1
|
Procházková K, Uhlík J. Influence of Hypoxia on the Airway Epithelium. Physiol Res 2024; 73:S557. [PMID: 39589303 PMCID: PMC11627265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 11/27/2024] Open
Abstract
The necessity of oxygen for metabolic processes means that hypoxia can lead to serious cell and tissue damage. On the other hand, in some situations, hypoxia occurs under physiological conditions and serves as an important regulation factor. The airway epithelium is specific in that it gains oxygen not only from the blood supply but also directly from the luminal air. Many respiratory diseases are associated with airway obstruction or excessive mucus production thus leading to luminal hypoxia. The main goal of this review is to point out how the airway epithelium reacts to hypoxic conditions. Cells detect low oxygen levels using molecular mechanisms involving hypoxia-inducible factors (HIFs). In addition, the cells of the airway epithelium appear to overexpress HIFs in hypoxic conditions. HIFs then regulate many aspects of epithelial cell functions. The effects of hypoxia include secretory cell stimulation and hyperplasia, epithelial barrier changes, and ciliogenesis impairment. All the changes can impair mucociliary clearance, exacerbate infection, and promote inflammation leading to damage of airway epithelium and subsequent airway wall remodeling. The modulation of hypoxia regulatory mechanisms may be one of the strategies for the treatment of obstructive respiratory diseases or diseases with mucus hyperproduction. Keywords: Secretory cells, Motile cilia, Epithelial barrier, Oxygenation, Obstructive respiratory diseases.
Collapse
Affiliation(s)
- K Procházková
- Department of Histology and Embryology, 2nd Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | |
Collapse
|
2
|
Ahmad S, Nasser W, Ahmad A. Epigenetic mechanisms of alveolar macrophage activation in chemical-induced acute lung injury. Front Immunol 2024; 15:1488913. [PMID: 39582870 PMCID: PMC11581858 DOI: 10.3389/fimmu.2024.1488913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024] Open
Abstract
Airways, alveoli and the pulmonary tissues are the most vulnerable to the external environment including occasional deliberate or accidental exposure to highly toxic chemical gases. However, there are many effective protective mechanisms that maintain the integrity of the pulmonary tissues and preserve lung function. Alveolar macrophages form the first line of defense against any pathogen or chemical/reactant that crosses the airway mucociliary barrier and reaches the alveolar region. Resident alveolar macrophages are activated or circulating monocytes infiltrate the airspace to contribute towards inflammatory or reparative responses. Studies on response of alveolar macrophages to noxious stimuli are rapidly emerging and alveolar macrophage are also being sought as therapeutic target. Here such studies have been reviewed and put together for a better understanding of the role pulmonary macrophages in general and alveolar macrophage in particular play in the pathogenesis of disease caused by chemical induced acute lung injury.
Collapse
Affiliation(s)
- Shama Ahmad
- Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | | | | |
Collapse
|
3
|
Pouwels SD, Ter Haar EAMD, Heijink IH, Hylkema MN, Koster TD, Kuks PJM, Maassen S, Slebos DJ, Vasse GF, de Vries M, Woldhuis RR, Brandsma CA. Highlights from the 11th Bronchitis International Symposium: "Heterogeneity of Lung Disease in a Changing Environment," Groningen, The Netherlands, 2024. Respiration 2024; 103:765-776. [PMID: 39348815 DOI: 10.1159/000541655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024] Open
Abstract
This meeting report provides an overview of the highlights of the Bronchitis XI international symposium, held in June 2024 in Groningen, The Netherlands. The theme of this year's symposium was "heterogeneity of lung disease in a changing environment," and the symposium contained five different sessions focused on (i) heterogeneity of chronic lung disease, (ii) environmental changes with impact on lung disease, (iii) the aging lung, (iv) bronchitis, and (v) innovative therapy. The highlights from each of these sessions will be discussed separately, providing an overview of latest studies, new data, and enthralling discussions.
