem enhances PD-L1 blockade for cancer immunotherapy. J Control Release 2025; 377:767-780. [PMID: 39631699 DOI: 10.1016/j.jconrel.2024.11.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Although immune checkpoint inhibitors (ICIs) have made great progress in cancer treatment, their off-tumor distribution, low affinity of traditional ICIs and insufficient T cells infiltration at tumor site limit immunotherapeutic efficacy. Herein, we engineer a highly specific and effective PD-L1 inhibitor (PEC) that modulates the level of binding sites with PD-L1. Specifically, PEC is a hybrid system composed of E. coli membrane expressing PD-L1 binding protein and cancer cell membrane. Notably, PEC can target the tumor site, produce oxygen in response to H2O2, rupture into membrane fragments, and reassemble to form vesicles retaining the PD-L1 binding protein. Through in situ fracture and reassembly, PEC transforms from a hybrid membrane to a single E. coli membrane, leading to the increased density of PD-L1 binding protein. Consequently, the reassembled vesicles can bind to more PD-L1 on tumor cells and induce its degradation in lysosomes. Furthermore, the cGAS-STING signaling activators HZD is encapsulated into PEC to promote T cells infiltration. We demonstrate that PEC@HZD achieves sequential T cells recruitment and functional enhancement, thus stimulating a powerful antitumor immune response. This work provides a new perspective on tailoring ICIs to improve cancer immunotherapy.
Collapse
Affiliation(s)
- Chenglin Liang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Xinyi Ding
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Xinni Li
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojuan Jiang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Heng Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Hanxiao Yang
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China
| | - Kaikai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, School of Physics and Laboratory of Zhongyuan Light, Zhengzhou University, Zhengzhou 450001, China.
| | - Lin Hou
- School of Pharmaceutical Sciences, Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Kai M, Shen WT, Wang D, Yu Y, Zhang JA, Sun L, Fang RH, Gao W, Zhang L. Aptamer-Encapsulated Cellular Nanoparticles for Neurotoxin Neutralization. Adv Healthc Mater 2025; 14:e2403539. [PMID: 39460406 DOI: 10.1002/adhm.202403539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Aptamers are single-stranded oligonucleotides that fold into defined architectures for specific target binding. In this study, aptamers are selected that specifically bind to small-molecule neurotoxins and encapsulate them into cell membrane-coated nanoparticles (referred to as 'cellular nanoparticles' or 'CNPs') for effective neutralization of neurotoxins. Specifically, six different aptamers are selected that bind to saxitoxin (STX) or tetrodotoxin (TTX) and encapsulate them into metal-organic framework cores, which are then coated with neuronal cell membrane. The resulting CNPs exhibit high colloidal stability, minimal aptamer leakage, and effective protection of aptamer payloads against enzyme degradation. This detoxification platform combines membrane-enabled broad-spectrum neutralization with aptamer-based specific toxin binding, offering dual-modal neutralization mechanisms for efficient neurotoxin neutralization. The in vitro neutralization efficacy is demonstrated using a neuron osmotic swelling assay, a Na+ flux fluorescence assay, and a cytotoxicity assay. The in vivo neutralization efficacy is further validated using mouse models of STX and TTX intoxication in both therapeutic and preventative regimens. Overall, integrating aptamers with CNPs combines the strengths of both technologies, resulting in a robust solution for broad-spectrum toxin-neutralization applications.
Collapse
Affiliation(s)
- Mingxuan Kai
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Wei-Ting Shen
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yiyan Yu
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Jiayuan Alex Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lei Sun
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| | - Liangfang Zhang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
8
|
Paesani M, Ilie IM. Metaparticles: Computationally engineered nanomaterials with tunable and responsive properties. J Chem Phys 2024; 161:244905. [PMID: 39718149 DOI: 10.1063/5.0232274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/04/2024] [Indexed: 12/25/2024] Open
Abstract
In simulations, particles are traditionally treated as rigid platforms with variable sizes, shapes, and interaction parameters. While this representation is applicable for rigid core platforms, particles consisting of soft platforms (e.g., micelles, polymers, elastomers, and lipids) inevitably deform upon application of external stress. We introduce a generic model for flexible particles, which we refer to as MetaParticles (MPs). These particles have tunable properties, can respond to applied tension, and can deform. A MP is represented as a collection of Lennard-Jones beads interconnected by spring-like potentials. We model a series of MPs of variable sizes and symmetries, which we subject to external stress, followed by relaxation upon stress release. The positions and the orientations of the individual beads are propagated by Brownian dynamics. The simulations show that the mechanical properties of the MPs vary with size, bead arrangement, and area of applied stress, and share an elastomer-like response to applied stress. Furthermore, MPs deform following different mechanisms, i.e., small MPs change shape in one step, while larger ones follow a multi-step deformation pathway, with internal rearrangements of the beads. This model is the first step toward the development and understanding of particles with adaptable properties with applications in the biomedical field and in the design of bioinspired metamaterials.
Collapse
Affiliation(s)
- Massimiliano Paesani
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, The Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, The Netherlands
| | - Ioana M Ilie
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Center for Multiscale Modeling (ACMM), University of Amsterdam, Amsterdam, The Netherlands
- Computational Soft Matter (CSM), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Hao H, Sun S, Fu Y, Wen S, Wen Y, Yi Y, Peng Z, Fang Y, Tang J, Wang T, Wu M. Magnesium peroxide-based biomimetic nanoigniter degrades extracellular matrix to awake T cell-mediated cancer immunotherapy. Biomaterials 2024; 317:123043. [PMID: 39754969 DOI: 10.1016/j.biomaterials.2024.123043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/25/2024] [Accepted: 12/21/2024] [Indexed: 01/06/2025]
Abstract
As the elite force of our immune system, T cells play a determining role in the effectiveness of cancer immunotherapy. However, the clever tumor cells construct a strong immunosuppressive tumor microenvironment (TME) fortress to resist the attack of T cells. Herein, a magnesium peroxide (MP)-based biomimetic nanoigniter loaded with doxorubicin (DOX) and metformin (MET) is rationally designed (D/M-MP@LM) to awake T cell-mediated cancer immunotherapy via comprehensively destroying the strong TME fortress. The nanoigniter not only effectively initiate CD8+ T cell-mediated immune response by promoting the presentation of tumor antigens, but also greatly facilitate the infiltration of T cells by degrading rigid extracellular matrix (ECM). More importantly, the nanoigniter significantly augment the effector functions of infiltrated CD8+ T cells by Mg2+-mediated metalloimmunotherapy and avoid the exhaustion of CD8+ T cells by improving the acidic TME. Thus, the nanoigniter comprehensively awakes T cells and achieves remarkable tumor inhibition efficacy.
Collapse
Affiliation(s)
- Huisong Hao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yanan Fu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Simin Wen
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yingfei Wen
- The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhangwen Peng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yixuan Fang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jia Tang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Tianqi Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
10
|
Marinho A, Reis S, Nunes C. On the design of cell membrane-coated nanoparticles to treat inflammatory conditions. NANOSCALE HORIZONS 2024; 10:38-55. [PMID: 39499543 DOI: 10.1039/d4nh00457d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomimetic-based drug delivery systems (DDS) attempt to recreate the complex interactions that occur naturally between cells. Cell membrane-coated nanoparticles (CMCNPs) have been one of the main strategies in this area to prevent opsonization and clearance. Moreover, coating nanoparticles with cell membranes allows them to acquire functions and properties inherent to the mother cells. In particular, cells from bloodstream show to have specific advantages depending on the cell type to be used for that application, specifically in cases of chronic inflammation. Thus, this review focuses on the biomimetic strategies that use membranes from blood cells to target and treat inflammatory conditions.
Collapse
Affiliation(s)
- Andreia Marinho
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Faculdade de Ciências, Universidade do Porto, R. Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
| | - Cláudia Nunes
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal.
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4500-313 Porto, Portugal
| |
Collapse
|
11
|
Jia J, Zhang X, Li Y, Wang T, An Y, Yan X, Liu B, Yang C, Ju H. Remotely Sequential Activation of Biofunctional MXenes for Spatiotemporally Controlled Photothermal Cancer Therapy Integrated with Multimodal Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2410535. [PMID: 39665387 DOI: 10.1002/smll.202410535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Spatiotemporally controlled cancer therapy may offer great advantages in precision medicine, but still remains some challenges in programmed sequential release and co-localization of components at target sites. Herein, a MXene-based nanoprobe (TCC@M) is meticulously designed by engineering of photodynamically activated CRISPR-Cas9 and cancer cell membrane-camouflaged Ti3C2 MXenes for targeting delivery and spatiotemporally controlled gene regulation followed by enhanced photothermal therapy (PTT) via two near-infrared irradiations. The first irradiation can activate the photosensitizer bound in cancer cells internalized TCC@M to release Cas9 ribonucleoprotein (RNP) by photodynamic effect. The released Cas9 RNP then enters the nuclei directed by the fused nuclear localization sequence in Cas9 to cleave the heat shock protein (HSP) 90α gene, which greatly reduces the expression of HSP90α protein and thus effectively sensitizes cancer cells to heat, leading to enhanced PTT at a mild temperature (<45 °C) risen by Ti₃C₂ MXenes under the second irradiation. Simultaneously, TCC@M can produce fluorescence, photoacoustic, and thermal imaging signals to guide the optimal irradiation timing. The in vivo studies have demonstrated the spatiotemporally selective therapeutic efficacy of the designed TCC@M. This innovative approach presents an effective integration of gene regulation and enhanced PTT, exemplifying a precise cancer treatment strategy.
