1
|
Wörner HJ, Wolf JP. Ultrafast spectroscopy of liquids using extreme-ultraviolet to soft-X-ray pulses. Nat Rev Chem 2025:10.1038/s41570-025-00692-9. [PMID: 40011715 DOI: 10.1038/s41570-025-00692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2025] [Indexed: 02/28/2025]
Abstract
Ultrafast X-ray spectroscopy provides access to molecular dynamics with unprecedented time resolution, element specificity and site selectivity. These unique properties are optimally suited for investigating intramolecular and intermolecular interactions of molecular species in the liquid phase. This Review summarizes experimental breakthroughs, such as water photolysis and proton transfer on femtosecond and attosecond time scales, dynamics of solvated electrons, charge-transfer processes in metal complexes, multiscale dynamics in haem proteins, proton-transfer dynamics in prebiotic systems and liquid-phase extreme-ultraviolet high-harmonic spectroscopy. An important novelty for ultrafast liquid-phase spectroscopy is the availability of high-brightness ultrafast short-wavelength sources that allowed access to the water window (from 200 eV to 550 eV) and thus to the K-edges of the key elements of organic and biological chemistry: C, N and O. Not only does this Review present experimental examples that demonstrate the unique capabilities of ultrafast short-wavelength spectroscopy in liquids, but it also highlights the broad range of spectroscopic methodologies already applied in this field.
Collapse
Affiliation(s)
- Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zurich, Zürich, Switzerland.
| | | |
Collapse
|
2
|
Li J, Gao B, Liu K, Wang X, Zhen Q, Liu X, Liu Y, Wang Y, Zhao W, Cao H, Fu Y. Spatially homogeneous spectral broadening of Yb lasers with field mapping beam shaping optics. OPTICS LETTERS 2025; 50:828-831. [PMID: 39888765 DOI: 10.1364/ol.550055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 02/02/2025]
Abstract
Yb:YAG thin disk lasers can deliver high average power, high-energy pulses of fundamental mode. To achieve spatially homogeneous spectral broadening of the pulses in a compact setup, we propose utilizing a thin-film compression (TFC) scheme following beam shaping via field mapping optics. In our proof-of-principle experiment, the pulse from a Yb:YAG laser was converted from a Gaussian beam to a nearly flat-top beam by a π-shaper. The spectral width of the pulse was broadened from 3.1 nm to 6.6 nm after accumulating nonlinear phase shift in a YAG crystal. This technique resulted in high spectral homogeneity and mitigated degradation of focusability typically observed after spectral broadening. We believe this approach offers a promising solution for the post-compression of high-energy Yb lasers within a compact setup.
Collapse
|
3
|
Behrens M, Englert L, Bayer T, Wollenhaupt M. XUV-beamline for photoelectron imaging spectroscopy with shaped pulses. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:093101. [PMID: 39287480 DOI: 10.1063/5.0223450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
We introduce an extreme ultraviolet (XUV)-beamline designed for the time-resolved investigation and coherent control of attosecond (as) electron dynamics in atoms and molecules by polarization-shaped as-laser pulses. Shaped as-pulses are generated through high-harmonic generation (HHG) of tailored white-light supercontinua (WLS) in noble gases. The interaction of shaped as-pulses with the sample is studied using velocity map imaging (VMI) techniques to achieve the differential detection of photoelectron wave packets. The instrument consists of the WLS-beamline, which includes a hollow-core fiber compressor and a home-built 4f polarization pulse shaper, and the high-vacuum XUV-beamline, which combines an HHG-stage and a versatile multi-experiment vacuum chamber equipped with a home-built VMI spectrometer. The VMI spectrometer allows the detection of photoelectron wave packets from both the multiphoton ionization (MPI) of atomic or molecular samples by the tailored WLS-pulses and the single-photon ionization (SPI) by the shaped XUV-pulses. To characterize the VMI spectrometer, we studied the MPI of xenon atoms by linearly polarized WLS pulses. To validate the interplay of these components, we conducted experiments on the SPI of xenon atoms with linearly polarized XUV-pulses. Our results include the reconstruction of the 3D photoelectron momentum distribution (PMD) and initial findings on the coherent control of the PMD by tuning the spectrum of the XUV-pulses with the spectral phase of the WLS. Our results demonstrate the performance of the entire instrument for HHG-based photoelectron imaging spectroscopy with prototypical shaped pulses. Perspectively, we will employ polarization-tailored WLS-pulses to generate polarization-shaped as-pulses.