Collapse
Affiliation(s)
- Simon D Pouwels
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Else A M D Ter Haar
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Irene H Heijink
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Machteld N Hylkema
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - T David Koster
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Pauline J M Kuks
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Sjors Maassen
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Dirk-Jan Slebos
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pulmonary Diseases, University of Groningen, Groningen, The Netherlands
| | - Gwenda F Vasse
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Maaike de Vries
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Epidemiology, University of Groningen, Groningen, The Netherlands
| | - Roy R Woldhuis
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- University of Groningen, University Medical Center Groningen, GRIAC Research Institute, Groningen, The Netherlands
- University Medical Center Groningen, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
4
|
Zhang F, Cui Y, Zhang T, Yin W. Epigenetic regulation of macrophage activation in chronic obstructive pulmonary disease. Front Immunol 2024; 15:1445372. [PMID: 39206196 PMCID: PMC11349576 DOI: 10.3389/fimmu.2024.1445372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages in the innate immune system play a vital role in various lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), acute lung injury and pulmonary fibrosis. Macrophages involved in the process of immunity need to go through a process of activation, including changes in gene expression and cell metabolism. Epigenetic modifications are key factors of macrophage activation including DNA methylation, histone modification and non-coding RNA regulation. Understanding the role and mechanisms of epigenetic regulation of macrophage activation can provide insights into the function of macrophages in lung diseases and help identification of potential therapeutic targets. This review summarizes the latest progress in the epigenetic changes and regulation of macrophages in their development process and in normal physiological states, and the epigenetic regulation of macrophages in COPD as well as the influence of macrophage activation on COPD development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Yachao Cui
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| | - Tiejun Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, State Key Laboratory of Respiratory Disease, Guangzhou Medical University Affiliated Qingyuan Hospital, Qingyuan People's Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wenguang Yin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University (GMU) - Guangzhou Institutes of Biomedicine and Health (GIBH) Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong, China
| |
Collapse
|
5
|
Tafech B, Rokhforouz MR, Leung J, Sung MM, Lin PJ, Sin DD, Lauster D, Block S, Quon BS, Tam Y, Cullis P, Feng JJ, Hedtrich S. Exploring Mechanisms of Lipid Nanoparticle-Mucus Interactions in Healthy and Cystic Fibrosis Conditions. Adv Healthc Mater 2024; 13:e2304525. [PMID: 38563726 DOI: 10.1002/adhm.202304525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/05/2024] [Indexed: 04/04/2024]
Abstract
Mucus forms the first defense line of human lungs, and as such hampers the efficient delivery of therapeutics to the underlying epithelium. This holds particularly true for genetic cargo such as CRISPR-based gene editing tools which cannot readily surmount the mucosal barrier. While lipid nanoparticles (LNPs) emerge as versatile non-viral gene delivery systems that can help overcome the delivery challenge, many knowledge gaps remain, especially for diseased states such as cystic fibrosis (CF). This study provides fundamental insights into Cas9 mRNA or ribonucleoprotein-loaded LNP-mucus interactions in healthy and diseased states by assessing the impact of the genetic cargo, mucin sialylation, mucin concentration, ionic strength, pH, and polyethylene glycol (PEG) concentration and nature on LNP diffusivity leveraging experimental approaches and Brownian dynamics (BD) simulations. Taken together, this study identifies key mucus and LNP characteristics that are critical to enabling a rational LNP design for transmucosal delivery.
Collapse
Affiliation(s)
- Belal Tafech
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Mohammad-Reza Rokhforouz
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Jerry Leung
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Molly Mh Sung
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Paulo Jc Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Daniel Lauster
- Institute of Pharmacy, Biopharmaceuticals, Freie Universität Berlin, 12169, Berlin, Germany
| | - Stephan Block
- Institute of Organic Chemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Adult Cystic Fibrosis Clinic, St Paul's Hospital, Vancouver, BC, V6Z 1Y6, Canada
| | - Ying Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Pieter Cullis
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - James J Feng
- Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Department of Mathematics, University of British Columbia, Vancouver, BC, V6T 1Z2, Canada
| | - Sarah Hedtrich
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Center of Biological Design, Berlin Institute of Health at Charité, Universitätsmedizin Berlin, Berlin, Germany
- Department of Infectious Diseases and Respiratory Medicine, Charité, Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
- Max-Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125, Berlin, Germany
| |
Collapse
|
6
|
Zhou X, Yang X, Huang S, Lin G, Lei K, Wang Q, Lin W, Li H, Qi X, Seriwatanachai D, Yang S, Shao B, Yuan Q. Inhibition of METTL3 Alleviates NLRP3 Inflammasome Activation via Increasing Ubiquitination of NEK7. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308786. [PMID: 38696610 PMCID: PMC11234428 DOI: 10.1002/advs.202308786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/06/2024] [Indexed: 05/04/2024]
Abstract
N6-methyladenosine (m6A) modification, installed by METTL3-METTL14 complex, is abundant and critical in eukaryotic mRNA. However, its role in oral mucosal immunity remains ambiguous. Periodontitis is a special but prevalent infectious disease characterized as hyperinflammation of oral mucosa and bone resorption. Here, it is reported that genetic deletion of Mettl3 alleviates periodontal destruction via suppressing NLRP3 inflammasome activation. Mechanistically, the stability of TNFAIP3 (also known as A20) transcript is significantly attenuated upon m6A modification. When silencing METTL3, accumulated TNFAIP3 functioning as a ubiquitin-editing enzyme facilitates the ubiquitination of NEK7 [NIMA (never in mitosis gene a)-related kinase 7], and subsequently impairs NLRP3 inflammasome assembly. Furtherly, Coptisine chloride, a natural small-molecule, is discovered as a novel METTL3 inhibitor and performs therapeutic effect on periodontitis. The study unveils a previously unknown pathogenic mechanism of METTL3-mediated m6A modifications in periodontitis and indicates METTL3 as a potential therapeutic target.