Collapse
Affiliation(s)
- Jing Jia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xiaobo Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiran Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Tian Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Ying An
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinrong Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Bin Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Chaoyi Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
12
|
Alkotub B, Bauer L, Bashiri Dezfouli A, Hachani K, Ntziachristos V, Multhoff G, Kafshgari MH. Radiosensitizing capacity of fenofibrate in glioblastoma cells depends on lipid metabolism. Redox Biol 2024; 79:103452. [PMID: 39667305 PMCID: PMC11697781 DOI: 10.1016/j.redox.2024.103452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/25/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Despite advances in multimodal therapy approaches such as resection, chemotherapy and radiotherapy, the overall survival of patients with grade 4 glioblastoma (GBM) remains extremely poor (average survival time <2 years). Altered lipid metabolism, which increases fatty acid synthesis and thereby contributes to radioresistance in GBM, is a hallmark of cancer. Therefore, we explored the radiosensitizing effect of the clinically approved, lipid-lowering drug fenofibrate (FF) in different GBM cell lines (U87, LN18). Interestingly, FF (50 μM) significantly radiosensitizes U87 cells by inducing DNA double-strand breaks through oxidative stress and impairing mitochondrial membrane integrity, but radioprotects LN18 cells by reducing the production of reactive oxygen species (ROS) and stabilizing the mitochondrial membrane potential. A comparative protein and lipid analysis revealed striking differences in the two GBM cell lines: LN18 cells exhibited a significantly higher membrane expression density of the fatty acid (FA) cluster protein transporter CD36 than U87 cells, a higher expression of glycerol-3-phosphate acyltransferase 4 (GPAT4) which supports the production of large lipid droplets (LDs), and a lower expression of diacylglycerol O-acyltransferase 1 (DGAT1) which regulates the formation of small LDs. Consequently, large LDs are predominantly found in LN18 cells, whereas small LDs are found in U87 cells. After a combined treatment of FF and irradiation, the number of large LDs significantly increased in radioresistant LN18 cells, whereas the number of small LDs decreased in radiosensitive U87 cells. The radioprotective effect of FF in LN18 cells could be associated with the presence of large LDs, which act as a sink for the lipophilic drug FF. To prevent uptake of FF by large LDs and to ameliorate its function as a radiosensitizer, FF was encapsulated in biomimetic cell membrane extracellular lipid vesicles (CmEVs) which alter the intracellular trafficking of the drug. In contrast to the free drug, CmEV-encapsulated FF was predominantly enriched in the lysosomal compartment, causing necrosis by impairing lysosomal membrane integrity. Since the stability of plasma and lysosomal membranes is maintained by the presence of the stress-inducible heat shock protein 70 (Hsp70) which has a strong affinity to tumor-specific glycosphingolipids, necrosis occurs predominantly in LN18 cells having a lower membrane Hsp70 expression density than U87 cells. In summary, our findings indicate that the lipid metabolism of tumor cells can affect the radiosensitizing capacity of FF when encountered either as a free drug or as a drug loaded in biomimetic lipid vesicles.
Collapse
Affiliation(s)
- Bayan Alkotub
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Lisa Bauer
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Ali Bashiri Dezfouli
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Otorhinolaryngology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Khouloud Hachani
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Otorhinolaryngology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, Neuherberg, Germany; Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| | - Morteza Hasanzadeh Kafshgari
- Radiation Immuno-Oncology Group, Central Institute for Translational Cancer Research (TranslaTUM), TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany; Department of Radiation Oncology, TUM School of Medicine and Health, Klinikum rechts der Isar, Technical University of Munich (TUM), Munich, Germany.
| |
Collapse
|
13
|
Li Q, Byun J, Kim D, Wu Y, Lee J, Oh YK. Cell membrane-coated mRNA nanoparticles for enhanced delivery to dendritic cells and immunotherapy. Asian J Pharm Sci 2024; 19:100968. [PMID: 39640052 PMCID: PMC11617980 DOI: 10.1016/j.ajps.2024.100968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/30/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Cationic polymers such as polyethylenimine have been considered promising carriers for mRNA vaccines. However, their application is hindered by their inherent toxicity and a lack of targeted delivery capability. These issues need to be addressed to develop effective cancer vaccines. In this study, we investigated whether dendritic cell membrane-coated polyethylenimine/mRNA nanoparticles (DPN) could effectively deliver mRNA to dendritic cells and induce immune responses. For comparison, we employed red blood cell membrane-coated polyethylenimine/mRNA (RPN) and plain polyethylenimine/mRNA polyplex (PN). The dendritic cell membrane coating altered the zeta potential values and surface protein patterns of PN. DPN demonstrated significantly higher uptake in dendritic cells compared to PN and RPN, and it also showed greater mRNA expression within these cells. DPN, carrying mRNA encoding luciferase, enhanced green fluorescent protein, or ovalbumin (OVA), exhibited higher protein expression in dendritic cells than the other groups. Additionally, DPN exhibited favorable mRNA escape from lysosomes post-internalization into dendritic cells. In mice, subcutaneous administration of DPN containing ovalbumin mRNA (DPNOVA) elicited higher titers of anti-OVA IgG antibodies and a greater population of OVA-specific CD8+ T cells than the other groups. In a B16F10-OVA tumor model, DPNOVA treatment resulted in the lowest tumor growth among the treated groups. Moreover, the population of OVA-specific CD8+ T cells was the highest in the DPNOVA-treated group. While we demonstrated DPN's feasibility as an mRNA delivery system in a tumor model, the potential of DPN can be broadly extended for immunotherapeutic treatments of various diseases through mRNA delivery to antigen-presenting cells.
Collapse
Affiliation(s)
| | | | - Dongyoon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yina Wu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaiwoo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yu-Kyoung Oh
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Li J, Yin S, Zhou L, Nezamzadeh-Ejhieh A, Pan Y, Qiu L, Liu J, Zhou Z. Advances in the study of metal-organic frameworks and their biomolecule composites for osteoporosis therapeutic applications. Biomater Sci 2024; 12:5912-5932. [PMID: 39440387 DOI: 10.1039/d4bm01081g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
With the population aging, osteoporosis (OP) is becoming more and more common, seriously affecting patients' quality of life and their families, and how to prevent and treat osteoporosis has become a hot topic. However, the current conventional method of treating OP is oral anti-osteoporosis medication, which has drawbacks such as first-pass elimination and gastrointestinal adverse effects. At the same time, osteoporosis can lead to microbial infections and the need to promote angiogenesis for bone healing, among other needs that often cannot be met with conventional treatments, and there is a risk of resistance to oral antibiotics for microbial infections. Metal-organic frameworks (MOFs) having a high specific surface area, high porosity, controlled degradation, and variable composition; they can not only be used as a carrier to control drug release, but can also play multiple roles in the treatment of OP and microbial infections by releasing metal ions, etc., so they have inherent advantages for OP, which is a disease that requires long-term treatment. Therefore, this paper reviews the research progress of MOFs and their biomacromolecular composites in therapeutic applications for osteoporosis, categorized by MOF type, and briefly describes the mechanism of osteoporosis, and different synthesis methods of MOFs and MOF-based composites, and finally presents the main existing problems and future perspectives, aiming to make MOFs more helpful for OP treatment.
Collapse
Affiliation(s)
- Jiahui Li
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Shihai Yin
- Hand Surgery Department, Liaobu Hospital, Dongguan, 523400, China
| | - Luyi Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | | | - Ying Pan
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Longhai Qiu
- Department of Traumatology and Orthopaedic Surgery, Orthopaedic Institute, Huizhou Municipal Central Hospital, Huizhou, 516001, China
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| | - Zhikun Zhou
- Dongguan Key Laboratory of Drug Design and Formulation Technology, Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Guangdong Medical University Key Laboratory of Research and Development of New Medical Materials, Dongguan, 523808, China.
| |
Collapse
|
15
|
Djanaguiraman M, Anbazhagan V, Dhankher OP, Prasad PVV. Uptake, Translocation, Toxicity, and Impact of Nanoparticles on Plant Physiological Processes. PLANTS (BASEL, SWITZERLAND) 2024; 13:3137. [PMID: 39599346 PMCID: PMC11597231 DOI: 10.3390/plants13223137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/03/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The application of nanotechnology in agriculture has increased rapidly. However, the fate and effects of various nanoparticles on the soil, plants, and humans are not fully understood. Reports indicate that nanoparticles exhibit positive and negative impacts on biota due to their size, surface property, concentration within the system, and species or cell type under test. In plants, nanoparticles are translocated either by apoplast or symplast pathway or both. Also, it is not clear whether the nanoparticles entering the plant system remain as nanoparticles or are biotransformed into ionic forms or other organic compounds. Controversial results on the toxicity effects of nanomaterials on the plant system are available. In general, the nanomaterial toxicity was exerted by producing reactive oxygen species, leading to damage or denaturation of various biomolecules. The intensity of cyto- and geno-toxicity depends on the physical and chemical properties of nanoparticles. Based on the literature survey, it is observed that the effects of nanoparticles on the growth, photosynthesis, and primary and secondary metabolism of plants are both positive and negative; the response of these processes to the nanoparticle was associated with the type of nanoparticle, the concentration within the tissue, crop species, and stage of growth. Future studies should focus on addressing the key knowledge gaps in understanding the responses of plants to nanoparticles at all levels through global transcriptome, proteome, and metabolome assays and evaluating nanoparticles under field conditions at realistic exposure concentrations to determine the level of entry of nanoparticles into the food chain and assess the impact of nanoparticles on the ecosystem.