Collapse
Affiliation(s)
- M Behrens
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - L Englert
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - T Bayer
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - M Wollenhaupt
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
4
|
Galán MF, Serrano J, Jarque EC, Borrego-Varillas R, Lucchini M, Reduzzi M, Nisoli M, Brahms C, Travers JC, Hernández-García C, San Roman J. Robust Isolated Attosecond Pulse Generation with Self-Compressed Subcycle Drivers from Hollow Capillary Fibers. ACS PHOTONICS 2024; 11:1673-1683. [PMID: 38645995 PMCID: PMC11027177 DOI: 10.1021/acsphotonics.3c01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 04/23/2024]
Abstract
High-order harmonic generation (HHG) arising from the nonperturbative interaction of intense light fields with matter constitutes a well-established tabletop source of coherent extreme-ultraviolet and soft X-ray radiation, which is typically emitted as attosecond pulse trains. However, ultrafast applications increasingly demand isolated attosecond pulses (IAPs), which offer great promise for advancing precision control of electron dynamics. Yet, the direct generation of IAPs typically requires the synthesis of near-single-cycle intense driving fields, which is technologically challenging. In this work, we theoretically demonstrate a novel scheme for the straightforward and compact generation of IAPs from multicycle infrared drivers using hollow capillary fibers (HCFs). Starting from a standard, intense multicycle infrared pulse, a light transient is generated by extreme soliton self-compression in a HCF with decreasing pressure and is subsequently used to drive HHG in a gas target. Owing to the subcycle confinement of the HHG process, high-contrast IAPs are continuously emitted almost independently of the carrier-envelope phase (CEP) of the optimally self-compressed drivers. This results in a CEP-robust scheme which is also stable under macroscopic propagation of the high harmonics in a gas target. Our results open the way to a new generation of integrated all-fiber IAP sources, overcoming the efficiency limitations of usual gating techniques for multicycle drivers.
Collapse
Affiliation(s)
- Marina Fernández Galán
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Javier Serrano
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Enrique Conejero Jarque
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Rocío Borrego-Varillas
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Matteo Lucchini
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Maurizio Reduzzi
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Mauro Nisoli
- Institute
for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department
of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Christian Brahms
- School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United
Kingdom
| | - John C. Travers
- School
of Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh, EH14 4AS, United
Kingdom
| | - Carlos Hernández-García
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| | - Julio San Roman
- Grupo
de Investigación en Aplicaciones del Láser y Fotónica,
Departamento de Física Aplicada, Universidad de Salamanca, Salamanca, 37008, Spain
- Unidad
de Excelencia en Luz y Materia Estructuradas (LUMES), Universidad de Salamanca, Salamanca, 37008, Spain
| |
Collapse
|
5
|
Boltaev GS, Ganeev RA, Alnaser AS. Enhanced XUV harmonics generated in mixed noble gases using three-color laser fields. OPTICS EXPRESS 2024; 32:113-124. [PMID: 38175043 DOI: 10.1364/oe.507586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
High repetition coherent extreme ultraviolet (XUV) harmonics offer a powerful tool for investigating electron dynamics and understanding the underlying physics in a wide range of systems. We demonstrate the utilization of combined three-color (ω+2ω+3ω) laser fields in the generation of coherent extreme ultraviolet radiation in mixed noble gases. The three-color field results from the combination of fundamental, second-, and third-order harmonics of the near-infrared laser pulses in the nonlinear crystals. Different noble gases were selected as gas targets based on their ionization potentials, which are important parameters for generating higher cut-offs and intensities for the XUV harmonics. Enhanced XUV harmonic intensities were observed in the mixture of He + Kr gases when using three-color laser fields, compared to harmonics generated in the He + Kr mixture under a single-color pump. On the other hand, suppression of XUV harmonic intensity was observed in the mixture of He + Xe under the three-color pump due to the highest ionization level for these two mixed gases at similar laser conditions. Strong harmonic yields in the range of 25 to 80 eV of photon energy were observed.
Collapse
|
6
|
Raveesh M, Dominguez A, Linne M, Bood J, Hosseinnia A. Interferometric quantum control (IQC) by fs/ns rotational coherent anti-Stokes Raman spectroscopy (RCARS). OPTICS EXPRESS 2023; 31:38064-38076. [PMID: 38017923 DOI: 10.1364/oe.498169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/14/2023] [Indexed: 11/30/2023]
Abstract
A new rotational coherent anti-Stokes Raman spectroscopy (RCARS) concept based on interferometric quantum control (IQC) is demonstrated. Two wavepackets originating from pure rotational states are created by a femtosecond stimulated rotational Raman interaction. The two Raman responses are instantly probed by a single-mode ns pulse generating two interfering RCARS polarizations. The resulting signal is an IQC-RCARS spectrum detected by a streak camera. Here we demonstrate IQC-interferograms of N2 by varying the temporal separation between the two fs pulses within a full rotational revival period, as well as signal amplification and selective detection of nuclear-spin isomers at room conditions and inside a flame.