Collapse
Affiliation(s)
- Xinyi Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
- Department of ProsthodonticsShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineCollege of StomatologyNational Center for StomatologyNational Clinical Research Center for Oral DiseasesShanghai Key Laboratory of StomatologyShanghai Research Institute of StomatologyShanghai Jiao Tong UniversityShanghai200011China
| | - Xiaoyu Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Shenzhen Huang
- Henan Eye InstituteHenan Eye Hospital and Henan Key Laboratory of Ophthalmology and Visual ScienceHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityPeople's Hospital of Henan UniversityZhengzhou450003China
| | - Guifeng Lin
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Qian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Hanwen Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Xingying Qi
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of oral implantologyStomatological Hospital and Dental SchoolTongji UniversityShanghai200072China
| | | | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| |
Collapse
|
7
|
Loske J, Völler M, Lukassen S, Stahl M, Thürmann L, Seegebarth A, Röhmel J, Wisniewski S, Messingschlager M, Lorenz S, Klages S, Eils R, Lehmann I, Mall MA, Graeber SY, Trump S. Pharmacological Improvement of Cystic Fibrosis Transmembrane Conductance Regulator Function Rescues Airway Epithelial Homeostasis and Host Defense in Children with Cystic Fibrosis. Am J Respir Crit Care Med 2024; 209:1338-1350. [PMID: 38259174 PMCID: PMC11146576 DOI: 10.1164/rccm.202310-1836oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024] Open
Abstract
Rationale: Pharmacological improvement of cystic fibrosis transmembrane conductance regulator (CFTR) function with elexacaftor/tezacaftor/ivacaftor (ETI) provides unprecedented improvements in lung function and other clinical outcomes in patients with cystic fibrosis (CF). However, ETI effects on impaired mucosal homeostasis and host defense at the molecular and cellular levels in the airways of patients with CF remain unknown. Objectives: To investigate effects of ETI on the transcriptome of nasal epithelial and immune cells from children with CF at the single-cell level. Methods: Nasal swabs from 13 children with CF and at least one F508del allele aged 6 to 11 years were collected at baseline and 3 months after initiation of ETI, subjected to single-cell RNA sequencing, and compared with swabs from 12 age-matched healthy children. Measurements and Main Results: Proportions of CFTR-positive cells were decreased in epithelial basal, club, and goblet cells, but not in ionocytes, from children with CF at baseline and were restored by ETI therapy to nearly healthy levels. Single-cell transcriptomics revealed an impaired IFN signaling and reduced expression of major histocompatibility complex classes I and II encoding genes in epithelial cells of children with CF at baseline, which was partially restored by ETI. In addition, ETI therapy markedly reduced the inflammatory phenotype of immune cells, particularly of neutrophils and macrophages. Conclusions: Pharmacological improvement of CFTR function improves innate mucosal immunity and reduces immune cell inflammatory responses in the upper airways of children with CF at the single-cell level, highlighting the potential to restore epithelial homeostasis and host defense in CF airways by early initiation of ETI therapy.