Collapse
Affiliation(s)
- Maduraimuthu Djanaguiraman
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641003, India
| | - Veerappan Anbazhagan
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613401, India;
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA;
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
16
|
Gao L, Dai X, Wu Y, Wang Y, Cheng L, Yan LT. Self-Assembly at Curved Biointerfaces. ACS NANO 2024; 18:30184-30210. [PMID: 39453716 DOI: 10.1021/acsnano.4c09675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
Most of the biological interfaces are curved. Understanding the organizational structures and interaction patterns at such curved biointerfaces is therefore crucial not only for deepening our comprehension of the principles that govern life processes but also for designing and developing targeted drugs aimed at diseased cells and tissues. Despite the considerable efforts dedicated to this area of research, our understanding of curved biological interfaces is still limited. Many aspects of these interfaces remain elusive, presenting both challenges and opportunities for further exploration. In this review, we summarize the structural characteristics of biological interfaces found in nature, the current research status of materials associated with curved biointerfaces, and the theoretical advancements achieved to date. Finally, we outline future trends and challenges in the theoretical and technological development of curved biointerfaces. By addressing these challenges, people could bridge the knowledge gap and unlock the full potential of curved biointerfaces for scientific and technological advancements, ultimately benefiting various fields and improving human health and well-being.
Collapse
Affiliation(s)
- Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaobin Dai
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yibo Wu
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Yuming Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Linghe Cheng
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
17
|
Issler T, Turner RJ, Prenner EJ. Membrane-Nanoparticle Interactions: The Impact of Membrane Lipids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404152. [PMID: 39212640 DOI: 10.1002/smll.202404152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The growing field of nanotechnology presents opportunity for applications across many sectors. Nanostructures, such as nanoparticles, hold distinct properties based on their size, shape, and chemical modifications that allow them to be utilized in both highly specific as well as broad capacities. As the classification of nanoparticles becomes more well-defined and the list of applications grows, it is imperative that their toxicity be investigated. One such cellular system that is of importance are cellular membranes (biomembranes). Membranes present one of the first points of contact for nanoparticles at the cellular level. This review will address current studies aimed at defining the biomolecular interactions of nanoparticles at the level of the cell membrane, with a specific focus of the interactions of nanoparticles with prominent lipid systems.
Collapse
Affiliation(s)
- Travis Issler
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, Calgary, AB, T2N 1N4, Canada
| |
Collapse
|
18
|
Fan Y, Zhang X, Zhao J, Chen S, Liang J. Cancer cell membrane-camouflaged curcumin nanoparticles trigger ferroptosis for accurate gastric cancer therapy. Eur J Pharm Biopharm 2024; 204:114509. [PMID: 39362384 DOI: 10.1016/j.ejpb.2024.114509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/24/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Curcumin (CUR) is a hydrophobic polyphenol with considerable antitumor efficiency, but its clinical application is limited because of its poor solubility and low stability in aqueous solution and lack of targeting in vivo. Herein, we fabricated a tumor-targeting drug delivery system by loading CUR and cloaking homologous cancer cell membrane (CM) onto mesoporous silica NPs (MSN-CUR@CM). Characterization analysis showed that MSN-CUR@CM with a size of approximately 70 nm showed high water solubility and biocompatibility. Besides, MSN-CUR@CM exhibited tumor-targeting and excellent anti-gastric cancer efficiency both in vitro and in vivo owing to the cellular self-recognition of CM. In the established xenograft tumor nude mouse model, it was still significantly drug accumulated at the tumor site 72 h post administration. In addition, the mean tumor volume and weight of the MSN-CUR@CM group were was 3.97 and 7.47 times smaller than those of the CUR group. Ferroptosis, a type of non-apoptotic regulated cell death accompanied by iron-dependent lipid peroxidation, was triggered by MSN-CUR@CM. Further analysis demonstrated that MSN-CUR@CUR upregulated heme oxygenase (HO-1) levels whereas it downregulated the expression of glutathione peroxidase 4 (GPX4) in SGC7901 cells in vitro, indicating that the canonical and noncanonical ferroptosis pathways were regulated by MSN-CUR@CM. In conclusion, our study demonstrated that MSN-CUR@CM with high water solubility, biocompatibility, and tumor-targeting properties inhibited gastric cancer both in vitro and in vivo by triggering ferroptosis and provided an admirable cancer therapy efficacy.
Collapse
Affiliation(s)
- Yuanyuan Fan
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Xiqin Zhang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jianqi Zhao
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury of PLA, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Suning Chen
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China
| | - Jingjing Liang
- Department of Traditional Chinese Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, PR China.
| |
Collapse
|
19
|
Hu Q, Wang Z, Li J, Cao W, Li P, Xie X, Wang S. Nondestructively Assemble Cell Membrane-Coated Nanoparticles by Host-Guest Interactions for Efficient Capture of Bioactive Compounds. Anal Chem 2024; 96:17353-17361. [PMID: 39418228 DOI: 10.1021/acs.analchem.4c04017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cell membrane-coated nanoparticles (CNPs) have emerged as an attractive nanomedical tool. The basic premise is that the surface properties of natural cells can be integrated with the physical and chemical properties of nanoparticles by coating them with cell membranes. However, the degree of preservation of membrane proteins on nanoparticles, a key indicator related to the biomedical function of these biomimetic systems, is largely affected by the coating process. Herein, we report a supramolecular cell membrane conjugation strategy mediated by host-guest interactions to assemble CNPs without compromising protein activities. β-cyclodextrin (β-CD) was rapidly and stably inserted into the cell membrane by a lipid anchor without affecting the function of membrane proteins, thus attaching host-guest sites to the membrane surface. By harnessing the excellent binding affinity between β-CD attached to the membrane surface and adamantane, a supramolecular cell membrane-magnetic nanoparticle conjugate (CDM@AMNPs) was synthesized. Thanks to the nondestructive assembly of this strategy, CDM@AMNPs were endowed with a greater number of active binding sites, exhibiting efficient adsorption performance. This supramolecular conjugation strategy mediated by nonreceptor site-based host-guest interactions proposes a scalable and cell-friendly strategy for the development of highly efficient CNPs.
Collapse
Affiliation(s)
- Qi Hu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Zhaojia Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Jiaqi Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Wenkai Cao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Peishan Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Xiaoyu Xie
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an 710061, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- School of Medicine, Tibet University, Lhasa 850000, China
| |
Collapse
|
20
|
Wang L, Feng Z, Shen S, Wang S, Xing J, Huang R, Shen H, Yan P, Wang J, Zhang W, Liu Y, He W, Mo R. Stabilized Cell Membrane-Derived Vesicles by Lipid Anchoring for Enhanced Drug Delivery. ACS NANO 2024; 18:28081-28094. [PMID: 39360741 DOI: 10.1021/acsnano.4c07341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
A cell membrane-derived vesicle (MV) that has cell-mimicking features with characteristic functionalities holds vast appeal for biomimetic nanomedicine and drug delivery but suffers from a major limitation of innate fragility and poor stability. Herein, we report a lipid-anchoring strategy for stabilizing MV for enhanced drug delivery. An array of amphiphilic mono-acyl phosphatidylcholines (MPCs) with specific hydrophobic moieties are synthesized and readily engineered on MV based on their commendable aqueous solubility and efficient membrane insertability. Incorporation of MPCs containing rigid ring structures in the hydrophobic segment demonstrates the potency of stabilizing MV by the combined ordering and condensing effects. The optimized MPC-stabilized MV exhibits prolonged circulation in the bloodstream, elevated accumulation within a tumor, and enhanced therapeutic effects of chemotherapeutic and photothermal drugs. Moreover, doxorubicin-loaded MV, engineered with mono-all-trans retinoyl phosphatidylcholine as an MV stabilizer and a therapeutic prodrug, potently suppresses growth and metastasis of high-stemness tumors.