Collapse
|
7
|
Mainz RE, Rossi GM, Scheiba F, Silva-Toledo MA, Yang Y, Cirmi G, Kärtner FX. Parametric waveform synthesis: a scalable approach to generate sub-cycle optical transients. OPTICS EXPRESS 2023; 31:11363-11394. [PMID: 37155774 DOI: 10.1364/oe.485543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The availability of electromagnetic pulses with controllable field waveform and extremely short duration, even below a single optical cycle, is imperative to fully harness strong-field processes and to gain insight into ultrafast light-driven mechanisms occurring in the attosecond time-domain. The recently demonstrated parametric waveform synthesis (PWS) introduces an energy-, power- and spectrum-scalable method to generate non-sinusoidal sub-cycle optical waveforms by coherently combining different phase-stable pulses attained via optical parametric amplifiers. Significant technological developments have been made to overcome the stability issues related to PWS and to obtain an effective and reliable waveform control system. Here we present the main ingredients enabling PWS technology. The design choices concerning the optical, mechanical and electronic setups are justified by analytical/numerical modeling and benchmarked by experimental observations. In its present incarnation, PWS technology enables the generation of field-controllable mJ-level few-femtosecond pulses spanning the visible to infrared range.
Collapse
|
8
|
Mondal S, Shirozhan M, Choudhary S, Nelissen K, Tzallas P, Charalambidis D, Varjú K, Kahaly S. Intense isolated attosecond pulses from two-color few-cycle laser driven relativistic surface plasma. Sci Rep 2022; 12:13668. [PMID: 35953509 PMCID: PMC9372060 DOI: 10.1038/s41598-022-17762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022] Open
Abstract
Ultrafast plasma dynamics play a pivotal role in the relativistic high harmonic generation, a phenomenon that can give rise to intense light fields of attosecond duration. Controlling such plasma dynamics holds key to optimize the relevant sub-cycle processes in the high-intensity regime. Here, we demonstrate that the optimal coherent combination of two intense ultrashort pulses centered at two-colors (fundamental frequency, [Formula: see text] and second harmonic, [Formula: see text]) can lead to an optimal shape in relativistic intensity driver field that yields such an extraordinarily sensitive control. Conducting a series of two-dimensional (2D) relativistic particle-in-cell (PIC) simulations carried out for currently achievable laser parameters and realistic experimental conditions, we demonstrate that an appropriate combination of [Formula: see text] along with a precise delay control can lead to more than three times enhancement in the resulting high harmonic flux. Finally, the two-color multi-cycle field synthesized with appropriate delay and polarization can all-optically suppress several attosecond bursts while favourably allowing one burst to occur, leading to the generation of intense isolated attosecond pulses without the need of any sophisticated gating techniques.
Collapse
Affiliation(s)
- Sudipta Mondal
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary.
| | - Mojtaba Shirozhan
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary
| | - Shivani Choudhary
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
| | - Kwinten Nelissen
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
| | - Paraskevas Tzallas
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, 70013, Heraklion (Crete), Greece
| | - Dimitris Charalambidis
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Foundation for Research and Technology-Hellas, Institute of Electronic Structure & Laser, 70013, Heraklion (Crete), Greece
- Department of Physics, University of Crete, PO Box 2208, 71003, Heraklion (Crete), Greece
| | - Katalin Varjú
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary
- Department of Optics and Quantum Electronics, University of Szeged, Dóm Tér 9, Szeged, 6720, Hungary
| | - Subhendu Kahaly
- ELI-ALPS, ELI-HU Non-Profit Ltd., Wolfgang Sandner utca 3., Szeged, 6728, Hungary.
- Institute of Physics, University of Szeged, Dóm tér 9, Szeged, 6720, Hungary.
| |
Collapse
|
9
|
Rossi GM, Mainz RE, Scheiba F, Silva-Toledo MA, Kubullek M, Kärtner FX. Controlling water-window high-harmonic generation with sub-cycle synthesized waveforms. EPJ WEB OF CONFERENCES 2022. [DOI: 10.1051/epjconf/202226613030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
We present the first results concerning synthesizer-driven high-harmonic generation that reach the water-window region. This approach holds the promise of offering greater spectral tunability in the generation of isolated attosecond pulses and at the same time of achieving higher photon-flux, required for attosecondresolved soft X-ray transient absorption experiments.
Collapse
|