Collapse
Affiliation(s)
- Jennifer Loske
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology and
| | - Mirjam Völler
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sören Lukassen
- Center of Digital Health, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Mirjam Stahl
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Loreen Thürmann
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Anke Seegebarth
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Jobst Röhmel
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Sebastian Wisniewski
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marey Messingschlager
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Biology and
| | - Stephan Lorenz
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sven Klages
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Roland Eils
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
- Center of Digital Health, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
- Health Data Science Unit, BioQuant, Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Irina Lehmann
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Simon Y. Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research, Associated Partner Site, Berlin, Germany
| | - Saskia Trump
- Center of Digital Health, Molecular Epidemiology Unit, Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Gao Y, Liang Z, Mao B, Zheng X, Shan J, Jin C, Liu S, Kolliputi N, Chen Y, Xu F, Shi L. Gut microbial GABAergic signaling improves stress-associated innate immunity to respiratory viral infection. J Adv Res 2024; 60:41-56. [PMID: 37353002 PMCID: PMC10284622 DOI: 10.1016/j.jare.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/25/2023] Open
Abstract
INTRODUCTION Epidemiological evidences reveal that populations with psychological stress have an increased likelihood of respiratory viral infection involving influenza A virus (IAV) and SARS-CoV-2. OBJECTIVES This study aims to explore the potential correlation between psychological stress and increased susceptibility to respiratory viral infections and how this may contribute to a more severe disease progression. METHODS A chronic restraint stress (CRS) mouse model was used to infect IAV and estimate lung inflammation. Alveolar macrophages (AMs) were observed in the numbers, function and metabolic-epigenetic properties. To confirm the central importance of the gut microbiome in stress-exacerbated viral pneumonia, mice were conducted through microbiome depletion and gut microbiome transplantation. RESULTS Stress exposure induced a decline in Lactobacillaceae abundance and hence γ-aminobutyric acid (GABA) level in mice. Microbial-derived GABA was released in the peripheral and sensed by AMs via GABAAR, leading to enhanced mitochondrial metabolism and α-ketoglutarate (αKG) generation. The metabolic intermediator in turn served as the cofactor for the epigenetic regulator Tet2 to catalyze DNA hydroxymethylation and promoted the PPARγ-centered gene program underpinning survival, self-renewing, and immunoregulation of AMs. Thus, we uncover an unappreciated GABA/Tet2/PPARγ regulatory circuitry initiated by the gut microbiome to instruct distant immune cells through a metabolic-epigenetic program. Accordingly, reconstitution with GABA-producing probiotics, adoptive transferring of GABA-conditioned AMs, or resumption of pulmonary αKG level remarkably improved AMs homeostasis and alleviated severe pneumonia in stressed mice. CONCLUSION Together, our study identifies microbiome-derived tonic signaling tuned by psychological stress to imprint resident immune cells and defensive response in the lungs. Further studies are warranted to translate these findings, basically from murine models, into the individuals with psychiatric stress during respiratory viral infection.
Collapse
Affiliation(s)
- Yanan Gao
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihao Liang
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Bingyong Mao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudong Zheng
- Department of Immunology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Cuiyuan Jin
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China
| | - Shijia Liu
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Narasaiah Kolliputi
- Division of Allergy and Immunology, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yugen Chen
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Feng Xu
- Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, China.
| |
Collapse
|
9
|
Liu C, Quan X, Tian X, Zhao Y, Li HF, Mak JCW, Wang Z, Mao S, Zheng Y. Inhaled Macrophage Apoptotic Bodies-Engineered Microparticle Enabling Construction of Pro-Regenerative Microenvironment to Fight Hypoxic Lung Injury in Mice. ACS NANO 2024; 18:13361-13376. [PMID: 38728619 PMCID: PMC11112977 DOI: 10.1021/acsnano.4c03421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/12/2024]
Abstract
Oxygen therapy cannot rescue local lung hypoxia in patients with severe respiratory failure. Here, an inhalable platform is reported for overcoming the aberrant hypoxia-induced immune changes and alveolar damage using camouflaged poly(lactic-co-glycolic) acid (PLGA) microparticles with macrophage apoptotic body membrane (cMAB). cMABs are preloaded with mitochondria-targeting superoxide dismutase/catalase nanocomplexes (NCs) and modified with pathology-responsive macrophage growth factor colony-stimulating factor (CSF) chains, which form a core-shell platform called C-cMAB/NC with efficient deposition in deeper alveoli and high affinity to alveolar epithelial cells (AECs) after CSF chains are cleaved by matrix metalloproteinase 9. Therefore, NCs can be effectively transported into mitochondria to inhibit inflammasome-mediated AECs damage in mouse models of hypoxic acute lung injury. Additionally, the at-site CSF release is sufficient to rescue circulating monocytes and macrophages and alter their phenotypes, maximizing synergetic effects of NCs on creating a pro-regenerative microenvironment that enables resolution of lung injury and inflammation. This inhalable platform may have applications to numerous inflammatory lung diseases.