Collapse
Affiliation(s)
- Leikun Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Zhizi Feng
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shiyang Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Shengdi Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqi Xing
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Renqi Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - He Shen
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Pengyi Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Jingyao Wang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wenjing Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yiru Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Wei He
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases and Jiangsu Key Laboratory of Drug Design and Optimization, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
21
|
Li S, Li X, Wang N, Zhang C, Sang Y, Sun Y, Xia X, Zheng M. Brain targeted biomimetic siRNA nanoparticles for drug resistance glioblastoma treatment. J Control Release 2024; 376:67-78. [PMID: 39368706 DOI: 10.1016/j.jconrel.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Glioblastoma multiforme (GBM), the most aggressive intracranial neoplasm, remains incurable at present, primarily due to drug resistance, which significantly contributes to elevated recurrence rates and dismal prognosis. Signal transducer and activator of transcription 3 (STAT3) is a critical gene closely associated with GBM drug resistance and the progression of GBM stem cells (GSCs), making it a promising therapeutic target. In this study, we developed cancer cell membrane-cloaked biomimetic nanoparticles to deliver STAT3 siRNA to reverse drug resistance in homologous GBM. These biomimetic nanoparticles leverage homotypic targeting, rapid endosome escape, and fast siRNA release, leading to efficient in vitro STAT3 knockdown in both temozolomide-resistant U251-TR cells and X01 GSCs. Moreover, benefited from the membrane functionalization, significant prolonged blood circulation, improved blood brain barrier (BBB) penetration and GBM tumor accumulation are achieved by these siRNA biomimetic nanoparticles. Importantly, these nanoparticles effectively inhibit tumor proliferation, significantly extending median survival time in orthotopic U251-TR (43.5 d versus 20 d for PBS control) and X01 GSC-bearing mouse xenografts (52 d versus 19.5 d for PBS control). Altogether, this biomimetic siRNA platform offers a promising strategy for gene therapy targeting drug-resistant GBM.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xiaozhe Li
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Ningyang Wang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Chen Zhang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yujing Sang
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yajing Sun
- Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xue Xia
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475004, China; Henan-Macquarie Uni Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-Nanomedicine, Henan International Joint Laboratory of Nanobiomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
22
|
Mizuta R, Kanao E, Ukyo K, Kuwada S, Sawada SI, Ishihama Y, Akiyoshi K, Sasaki Y. A Direct Approach for Living Biomembrane Printing on a Nanoparticle. NANO LETTERS 2024. [PMID: 39377259 DOI: 10.1021/acs.nanolett.4c03293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Biomembrane coating technologies have been developed to equip synthetic nanomaterials with natural biointerfaces. We report a one-step method for nondestructively coating the biomembranes of "living" cells onto nanoparticle surfaces. By using simple centrifugation, nanoparticles pass through a concentrated layer of living cells. This process mimics exosome release via endocytosis and exocytosis, preserving the membrane integrity of the source cells. The resulting silica nanoparticles were efficiently coated with membrane components from Raw264.7 cells. Nanoflow-liquid chromatography-tandem mass spectrometry confirmed that the proteins composing the membrane originated from the source cells. Additionally, the biomembrane coating suppressed the phagocytosis of silica nanoparticles by Raw264.7 cells while enhancing their uptake by HeLa cells. Our simple and efficient method for living biomembrane coating holds promise for the development of nanoparticles for medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ryosuke Mizuta
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Eisuke Kanao
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Keigo Ukyo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shusuke Kuwada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shin-Ichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yasushi Ishihama
- Laboratory of Proteomics and Drug Discovery, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory of Clinical and Analytical Chemistry, National Institute of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
23
|
Tikhonov A, Kachanov A, Yudaeva A, Danilik O, Ponomareva N, Karandashov I, Kostyusheva A, Zamyatnin AA, Parodi A, Chulanov V, Brezgin S, Kostyushev D. Biomimetic Nanoparticles for Basic Drug Delivery. Pharmaceutics 2024; 16:1306. [PMID: 39458635 PMCID: PMC11510494 DOI: 10.3390/pharmaceutics16101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Biomimetic nanoparticles (BMNPs) are innovative nanovehicles that replicate the properties of naturally occurring extracellular vesicles, facilitating highly efficient drug delivery across biological barriers to target organs and tissues while ensuring maximal biocompatibility and minimal-to-no toxicity. BMNPs can be utilized for the delivery of therapeutic payloads and for imparting novel properties to other nanotechnologies based on organic and inorganic materials. The application of specifically modified biological membranes for coating organic and inorganic nanoparticles has the potential to enhance their therapeutic efficacy and biocompatibility, presenting a promising pathway for the advancement of drug delivery technologies. This manuscript is grounded in the fundamentals of biomimetic technologies, offering a comprehensive overview and analytical perspective on the preparation and functionalization of BMNPs, which include cell membrane-coated nanoparticles (CMCNPs), artificial cell-derived vesicles (ACDVs), and fully synthetic vesicles (fSVs). This review examines both "top-down" and "bottom-up" approaches for nanoparticle preparation, with a particular focus on techniques such as cell membrane coating, cargo loading, and microfluidic fabrication. Additionally, it addresses the technological challenges and potential solutions associated with the large-scale production and clinical application of BMNPs and related technologies.
Collapse
Affiliation(s)
- Andrey Tikhonov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.T.); (A.K.); (A.Y.); (N.P.); (I.K.); (A.K.); (S.B.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
24
|
Li Y, Gao X, Li Y, Yan S, Zhang Y, Zheng X, Gu Q. Endocytosis: the match point of nanoparticle-based cancer therapy. J Mater Chem B 2024; 12:9435-9458. [PMID: 39192831 DOI: 10.1039/d4tb01227e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Nanomedicine has inspired a ground-breaking strategy for cancer therapy. By intelligently assembling diverse moieties to form nanoparticles, numerous functionalities such as controlled release, synergistic efficiency, and in situ killing can be achieved. The emerging nanoparticles have been designed with elevated targeting efficiency as targeting cancer cells is the primary requirement for nanoparticles. However, effective targeting does not guarantee therapeutic effects as endocytosis is a prerequisite for nanoparticles to exert effects. The recent decade has witnessed the rapid development of endocytosis-oriented nanoparticles, and this review subtly analyzes, categorizes, and exemplifies these nanoparticles according to their biological internalization patterns, and the correlation between the endocytosis mechanism and the property of nanoparticles is bridged. Based on the interdisciplinary vision, the present challenges and future perspectives of nanoparticle design for successful endocytosis are discussed, highlighting the potential strategies for the future development of endocytosis-oriented nanoparticles, thus facilitating the endocytosis-oriented strategy from bench to bedside. The undeniable fact is that endocytosis-oriented nanoparticles will definitely bring new blood to the next generation of advanced cancer therapies.
Collapse
Affiliation(s)
- Yonglu Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Xin Gao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yapeng Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Shihai Yan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| | - Yiru Zhang
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiaodong Zheng
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-food Processing, Fuli Institute of Food Science, National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Qing Gu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
25
|
Zhou A, Jia J, Ji X, Cheng S, Song X, Hu J, Zhao Y, Yu L, Wang J, Wang F. Reshaped Local and Systemic Immune Responses Triggered by a Biomimetic Multifunctional Nanoplatform Coordinating Multi-Pathways for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39356986 DOI: 10.1021/acsami.4c05714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Immunotherapy has fundamentally transformed the clinical cancer treatment landscape; however, achieving intricate and multifaceted modulation of the immune systems remains challenging. Here, a multipathway coordination of immunogenic cell death (ICD), autophagy, and indoleamine 2,3-dioxygenase-1 (IDO1) was achieved by a biomimetic nano-immunomodulator assembled from a chemotherapeutic agent (doxorubicin, DOX), small interfering RNA (siRNA) molecules targeting IDO1 (siIDO1), and the zeolitic imidazolate framework-8 (ZIF-8). After being camouflaged with a macrophage membrane, the biomimetic nanosystem, named mRDZ, enriched in tumors, which allowed synergistic actions of its components within tumor cells. The chemotherapeutic intervention led to a compensatory upregulation in the expression of IDO1, consequently exerting an inhibitory effect on the reactive oxygen species (ROS) and autophagic responses triggered by DOX and ZIF-8. Precise gene silencing of IDO1 by siIDO1 alleviated its suppressive influence, thereby facilitating increased ROS production and improved autophagy, ultimately bolstering tumor immunogenicity. mRDZ exhibited strong capability to boost potent local and systemic antitumor immune responses with a feature of memory, which led to the effective suppression of the growth, lung metastasis, and recurrence of the tumor. Serving as an exemplary model for the straightforward and potent reshaping of the immune system against tumors, mRDZ offers valuable insights into the development of immunomodulatory nanomaterials for cancer therapy.
Collapse
Affiliation(s)
- Ao Zhou
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jingyan Jia
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Xueyang Ji
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Sunying Cheng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaoxin Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jingyan Hu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Zhao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Luying Yu
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jieting Wang
- Key Laboratory of Nanomedical Technology (Education Department of Fujian Province), Nanomedical Technology Research Institute, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fang Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
26
|
Meng Z, Ouyang H, Hu Y, Chen B, Dong X, Wang T, Wu M, Yu N, Lou X, Wang S, Xia F, Dai J. Surface-engineered erythrocyte membrane-camouflage fluorescent bioprobe for precision ovarian cancer surgery. Eur J Nucl Med Mol Imaging 2024; 51:3532-3544. [PMID: 38867107 DOI: 10.1007/s00259-024-06793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/05/2024] [Indexed: 06/14/2024]
Abstract
PURPOSE Fluorescence imaging-guided surgery has been used in oncology. However, for tiny tumors, the current imaging probes are still difficult to achieve high-contrast imaging, leading to incomplete resection. In this study, we achieved precise surgical resection of tiny metastatic cancers by constructing an engineering erythrocyte membrane-camouflaged bioprobe (AR-M@HMSN@P). METHODS AR-M@HMSN@P combined the properties of aggregation-induced emission luminogens (AIEgens) named PF3-PPh3 (P), with functional erythrocyte membrane modified by a modular peptide (AR). Interestingly, AR was composed of an asymmetric tripodal pentapeptide scaffold (GGKGG) with three appended modulars: KPSSPPEE (A6) peptide, RRRR (R4) peptide and cholesterol. To verify the specificity of the probe in vitro, SKOV3 cells with overexpression of CD44 were used as the positive group, and HLF cells with low expression of CD44 were devoted as the control group. The AR-M@HMSN@P fluorescence imaging was utilized to provide surgical guidance for the removal of micro-metastatic lesions. RESULTS In vivo, the clearance of AR-M@HMSN@P by the immune system was reduced due to the natural properties inherited from erythrocytes. Meanwhile, the A6 peptide on AR-M@HMSN@P was able to specifically target CD44 on ovarian cancer cells, and the electrostatic attraction between the R4 peptide and the cell membrane enhanced the firmness of this targeting. Benefiting from these multiple effects, AR-M@HMSN@P achieved ultra-precise tumor imaging with a signal-to-noise ratio (SNR) of 15.2, making it possible to surgical resection of tumors < 1 mm by imaging guidance. CONCLUSION We have successfully designed an engineered fluorescent imaging bioprobe (AR-M@HMSN@P), which can target CD44-overexpressing ovarian cancers for precise imaging and guide the resection of minor tumors. Notably, this work holds significant promise for developing biomimetic probes for clinical imaging-guided precision cancer surgery by exploiting their externally specified functional modifications.