Collapse
Affiliation(s)
- Chang Liu
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macau999078, China
| | - Xingping Quan
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macau999078, China
| | - Xidong Tian
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macau999078, China
| | - Yonghua Zhao
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macau999078, China
- Department
of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau999078, China
| | - Hai-Feng Li
- Joint
Key Laboratory of the Ministry of Education, Institute of Applied
Physics and Materials Engineering, University
of Macau, Macau999078, China
| | - Judith Choi Wo Mak
- Department
of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, 999077, Hong Kong,
China
| | - Zhenping Wang
- Department
of Dermatology, School of Medicine, University
of California, San Diego, California92093, United States
| | - Shirui Mao
- School of
Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
- Joint
International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Ying Zheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Macau999078, China
- Department
of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macau999078, China
| |
Collapse
|
10
|
Li J, Zeng G, Zhang Z, Wang Y, Shao M, Li C, Lu Z, Zhao Y, Zhang F, Ding W. Urban airborne PM 2.5 induces pulmonary fibrosis through triggering glycolysis and subsequent modification of histone lactylation in macrophages. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116162. [PMID: 38458067 DOI: 10.1016/j.ecoenv.2024.116162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/10/2024]
Abstract
Airborne fine particulate matter (PM2.5) can cause pulmonary inflammation and even fibrosis, however, the underlying molecular mechanisms of the pathogenesis of PM2.5 exposure have not been fully appreciated. In the present study, we explored the dynamics of glycolysis and modification of histone lactylation in macrophages induced by PM2.5-exposure in both in vivo and in vitro models. Male C57BL/6 J mice were anesthetized and administrated with PM2.5 by intratracheal instillation once every other day for 4 weeks. Mouse RAW264.7 macrophages and alveolar epithelial MLE-12 cells were treated with PM2.5 for 24 h. We found that PM2.5 significantly increased lactate dehydrogenase (LDH) activities and lactate contents, and up-regulated the mRNA expression of key glycolytic enzymes in the lungs and bronchoalveolar lavage fluids of mice. Moreover, PM2.5 increased the levels of histone lactylation in both PM2.5-exposed lungs and RAW264.7 cells. The pro-fibrotic cytokines secreted from PM2.5-treated RAW264.7 cells triggered epithelial-mesenchymal transition (EMT) in MLE-12 cells through activating transforming growth factor-β (TGF-β)/Smad2/3 and VEGFA/ERK pathways. In contrast, LDHA inhibitor (GNE-140) pretreatment effectively alleviated PM2.5-induced pulmonary inflammation and fibrosis via inhibiting glycolysis and subsequent modification of histone lactylation in mice. Thus, our findings suggest that PM2.5-induced glycolysis and subsequent modification of histone lactylation play critical role in the PM2.5-associated pulmonary fibrosis.
Collapse
Affiliation(s)
- Jingyi Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Guodong Zeng
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yuanli Wang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Mengyao Shao
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunjiang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, No. 1 Beichen West Road, Beijing 100101, China.