Collapse
Affiliation(s)
- Zijuan Meng
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hanzhi Ouyang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yuxin Hu
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Biao Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiyuan Dong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Tingting Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Nan Yu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Xiaoding Lou
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430034, China.
| |
Collapse
|
27
|
Ahmadi H, Abdolvahab R, Esmaeilzadeh M. Translocation of Ti 2CO 2 MXene monolayer through the cell membranes. RSC Adv 2024; 14:31577-31586. [PMID: 39372055 PMCID: PMC11451337 DOI: 10.1039/d4ra05821f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/14/2024] [Indexed: 10/08/2024] Open
Abstract
Nanoparticle-based therapies represent a cutting-edge direction in medical research. Ti2CO2 MXene is a novel two-dimensional transition metal carbide with a high surface area and reactivity, making it suitable for biomedical applications due to its biocompatibility. In biomedicine, Ti2CO2 MXene is particularly used in photothermal therapy, where its ability to absorb light and convert it into heat can be utilized to target and destroy cancer cells. The study of how temperature influences the interaction between nanoparticles and cell membranes is a critical aspect of this field. Our study conducts a thorough coarse-grained molecular dynamics analysis of a Ti2CO2 MXene nanosheet interacting with a phosphatidylcholine (POPC) membrane under various thermal conditions and nanosheet orientations. We show that the hydrophilic nature of the nanosheet presents a substantial barrier to membrane penetration and an increase in temperature significantly enhances the permeability of the membrane, thereby facilitating the migration of the MXene nanoparticles across it. The peak force required to translocate the nanosheet through the membrane decreases e.g., from 2150 pN at 300 kelvin to 1450 pN at 370 kelvin indicating significant reduction in resistance at higher temperatures. The study also highlights the critical role of the nanosheets' spatial orientation in cellular uptake. Our research underscores the importance of the application of MXenes for nanomedical and photothermal therapy purposes.
Collapse
Affiliation(s)
- Hamed Ahmadi
- Department of Physics, Iran University of Science and Technology Narmak Tehran 16844 Iran
| | - Rouhollah Abdolvahab
- Department of Physics, Iran University of Science and Technology Narmak Tehran 16844 Iran
| | - Mahdi Esmaeilzadeh
- Department of Physics, Iran University of Science and Technology Narmak Tehran 16844 Iran
| |
Collapse
|
28
|
Bezze A, Mattioda C, Ciardelli G, Mattu C. Harnessing cells to improve transport of nanomedicines. Eur J Pharm Biopharm 2024; 203:114446. [PMID: 39122052 DOI: 10.1016/j.ejpb.2024.114446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Efficient tumour treatment is hampered by the poor selectivity of anticancer drugs, resulting in scarce tumour accumulation and undesired off-target effects. Nano-sized drug-delivery systems in the form of nanoparticles (NPs) have been proposed to improve drug distribution to solid tumours, by virtue of their ability of passive and active tumour targeting. Despite these advantages, literature studies indicated that less than 1% of the administered NPs can successfully reach the tumour mass, highlighting the necessity for more efficient drug transporters in cancer treatment. Living cells, such as blood cells, circulating immune cells, platelets, and stem cells, are often found as an infiltrating component in most solid tumours, because of their ability to naturally circumvent immune recognition, bypass biological barriers, and reach inaccessible tissues through innate tropism and active motility. Therefore, the tumour-homing ability of these cells can be harnessed to design living cell carriers able to improve the transport of drugs and NPs to tumours. Albeit promising, this approach is still in its beginnings and suffers from difficult scalability, high cost, and poor reproducibility. In this review, we present an overview of the most common cell transporters of drugs and NPs, and we discuss how different cell types interact with biological barriers to deliver cargoes of various natures to tumours. Finally, we analyse the different techniques used to load drugs or NPs in living cells and discuss their advantages and disadvantages.
Collapse
Affiliation(s)
- Andrea Bezze
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Carlotta Mattioda
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Gianluca Ciardelli
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy
| | - Clara Mattu
- Politecnico di Torino - DIMEAS, C.so Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
29
|
Rui X, Okamoto Y, Watanabe NM, Shimizu T, Wakileh W, Kajimura N, Umakoshi H. Preparation and characterization of macrophage membrane camouflaged cubosomes as a stabilized and immune evasive biomimetic nano-DDS. J Mater Chem B 2024; 12:8702-8715. [PMID: 39129447 DOI: 10.1039/d4tb01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
This study aims to develop a biomimetic nano-drug delivery system (nano-DDS) by employing a macrophage cell membrane camouflaging strategy to modify lyotropic liquid crystal nanoparticles (LLC-NPs). The cubic-structured LLC-NPs (Cubosomes, CBs) were prepared via a top-down approach (ultra-sonification) using monoolein (MO) and doped with the cationic lipid, DOTAP. The cell membrane camouflaging procedure induced changes in the cubic lipid phase from primitive cubic phase (QIIP) to a coexistence of QIIP and diamond cubic phase (QIID). The macrophage membrane camouflaging strategy protected CB cores from the destabilization by blood plasma and enhanced the stability of CBs. The in vitro experiment results revealed that the macrophage cell membrane coating significantly reduced macrophage uptake efficacy within 8 h of incubation compared to the non-camouflaged CBs, while it had minimal impact on cancer cell uptake efficacy. The macrophage membrane coated CBs showed lower accumulation in the heart, kidney and lungs in vivo. This study demonstrated the feasibility of employing cell membrane camouflaging on CBs and confirmed that the bio-functionalities of the CBs-based biomimetic nano-DDS were retained from the membrane source cells, and opened up promising possibilities for developing an efficient and safe drug delivery system based on the biomimetic approach.
Collapse
Affiliation(s)
- Xuehui Rui
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Yukihiro Okamoto
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Nozomi Morishita Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Taro Shimizu
- Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ward Wakileh
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| | - Naoko Kajimura
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyamacho, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
30
|
Yu T, Wang J, Zhou Y, Ma C, Bai R, Huang C, Wang S, Liu K, Han B. Harnessing Engineered Extracellular Vesicles from Mesenchymal Stem Cells as Therapeutic Scaffolds for Bone‐Related Diseases. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202402861] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Indexed: 10/05/2024]
Abstract
AbstractMesenchymal stem cells (MSCs) play a crucial role in maintaining bone homeostasis and are extensively explored for cell therapy in various bone‐related diseases. In addition to direct cell therapy, the secretion of extracellular vesicles (EVs) by MSCs has emerged as a promising alternative approach. MSC‐derived EVs (MSC‐EVs) offer equivalent therapeutic efficacy to MSCs while mitigating potential risks. These EVs possess unique properties that enable them to traverse biological barriers and deliver bioactive cargos to target cells. Furthermore, by employing modification and engineering strategies, the therapeutic effects and tissue targeting specificity of MSC‐EVs can be further enhanced to meet specific therapeutic needs. In this review, the mechanisms and advantages of MSC‐EV therapy in diseased bone tissues are highlighted. Through simple isolation and modification techniques, MSC‐EV‐based biomaterials have demonstrated great promise for bone regeneration. Finally, future perspectives on MSC‐EV therapy are presented, envisioning the development of next‐generation regenerative materials and bioactive agents for clinical translation in the field of bone regeneration.
Collapse
Affiliation(s)
- Tingting Yu
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Jingwei Wang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Yusai Zhou
- School of Materials Science and Engineering Beihang University Beijing 100191 P. R. China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Rushui Bai
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Cancan Huang
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| | - Shidong Wang
- Musculoskeletal Tumor Center Peking University People's Hospital No.11 Xizhimen South St. Beijing 100044 P. R. China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Bing Han
- Department of Orthodontics Cranial‐Facial Growth and Development Center Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
- National Center for Stomatology National Clinical Research Center for Oral Diseases National Engineering Laboratory for Digital and Material Technology of Stomatology Beijing Key Laboratory for Digital Stomatology NMPA Key Laboratory for Dental Materials NHC Key Laboratory of Digital Stomatology Peking University School and Hospital of Stomatology 22 Zhongguancun South Avenue, Haidian District Beijing 100081 P. R. China
| |
Collapse
|
31
|
Longobardi G, Moore TL, Conte C, Ungaro F, Satchi‐Fainaro R, Quaglia F. Polyester nanoparticles delivering chemotherapeutics: Learning from the past and looking to the future to enhance their clinical impact in tumor therapy. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1990. [PMID: 39217459 PMCID: PMC11670051 DOI: 10.1002/wnan.1990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polymeric nanoparticles (NPs), specifically those comprised of biodegradable and biocompatible polyesters, have been heralded as a game-changing drug delivery platform. In fact, poly(α-hydroxy acids) such as polylactide (PLA), poly(lactide-co-glycolide) (PLGA), and poly(ε-caprolactone) (PCL) have been heavily researched in the past three decades as the material basis of polymeric NPs for drug delivery applications. As materials, these polymers have found success in resorbable sutures, biodegradable implants, and even monolithic, biodegradable platforms for sustained release of therapeutics (e.g., proteins and small molecules) and diagnostics. Few fields have gained more attention in drug delivery through polymeric NPs than cancer therapy. However, the clinical translational of polymeric nanomedicines for treating solid tumors has not been congruent with the fervor or funding in this particular field of research. Here, we attempt to provide a comprehensive snapshot of polyester NPs in the context of chemotherapeutic delivery. This includes a preliminary exploration of the polymeric nanomedicine in the cancer research space. We examine the various processes for producing polyester NPs, including methods for surface-functionalization, and related challenges. After a detailed overview of the multiple factors involved with the delivery of NPs to solid tumors, the crosstalk between particle design and interactions with biological systems is discussed. Finally, we report state-of-the-art approaches toward effective delivery of NPs to tumors, aiming at identifying new research areas and re-evaluating the reasons why some research avenues have underdelivered. We hope our effort will contribute to a better understanding of the gap to fill and delineate the future research work needed to bring polyester-based NPs closer to clinical application. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
| | - Thomas Lee Moore
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Claudia Conte
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Francesca Ungaro
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Sagol School of NeurosciencesTel Aviv UniversityTel AvivIsrael
| | - Fabiana Quaglia
- Department of PharmacyUniversity of Naples Federico IINaplesItaly
| |
Collapse
|
32
|
Liu J, Li B, Li L, Ming X, Xu ZP. Advances in Nanomaterials for Immunotherapeutic Improvement of Cancer Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403024. [PMID: 38773882 DOI: 10.1002/smll.202403024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Immuno-stimulative effect of chemotherapy (ISECT) is recognized as a potential alternative to conventional immunotherapies, however, the clinical application is constrained by its inefficiency. Metronomic chemotherapy, though designed to overcome these limitations, offers inconsistent results, with effectiveness varying based on cancer types, stages, and patient-specific factors. In parallel, a wealth of preclinical nanomaterials holds considerable promise for ISECT improvement by modulating the cancer-immunity cycle. In the area of biomedical nanomaterials, current literature reviews mainly concentrate on a specific category of nanomaterials and nanotechnological perspectives, while two essential issues are still lacking, i.e., a comprehensive analysis addressing the causes for ISECT inefficiency and a thorough summary elaborating the nanomaterials for ISECT improvement. This review thus aims to fill these gaps and catalyze further development in this field. For the first time, this review comprehensively discusses the causes of ISECT inefficiency. It then meticulously categorizes six types of nanomaterials for improving ISECT. Subsequently, practical strategies are further proposed for addressing inefficient ISECT, along with a detailed discussion on exemplary nanomedicines. Finally, this review provides insights into the challenges and perspectives for improving chemo-immunotherapy by innovations in nanomaterials.
Collapse
Affiliation(s)
- Jie Liu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, 000000, China
- GoodMedX Tech Limited Company, Hong Kong SAR, 000000, China
| | - Bei Li
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
| | - Xin Ming
- Departments of Cancer Biology and Biomedical Engineering, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27157, USA
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, St Lucia, QLD, 4072, Australia
- Institute of Biomedical Health Technology and Engineering, and Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong Province, 518107, China
| |
Collapse
|
33
|
Ozceylan O, Sezgin-Bayindir Z. Current Overview on the Use of Nanosized Drug Delivery Systems in the Treatment of Neurodegenerative Diseases. ACS OMEGA 2024; 9:35223-35242. [PMID: 39184484 PMCID: PMC11340000 DOI: 10.1021/acsomega.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
Neurodegenerative diseases, encompassing conditions such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, prion disease, and Huntington's disease, present a growing health concern as human life expectancy increases. Despite this, effective treatments to halt disease progression remain elusive due to various factors, including challenges in drug delivery across physiological barriers like the blood-brain barrier and patient compliance issues leading to treatment discontinuation. In response, innovative treatment approaches leveraging noninvasive techniques with higher patient compliance are emerging as promising alternatives. This Review aims to synthesize current treatment options and the challenges encountered in managing neurodegenerative diseases, while also exploring innovative treatment modalities. Specifically, noninvasive strategies such as intranasal administration and nanosized drug delivery systems are gaining prominence for their potential to enhance treatment efficacy and patient adherence. Nanosized drug delivery systems, including liposomes, polymeric micelles, and nanoparticles, are evaluated within the context of outstanding studies. The advantages and disadvantages of these approaches are discussed, providing insights into their therapeutic potential and limitations. Through this comprehensive examination, this Review contributes to the ongoing discourse surrounding the development of effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ozlem Ozceylan
- Graduate
School of Health Sciences, Ankara University, 06110 Ankara, Turkey
- Turkish
Medicines and Medical Devices Agency (TMMDA), 06520 Ankara, Turkey
| | - Zerrin Sezgin-Bayindir
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, 06560 Ankara, Turkey
| |
Collapse
|
34
|
Liu W, Cheng G, Cui H, Tian Z, Li B, Han Y, Wu JX, Sun J, Zhao Y, Chen T, Yu G. Theoretical basis, state and challenges of living cell-based drug delivery systems. Theranostics 2024; 14:5152-5183. [PMID: 39267776 PMCID: PMC11388066 DOI: 10.7150/thno.99257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
The therapeutic efficacy of drugs is determined, to a certain extent, by the efficiency of drug delivery. The low efficiency of drug delivery systems (DDSs) is frequently associated with serious toxic side effects and can even prove fatal in certain cases. With the rapid development of technology, drug delivery has evolved from using traditional frameworks to using nano DDSs (NDDSs), endogenous biomaterials DDSs (EBDDSs), and living cell DDSs (LCDDSs). LCDDSs are receiving widespread attention from researchers at present owing to the unique advantages of living cells in targeted drug delivery, including their excellent biocompatibility properties, low immunogenicity, unique biological properties and functions, and role in the treatment of diseases. However, the theoretical basis and techniques involved in the application of LCDDSs have not been extensively summarized to date. Therefore, this review comprehensively summarizes the properties and applications of living cells, elaborates the various drug loading approaches and controlled drug release, and discusses the results of clinical trials. The review also discusses the current shortcomings and prospects for the future development of LCDDSs, which will serve as highly valuable insights for the development and clinical transformation of LCDDSs in the future.
Collapse
Affiliation(s)
- Wei Liu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Guowang Cheng
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Hao Cui
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Zhen Tian
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Bowen Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yanhua Han
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jia-Xin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jie Sun
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Yuyue Zhao
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Guangtao Yu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China
| |
Collapse
|
35
|
Huo CM, Zuo YC, Chen Y, Chen L, Zhu JY, Xue W. Natural lignin nanoparticles target tumor by saturating the phagocytic capacity of Kupffer cells in the liver. Int J Biol Macromol 2024; 274:133186. [PMID: 38885858 DOI: 10.1016/j.ijbiomac.2024.133186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/04/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Ligand-receptor recognition serves as the fundamental driving force for active targeting, yet it is still constrained by off-target effects. Herein, we demonstrate that circumventing or blocking the mononuclear phagocyte system (MPS) are both viable strategies to address off-target effects. Naturally derived lignin nanoparticles (LNPs) show great potential to block MPS due to its good stability, low toxicity, and degradability. We further demonstrate the impact of LNPs dosage on in vivo tumor targeting and antitumor efficacy. Our results show that a high dose of LNPs (300 mg/kg) leads to significant accumulation at the tumor site for a duration of 14 days after intravenous administration. In contrast, the low-dose counterparts (e.g., 50, 150 mg/kg) result in almost all LNPs accumulating in the liver. This discovery indicates that the liver is the primary site of LNP capture, leaving only the surplus LNPs the chance to reach the tumor. In addition, although cell membrane-engineered LNPs can rapidly penetrate tumors, they are still prone to capture by the liver during subsequent circulation in the bloodstream. Excitingly, comparable therapeutic efficacy is obtained for the above two strategies. Our findings may offer valuable insights into the targeted delivery of drugs for disease treatment.
Collapse
Affiliation(s)
- Cong-Min Huo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yu-Cheng Zuo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yu Chen
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Liheng Chen
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jing-Yi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
36
|
Alimohammadvand S, Kaveh Zenjanab M, Mashinchian M, Shayegh J, Jahanban-Esfahlan R. Recent advances in biomimetic cell membrane-camouflaged nanoparticles for cancer therapy. Biomed Pharmacother 2024; 177:116951. [PMID: 38901207 DOI: 10.1016/j.biopha.2024.116951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/05/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
The emerging strategy of biomimetic nanoparticles (NPs) via cellular membrane camouflage holds great promise in cancer therapy. This scholarly review explores the utilization of cellular membranes derived from diverse cellular entities; blood cells, immune cells, cancer cells, stem cells, and bacterial cells as examples of NP coatings. The camouflaging strategy endows NPs with nuanced tumor-targeting abilities such as self-recognition, homotypic targeting, and long-lasting circulation, thus also improving tumor therapy efficacy overall. The comprehensive examination encompasses a variety of cell membrane camouflaged NPs (CMCNPs), elucidating their underlying targeted therapy mechanisms and delineating diverse strategies for anti-cancer applications. Furthermore, the review systematically presents the synthesis of source materials and methodologies employed in order to construct and characterize these CMCNPs, with a specific emphasis on their use in cancer treatment.
Collapse
Affiliation(s)
- Sajjad Alimohammadvand
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoumeh Kaveh Zenjanab
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Mashinchian
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jalal Shayegh
- Department of Microbiology, Faculty of Veterinary and Agriculture, Islamic Azad University, Shabestar branch, Shabestar, Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
37
|
Desai N, Chavda V, Singh TRR, Thorat ND, Vora LK. Cancer Nanovaccines: Nanomaterials and Clinical Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401631. [PMID: 38693099 DOI: 10.1002/smll.202401631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Indexed: 05/03/2024]
Abstract
Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.
Collapse
Affiliation(s)
- Nimeet Desai
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502285, India
| | - Vivek Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L M College of Pharmacy, Ahmedabad, 380009, India
| | | | - Nanasaheb D Thorat
- Limerick Digital Cancer Research Centre (LDCRC), University of Limerick, Castletroy, Limerick, V94T9PX, Ireland
- Department of Physics, Bernal Institute, Castletroy, Limerick, V94T9PX, Ireland
- Nuffield Department of Women's & Reproductive Health, Medical Science Division, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| |
Collapse
|
38
|
Hassanzadeh-Tabrizi SA. Alginate based hemostatic materials for bleeding management: A review. Int J Biol Macromol 2024; 274:133218. [PMID: 38901512 DOI: 10.1016/j.ijbiomac.2024.133218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/04/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024]
Abstract
Severe bleeding has caused significant financial losses as well as a major risk to the lives and health of military and civilian populations. Under some situations, the natural coagulation mechanism of the body is unable to achieve fast hemostasis without the use of hemostatic drugs. Thus, the development of hemostatic materials and techniques is essential. Improving the quality of life and survival rate of patients and minimizing bodily damage requires fast, efficient hemostasis and prevention of bleeding. Alginate is regarded as an outstanding hemostatic polymer because of its non-immunogenicity, biodegradability, good biocompatibility, simple gelation, non-toxicity, and easy availability. This review summarizes the basics of hemostasis and emphasizes the recent developments regarding alginate-based hemostatic systems. Structural modifications and mixing with other materials have widely been used for the improvement of hemostatic characteristics of alginate and for making multifunctional medical devices that not only prevent uncontrolled bleeding but also have antibacterial characteristics, drug delivery abilities, and curing effects. This review is hoped to prepare critical insights into alginate modifications for better hemostatic properties.