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Wang D, Zhang Y, Zhang L, He D, Zhao L, Miao Z, Cheng W, Zhu C, Zhu L, Zhang W, Jin H, Zhu H, Pan H. IRF1 governs the expression of SMARCC1 via the GCN5-SETD2 axis and actively engages in the advancement of osteoarthritis. J Orthop Translat 2024; 45:211-225. [PMID: 38586591 PMCID: PMC10997872 DOI: 10.1016/j.jot.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/13/2023] [Accepted: 01/13/2024] [Indexed: 04/09/2024] Open
Abstract
Background Osteoarthritis (OA) is a degenerative joint disease characterized by the breakdown of joint cartilage and underlying bone. Macrophages are a type of white blood cell that plays a critical role in the immune system and can be found in various tissues, including joints. Research on the relationship between OA and macrophages is essential to understand the mechanisms underlying the development and progression of OA. Objective This study was performed to analyze the functions of the IRF1-GCN5-SETD2-SMARCC1 axis in osteoarthritis (OA) development. Methods A single-cell RNA sequencing (scRNA-seq) dataset, was subjected to a comprehensive analysis aiming to identify potential regulators implicated in the progression of osteoarthritis (OA). In order to investigate the role of IRF1 and SMARCC1, knockdown experiments were conducted in both OA-induced rats and interleukin (IL)-1β-stimulated chondrocytes, followed by the assessment of OA-like symptoms, secretion of inflammatory cytokines, and polarization of macrophages. Furthermore, the study delved into the identification of aberrant epigenetic modifications and functional enzymes responsible for the regulation of SMARCC1 by IRF1. To evaluate the clinical significance of the factors under scrutiny, a cohort comprising 13 patients diagnosed with OA and 7 fracture patients without OA was included in the analysis. Results IRF1 was found to exert regulatory control over the expression of SMARCC1, thus playing a significant role in the development of osteoarthritis (OA). The knockdown of either IRF1 or SMARCC1 disrupted the pro-inflammatory effects induced by IL-1β in chondrocytes, leading to a mitigation of OA-like symptoms, including inflammatory infiltration, cartilage degradation, and tissue injury, in rat models. Additionally, this intervention resulted in a reduction in the predominance of M1 macrophages both in vitro and in vivo. Significant epigenetic modifications, such as abundant H3K27ac and H3K4me3 marks, were observed near the SMARCC1 promoter and 10 kb upstream region. These modifications were attributed to the recruitment of GCN5 and SETD2, which are functional enzymes responsible for these modifications. Remarkably, the overexpression of either GCN5 or SETD2 restored SMARCC1 expression in rat cartilages or chondrocytes, consequently exacerbating the OA-like symptoms. Conclusion This research postulates that the transcriptional activity of SMARCC1 can be influenced by IRF1 through the recruitment of GCN5 and SETD2, consequently regulating the H3K27ac and H3K4me3 modifications in close proximity to the SMARCC1 promoter and 10 kb upstream region. These modifications, in turn, facilitate the M1 skewing of macrophages and contribute to the progression of osteoarthritis (OA). The Translational Potential of this Article The study demonstrated that the regulation of SMARCC1 by IRF1 plays a crucial role in the development of OA. Knocking down either IRF1 or SMARCC1 disrupted the pro-inflammatory effects induced by IL-1β in chondrocytes, leading to a mitigation of OA-like symptoms in rat models. These symptoms included inflammatory infiltration, cartilage degradation, and tissue injury. These findings suggest that targeting the IRF1-SMARCC1 regulatory axis, as well as the associated epigenetic modifications, could potentially be a novel approach in the development of OA therapies, offering new opportunities for disease management and improved patient outcomes.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, Zhejiang Province, PR China
- Hangzhou Lin'an District Traditional Chinese Medicine Hospital, Hangzhou, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, Zhejiang Province, PR China
| | - Li Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, PR China
| | - Hongting Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou 310007, Zhejiang Province, PR China
| |
Collapse
|
12
|
Purev E, Bahmed K, Kosmider B. Alveolar Organoids in Lung Disease Modeling. Biomolecules 2024; 14:115. [PMID: 38254715 PMCID: PMC10813493 DOI: 10.3390/biom14010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Lung organoids display a tissue-specific functional phenomenon and mimic the features of the original organ. They can reflect the properties of the cells, such as morphology, polarity, proliferation rate, gene expression, and genomic profile. Alveolar type 2 (AT2) cells have a stem cell potential in the adult lung. They produce and secrete pulmonary surfactant and proliferate to restore the epithelium after damage. Therefore, AT2 cells are used to generate alveolar organoids and can recapitulate distal lung structures. Also, AT2 cells in human-induced pluripotent stem cell (iPSC)-derived alveolospheres express surfactant proteins and other factors, indicating their application as suitable models for studying cell-cell interactions. Recently, they have been utilized to define mechanisms of disease development, such as COVID-19, lung cancer, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. In this review, we show lung organoid applications in various pulmonary diseases, drug screening, and personalized medicine. In addition, stem cell-based therapeutics and approaches relevant to lung repair were highlighted. We also described the signaling pathways and epigenetic regulation of lung regeneration. It is critical to identify novel regulators of alveolar organoid generations to promote lung repair in pulmonary diseases.