Collapse
Affiliation(s)
- S A Hassanzadeh-Tabrizi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran.
| |
Collapse
|
39
|
Dou Y, Zheng J, Kang J, Wang L, Huang D, Liu Y, He C, Lin C, Lu C, Wu D, Han R, Li L, Tang L, He Y. Mesoporous manganese nanocarrier target delivery metformin for the co-activation STING pathway to overcome immunotherapy resistance. iScience 2024; 27:110150. [PMID: 39040065 PMCID: PMC11261061 DOI: 10.1016/j.isci.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/24/2024] [Accepted: 05/28/2024] [Indexed: 07/24/2024] Open
Abstract
Targeting the stimulator of interferon genes (STING) pathway is a promising strategy to overcome primary resistance to immune checkpoint inhibitors in non-small cell lung cancer with the STK11 mutation. We previously found metformin enhances the STING pathway and thus promotes immune response. However, its low concentration in tumors limits its clinical use. Here, we constructed high-mesoporous Mn-based nanocarrier loading metformin nanoparticles (Mn-MSN@Met-M NPs) that actively target tumors and respond to release higher concentration of Mn2+ ions and metformin. The NPs significantly enhanced the T cells to kill lung cancer cells with the STK11 mutant. The mechanism shows that enhanced STING pathway activation promotes STING, TBKI, and IRF3 phosphorylation through Mn2+ ions and metformin release from NPs, thus boosting type I interferon production. In vivo, NPs in combination with a PD-1 inhibitor effectively decreased tumor growth. Collectively, we developed a Mn-MSN@Met-M nanoactivator to intensify immune activation for potential cancer immunotherapy.
Collapse
Affiliation(s)
- Yuanyao Dou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Jun Kang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liping Wang
- Department of pain treatment, the seventh people’s Hospital of Chongqing, Chongqing 401320, China
| | - Daijuan Huang
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| | - Yihui Liu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Chao He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Caiyu Lin
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Conghua Lu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Di Wu
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Rui Han
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Li Li
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yong He
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing 400042, China
- School of Medicine, Chongqing University, Chongqing 400044, China
| |
Collapse
|
40
|
Bahadorani M, Nasiri M, Dellinger K, Aravamudhan S, Zadegan R. Engineering Exosomes for Therapeutic Applications: Decoding Biogenesis, Content Modification, and Cargo Loading Strategies. Int J Nanomedicine 2024; 19:7137-7164. [PMID: 39050874 PMCID: PMC11268655 DOI: 10.2147/ijn.s464249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
Exosomes emerge from endosomal invagination and range in size from 30 to 200 nm. Exosomes contain diverse proteins, lipids, and nucleic acids, which can indicate the state of various physiological and pathological processes. Studies have revealed the remarkable clinical potential of exosomes in diagnosing and prognosing multiple diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Exosomes also have the potential to be engineered and deliver their cargo to a specific target. However, further advancements are imperative to optimize exosomes' diagnostic and therapeutic capabilities for practical implementation in clinical settings. This review highlights exosomes' diagnostic and therapeutic applications, emphasizing their engineering through simple incubation, biological, and click chemistry techniques. Additionally, the loading of therapeutic agents onto exosomes, utilizing passive and active strategies, and exploring hybrid and artificial exosomes are discussed.
Collapse
Affiliation(s)
- Mehrnoosh Bahadorani
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Mahboobeh Nasiri
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Shyam Aravamudhan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| | - Reza Zadegan
- Department of Nanoengineering, Joint School of Nanoscience & Nanoengineering, North Carolina Agriculture and Technical State University, Greensboro, NC, USA
| |
Collapse
|
41
|
Gomes FL, Jeong SH, Shin SR, Leijten J, Jonkheijm P. Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315879. [PMID: 39386164 PMCID: PMC11460667 DOI: 10.1002/adfm.202315879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 10/12/2024]
Abstract
Blood scarcity is one of the main causes of healthcare disruptions worldwide, with blood shortages occurring at an alarming rate. Over the last decades, blood substitutes has aimed at reinforcing the supply of blood, with several products (e.g., hemoglobin-based oxygen carriers, perfluorocarbons) achieving a limited degree of success. Regardless, there is still no widespread solution to this problem due to persistent challenges in product safety and scalability. In this Review, we describe different advances in the field of blood substitution, particularly in the development of artificial red blood cells, otherwise known as engineered erythrocytes. We categorize the different strategies into natural, synthetic, or hybrid approaches, and discuss their potential in terms of safety and scalability. We identify synthetic engineered erythrocytes as the most powerful approach, and describe erythrocytes from a materials engineering perspective. We review their biological structure and function, as well as explore different methods of assembling a material-based cell. Specifically, we discuss how to recreate size, shape, and deformability through particle fabrication, and how to recreate the functional machinery through synthetic biology and nanotechnology. We conclude by describing the versatile nature of synthetic erythrocytes in medicine and pharmaceuticals and propose specific directions for the field of erythrocyte engineering.
Collapse
Affiliation(s)
- Francisca L Gomes
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Seol-Ha Jeong
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 65 Landsdowne Street, Cambridge, MA, 02139, USA
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Leijten Laboratory, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522NB, The Netherlands
| | - Pascal Jonkheijm
- Department of Molecules and Materials, Laboratory of Biointerface Chemistry, Faculty of Science and Technology, Technical Medical Centre and MESA+ Institute, University of Twente, Drienerlolaan 5, Enschede, 7522NB,The Netherlands
| |
Collapse
|
42
|
Wang LC, Chen HK, Wang WJ, Hsu FY, Huang HZ, Kuo RT, Li WP, Tian HK, Yeh CS. Boosting Upconversion Efficiency in Optically Inert Shelled Structures with Electroactive Membrane through Electron Donation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404120. [PMID: 38727702 DOI: 10.1002/adma.202404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Indexed: 05/21/2024]
Abstract
This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.
Collapse
Affiliation(s)
- Liu-Chun Wang
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| | - Hong-Kai Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Jyun Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Fang-Yi Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Hong-Zhang Huang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Rui-Tong Kuo
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Peng Li
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Hong-Kang Tian
- Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
- Hierarchical Green-Energy Materials (Hi-GEM) Research Center, National Cheng Kung University, Tainan, 701, Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University, Tainan, 701, Taiwan
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan, 701, Taiwan
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
43
|
Zhu L, Zhong Y, Yan M, Ni S, Zhao X, Wu S, Wang G, Zhang K, Chi Q, Qin X, Li C, Huang X, Wu W. Macrophage Membrane-Encapsulated Dopamine-Modified Poly Cyclodextrin Multifunctional Biomimetic Nanoparticles for Atherosclerosis Therapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32027-32044. [PMID: 38867426 DOI: 10.1021/acsami.4c04431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Atherosclerotic plaques exhibit high cholesterol deposition and oxidative stress resulting from high reactive oxygen species (ROS). These are the major components in plaques and the main pro-inflammatory factor. Therefore, it is crucial to develop an effective therapeutic strategy that can simultaneously address the multiple pro-inflammatory factors via removing cholesterol and inhibiting the overaccumulated ROS. In this study, we constructed macrophage membrane-encapsulated biomimetic nanoparticles (MM@DA-pCD@MTX), which not only alleviate cholesterol deposition at the plaque lesion via reverse cholesterol transport but also scavenge the overaccumulated ROS. β-Cyclodextrin (β-CD) and the loaded methotrexate (MTX) act synergistically to induce cholesterol efflux for inhibiting the formation of foam cells. Among them, MTX up-regulated the expression of ABCA1, CYP27A1, and SR-B1. β-CD increased the solubility of cholesterol crystals. In addition, the ROS scavenging property of dopamine (DA) was perfectly preserved in MM@DA-pCD@MTX, which could scavenge the overaccumulated ROS to alleviate the oxidative stress at the plaque lesion. Last but not least, MM-functionalized "homing" targeting of atherosclerotic plaques not only enables the targeted drug delivery but also prolongs in vivo circulation time and drug half-life. In summary, MM@DA-pCD@MTX emerges as a potent, multifunctional therapeutic platform for AS treatment, offering a high degree of biosafety and efficacy in addressing the complex pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Meng Yan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Sheng Ni
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Xiong Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Shuai Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| | - Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Qingjia Chi
- Department of Engineering Structure and Mechanics, School of Science, Wuhan University of Technology, Wuhan 430070, China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Chuanwei Li
- Department of Cardiology, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing University, Chongqing 400042, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400044, China
- Jin Feng Laboratory, Chongqing 401329, China
| |
Collapse
|
44
|
Liao J, Gong L, Xu Q, Wang J, Yang Y, Zhang S, Dong J, Lin K, Liang Z, Sun Y, Mu Y, Chen Z, Lu Y, Zhang Q, Lin Z. Revolutionizing Neurocare: Biomimetic Nanodelivery Via Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402445. [PMID: 38583077 DOI: 10.1002/adma.202402445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Brain disorders represent a significant challenge in medical science due to the formidable blood-brain barrier (BBB), which severely limits the penetration of conventional therapeutics, hindering effective treatment strategies. This review delves into the innovative realm of biomimetic nanodelivery systems, including stem cell-derived nanoghosts, tumor cell membrane-coated nanoparticles, and erythrocyte membrane-based carriers, highlighting their potential to circumvent the BBB's restrictions. By mimicking native cell properties, these nanocarriers emerge as a promising solution for enhancing drug delivery to the brain, offering a strategic advantage in overcoming the barrier's selective permeability. The unique benefits of leveraging cell membranes from various sources is evaluated and advanced technologies for fabricating cell membrane-encapsulated nanoparticles capable of masquerading as endogenous cells are examined. This enables the targeted delivery of a broad spectrum of therapeutic agents, ranging from small molecule drugs to proteins, thereby providing an innovative approach to neurocare. Further, the review contrasts the capabilities and limitations of these biomimetic nanocarriers with traditional delivery methods, underlining their potential to enable targeted, sustained, and minimally invasive treatment modalities. This review is concluded with a perspective on the clinical translation of these biomimetic systems, underscoring their transformative impact on the therapeutic landscape for intractable brain diseases.