Collapse
Affiliation(s)
- Enkhee Purev
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
| | - Karim Bahmed
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
| | - Beata Kosmider
- Department of Microbiology, Immunology, and Inflammation, Temple University, Philadelphia, PA 19140, USA
- Center for Inflammation and Lung Research, Temple University, Philadelphia, PA 19140, USA
- Department of Thoracic Medicine and Surgery, Temple University, Philadelphia, PA 19140, USA
- Department of Cardiovascular Sciences, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
13
|
Abidov M, Sokolova K, Danilova I, Baykenova M, Gette I, Mychlynina E, Aydin Ozgur B, Gurol AO, Yilmaz MT. Hepatic insulin synthesis increases in rat models of diabetes mellitus type 1 and 2 differently. PLoS One 2023; 18:e0294432. [PMID: 38019818 PMCID: PMC10686419 DOI: 10.1371/journal.pone.0294432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Insulin-positive (+) cells (IPCs), detected in multiple organs, are of great interest as a probable alternative to ameliorate pancreatic beta-cells dysfunction and insulin deficiency in diabetes. Liver is a potential source of IPCs due to it common embryological origin with pancreas. We previously demonstrated the presence of IPCs in the liver of healthy and diabetic rats, but detailed description and analysis of the factors, which potentially can induced ectopic hepatic expression of insulin in type 1 (T1D) and type 2 diabetes (T2D), were not performed. In present study we evaluate mass of hepatic IPCs in the rat models of T1D and T2D and discuss factors, which may stimulate it generation: glycaemia, organ injury, involving of hepatic stem/progenitor cell compartment, expression of transcription factors and inflammation. Quantity of IPCs in the liver was up by 1.7-fold in rats with T1D and 10-fold in T2D compared to non-diabetic (ND) rats. We concluded that ectopic hepatic expression of insulin gene is activated by combined action of a number of factors, with inflammation playing a decision role.
Collapse
Affiliation(s)
- Musa Abidov
- Institute of Immunopathology and Preventive Medicine, Ljubljana, Slovenia
| | - Ksenia Sokolova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Irina Danilova
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Madina Baykenova
- Kostanay Oblast Tuberculosis Dispensary, Kostanay, Republic of Kazakhstan
| | - Irina Gette
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Elena Mychlynina
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russian Federation
| | - Burcin Aydin Ozgur
- Department of Medical Biology and Genetics, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
- Diabetes Application and Research Center, Demiroglu Bilim University, Istanbul, Turkey
| | - Ali Osman Gurol
- Department of Immunology, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
- Diabetes Application and Research Center, Istanbul University, Istanbul, Turkey
| | - M. Temel Yilmaz
- International Diabetes Center, Acibadem University, Istanbul, Turkey
| |
Collapse
|
14
|
Wu L, Xia W, Hua Y, Fan K, Lu Y, Wang M, Jin Y, Zhang W, Pan S. Cellular crosstalk of macrophages and therapeutic implications in non-small cell lung cancer revealed by integrative inference of single-cell transcriptomics. Front Pharmacol 2023; 14:1295442. [PMID: 38044943 PMCID: PMC10690610 DOI: 10.3389/fphar.2023.1295442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/02/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction: Non-small cell lung cancer (NSCLC) exhibits heterogeneity with diverse immune cell infiltration patterns that can influence tumor cell behavior and immunotherapy. A comprehensive characterization of the tumor microenvironment can guide precision medicine. Methods: Here, we generated a single-cell atlas of 398170 cells from 52 NSCLC patients, and investigated the imprinted genes and cellular crosstalk for macrophages. Subsequently, we evaluated the effect of tumor cells on macrophages and verified the expression of marker genes using co-culture experiments, flow cytometry and RT-qPCR assays. Results: Remarkable macrophage adaptability to NSCLC environment was observed, which contributed to generating tumor-associated macrophages (TAMs). We identified 5 distinct functional TAM subtypes, of which the majority were SELENOP-positive macrophages, with high levels of SLC40A1 and CCL13. The TAMs were also involved in mediating CD8+ T cell activity and form intercellular interaction with cancer cells, as indicated by receptor-ligand binding. Indirect coculture of tumor cells SPC-A1 and THP-1 monocytes, produced M2-like TAMs that highly expressed several markers of SELENOP-positive macrophages. The abundance of this type TAMs seemed to be associated with poorer overall survival rates [hazard ratio (HR) = 1.34, 95% confidence interval (CI) = 0.98-1.83, p = 0.068] based on deconvolution of TCGA-LUAD dataset. Discussion: In summary, we provided a high-resolution molecular resource of TAMs, and displayed the acquired properties in the tumor microenvironment. Dynamic crosstalk between TAMs and tumor cells via multiple ligand-receptor pairs were revealed, emphasizing its role in sustaining the pro-tumoral microenvironment and its implications for cancer therapy.