Collapse
Affiliation(s)
- Jun Liao
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Lidong Gong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Qingqiang Xu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Jingya Wang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuanyuan Yang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Shiming Zhang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Junwei Dong
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Kerui Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Zichao Liang
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| | - Yuhan Sun
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Yongxu Mu
- The First Affiliated Hospital of Baotou Medical College, Inner Mongolia University of Science and Technology, Baotou, 014040, China
| | - Zhengju Chen
- Pooling Medical Research Institutes of 100Biotech, Beijing, 100006, China
| | - Ying Lu
- Department of Pharmaceutics, School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Qiang Zhang
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Zhiqiang Lin
- Institute of Systems Biomedicine, Beijing Key Laboratory of Tumor Systems Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
45
|
Song M, Tian J, Wang L, Dong S, Fu K, Chen S, Liu C. Efficient Delivery of Lomitapide using Hybrid Membrane-Coated Tetrahedral DNA Nanostructures for Glioblastoma Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311760. [PMID: 38569065 DOI: 10.1002/adma.202311760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Indexed: 04/05/2024]
Abstract
Glioblastoma (GBM) is the most aggressive and prevalent primary malignant tumor of the central nervous system. Traditional chemotherapy has poor therapeutic effects and significant side effects due to drug resistance, the natural blood-brain barrier (BBB), and nonspecific distribution, leading to a lack of clinically effective therapeutic drugs. Here, 1430 small molecule compounds are screened based on a high-throughput drug screening platform and a novel anti-GBM drug, lomitapide (LMP) is obtained. Furthermore, a bionic nanodrug delivery system (RFA NPs) actively targeting GBM is constructed, which mainly consists of tetrahedral DNA nanocages (tFNA NPs) loaded with LMP as the core and a folate-modified erythrocyte-cancer cell-macrophage hybrid membrane (FRUR) as the shell. FRUR camouflage conferred unique features on tFNA NPs, including excellent biocompatibility, improved pharmacokinetic profile, efficient BBB permeability, and tumor targeting ability. The results show that the LMP RFA NPs exhibited superior and specific anti-GBM activities, reduced off-target drug delivery, prolonged lifespan, and has negligible side effects in tumor-bearing mice. This study combines high-throughput drug screening with biomimetic nanodrug delivery system technology to provide a theoretical and practical basis for drug development and the optimization of clinical treatment strategies for GBM treatment.
Collapse
Affiliation(s)
- Mingming Song
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiameng Tian
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Li Wang
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuqi Dong
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Kun Fu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Siyu Chen
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| | - Chang Liu
- Department of Endocrinology, Nanjing Drum Tower Hospital, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China
- Jiangsu Provincial University Key Laboratory of Drug Discovery for Metabolic Inflammatory Diseases, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
46
|
Liu S, Li K, He Y, Chen S, Yang W, Chen X, Feng S, Xiong L, Peng Y, Shao Z. PGC1α-Inducing Senomorphic Nanotherapeutics Functionalized with NKG2D-Overexpressing Cell Membranes for Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400749. [PMID: 38554394 PMCID: PMC11165536 DOI: 10.1002/advs.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-ɣ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kanglu Li
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuxin He
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Sheng Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuanzuo Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqing Feng
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033China
- Department of OrthopedicsQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250012China
- Department of OrthopedicsTianjin Medical University General HospitalTianjin Medical UniversityTianjin300052China
| | - Liming Xiong
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yizhong Peng
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
47
|
Gao R, Lin P, Fang Z, Yang W, Gao W, Wang F, Pan X, Yu W. Cell-derived biomimetic nanoparticles for the targeted therapy of ALI/ARDS. Drug Deliv Transl Res 2024; 14:1432-1457. [PMID: 38117405 DOI: 10.1007/s13346-023-01494-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are common clinical critical diseases with high morbidity and mortality. Especially since the COVID-19 outbreak, the mortality rates of critically ill patients with ARDS can be as high as 60%. Therefore, this problem has become a matter of concern to respiratory critical care. To date, the main clinical measures for ALI/ARDS are mechanical ventilation and drug therapy. Although ventilation treatment reduces mortality, it increases the risk of hyperxemia, and drug treatment lacks safe and effective delivery methods. Therefore, novel therapeutic strategies for ALI/ARDS are urgently needed. Developments in nanotechnology have allowed the construction of a safe, efficient, precise, and controllable drug delivery system. However, problems still encounter in the treatment of ALI/ARDS, such as the toxicity, poor targeting ability, and immunogenicity of nanomaterials. Cell-derived biomimetic nanodelivery drug systems have the advantages of low toxicity, long circulation, high targeting, and high bioavailability and show great therapeutic promises for ALI/ARDS owing to their acquired cellular biological features and some functions. This paper reviews ALI/ARDS treatments based on cell membrane biomimetic technology and extracellular vesicle biomimetic technology, aiming to achieve a significant breakthrough in ALI/ARDS treatments.
Collapse
Affiliation(s)
- Rui Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Peihong Lin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Zhengyu Fang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenjing Yang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Wenyan Gao
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China
| | - Fangqian Wang
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China
| | - Xuwang Pan
- Department of Pharmaceutical Preparation, Affiliated Hangzhou Xixi Hospital, Zhejiang University School of Medicine, Hangzhou, 310013, China.
| | - Wenying Yu
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 310013, China.
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310013, China.
| |
Collapse
|
48
|
Jian C, Wu T, Wang L, Gao C, Fu Z, Zhang Q, Shi C. Biomimetic Nanoplatform for Dual-Targeted Clearance of Activated and Senescent Cancer-Associated Fibroblasts to Improve Radiation Resistance in Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309279. [PMID: 38214439 DOI: 10.1002/smll.202309279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/19/2023] [Indexed: 01/13/2024]
Abstract
Radiation resistance in breast cancer resulting in residual lesions or recurrence is a significant cause to radiotherapy failure. Cancer-associated fibroblasts (CAFs) and radiotherapy-induced senescent CAFs can further lead to radiation resistance and tumor immunosuppressive microenvironment. Here, an engineering cancer-cell-biomimetic nanoplatform is constructed for dual-targeted clearance of CAFs as well as senescent CAFs. The nanoplatform is prepared by 4T1 cell membrane vesicles chimerized with FAP single-chain fragment variable as the biomimetic shell for targeting of CAFs and senescent CAFs, and PLGA nanoparticles (NPs) co-encapsulated with nintedanib and ABT-263 as the core for clearance of CAFs and senescent CAFs, which are noted as FAP-CAR-CM@PLGA-AB NPs. It is evidenced that FAP-CAR-CM@PLGA-AB NPs directly suppressed the tumor-promoting effect of senescent CAFs. It also exhibits prolonged blood circulation and enhanced tumor accumulation, dual-cleared CAFs and senescent CAFs, improved radiation resistance in both acquired and patient-derived radioresistant tumor cells, and effective antitumor effect with the tumor suppression rate of 86.7%. In addition, FAP-CAR-CM@PLGA-AB NPs reverse the tumor immunosuppressive microenvironment and enhance systemic antitumor immunity. The biomimetic system for dual-targeted clearance of CAFs and senescent CAFs provides a potential strategy for enhancing the radio-sensitization of breast cancer.
Collapse
Affiliation(s)
- Chen Jian
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Tingting Wu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Lulu Wang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Chen Gao
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Zhiwen Fu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| | - Qian Zhang
- Key Laboratory for Thin Film and Microfabrication Technology of the Ministry of Education, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Institute of Nano Biomedicine and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chen Shi
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, Wuhan, 430022, China
| |
Collapse
|
49
|
Jia Y, Zhang L, Xu J, Xiang L. Recent advances in cell membrane camouflaged nanotherapeutics for the treatment of bacterial infection. Biomed Mater 2024; 19:042006. [PMID: 38697197 DOI: 10.1088/1748-605x/ad46d4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
Infectious diseases caused by bacterial infections are common in clinical practice. Cell membrane coating nanotechnology represents a pioneering approach for the delivery of therapeutic agents without being cleared by the immune system in the meantime. And the mechanism of infection treatment should be divided into two parts: suppression of pathogenic bacteria and suppression of excessive immune response. The membrane-coated nanoparticles exert anti-bacterial function by neutralizing exotoxins and endotoxins, and some other bacterial proteins. Inflammation, the second procedure of bacterial infection, can also be suppressed through targeting the inflamed site, neutralization of toxins, and the suppression of pro-inflammatory cytokines. And platelet membrane can affect the complement process to suppress inflammation. Membrane-coated nanoparticles treat bacterial infections through the combined action of membranes and nanoparticles, and diagnose by imaging, forming a theranostic system. Several strategies have been discovered to enhance the anti-bacterial/anti-inflammatory capability, such as synthesizing the material through electroporation, pretreating with the corresponding pathogen, membrane hybridization, or incorporating with genetic modification, lipid insertion, and click chemistry. Here we aim to provide a comprehensive overview of the current knowledge regarding the application of membrane-coated nanoparticles in preventing bacterial infections as well as addressing existing uncertainties and misconceptions.
Collapse
Affiliation(s)
- Yinan Jia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Zhang
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Junhua Xu
- Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
50
|
Huang D, Wang X, Wang W, Li J, Zhang X, Xia B. Cell-membrane engineering strategies for clinic-guided design of nanomedicine. Biomater Sci 2024; 12:2865-2884. [PMID: 38686665 DOI: 10.1039/d3bm02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.
Collapse
Affiliation(s)
- Di Huang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoyu Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wentao Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaomei Zhang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Bing Xia
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| |
Collapse
|