Collapse
Affiliation(s)
- Lei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Wenying Xia
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yiting Hua
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Kun Fan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yanfei Lu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Min Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Yuexinzi Jin
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Wei Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| | - Shiyang Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Branch of National Clinical Research Center for Laboratory Medicine, Nanjing, China
| |
Collapse
|
15
|
Ferri G, Serano M, Isopi E, Mucci M, Mattoscio D, Pecce R, Protasi F, Mall MA, Romano M, Recchiuti A. Resolvin D1 improves airway inflammation and exercise capacity in cystic fibrosis lung disease. FASEB J 2023; 37:e23233. [PMID: 37823221 DOI: 10.1096/fj.202301495r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Mucus plugging and non-resolving inflammation are inherent features of cystic fibrosis (CF) that may lead to progressive lung disease and exercise intolerance, which are the main causes of morbidity and mortality for people with CF. Therefore, understanding the influence of mucus on basic mechanisms underlying the inflammatory response and identifying strategies to resolve mucus-driven airway inflammation and consequent morbidity in CF are of wide interest. Here, we investigated the effects of the proresolving lipid mediator resolvin (Rv) D1 on mucus-related inflammation as a proof-of-concept to alleviate the burden of lung disease and restore exercise intolerance in CF. We tested the effects of RvD1 on inflammatory responses of human organotypic airways and leukocytes to CF mucus and of humanized mice expressing the epithelial Na + channel (βENaC-Tg) having CF-like mucus obstruction, lung disease, and physical exercise intolerance. RvD1 reduced pathogenic phenotypes of CF-airway supernatant (ASN)-stimulated human neutrophils, including loss of L-selectin shedding and CD16. RNASeq analysis identified select transcripts and pathways regulated by RvD1 in ASN-stimulated CF bronchial epithelial cells that are involved in sugar metabolism, NF-κB activation and inflammation, and response to stress. In in vivo inflammation using βENaC TG mice, RvD1 reduced total leukocytes, PMN, and interstitial Siglec-MΦ when given at 6-8 weeks of age, and in older mice at 10-12 weeks of age, along with the decrease of pro-inflammatory chemokines and increase of anti-inflammatory IL-10. Furthermore, RvD1 treatment promoted the resolution of pulmonary exacerbation caused by Pseudomonas aeruginosa infection and significantly enhanced physical activity and energy expenditure associated with mucus obstruction, which was impaired in βENaC-Tg mice compared with wild-type. These results demonstrate that RvD1 can rectify features of CF and offer proof-of-concept for its therapeutic application in this and other muco-obstructive lung diseases.
Collapse
Affiliation(s)
- Giulia Ferri
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Elisa Isopi
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Matteo Mucci
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Domenico Mattoscio
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Romina Pecce
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Mario Romano
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Antonio Recchiuti
- Department of Medical, Oral and Biotechnology Sciences, University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
16
|
Carbone A, Vitullo P, Di Gioia S, Conese M. Lung Inflammatory Genes in Cystic Fibrosis and Their Relevance to Cystic Fibrosis Transmembrane Conductance Regulator Modulator Therapies. Genes (Basel) 2023; 14:1966. [PMID: 37895314 PMCID: PMC10606852 DOI: 10.3390/genes14101966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic syndrome determined by over 2000 mutations in the CF Transmembrane Conductance Regulator (CFTR) gene harbored on chromosome 7. In people with CF (PWCF), lung disease is the major determinant of morbidity and mortality and is characterized by a clinical phenotype which differs in the presence of equal mutational assets, indicating that genetic and environmental modifiers play an important role in this variability. Airway inflammation determines the pathophysiology of CF lung disease (CFLD) both at its onset and progression. In this narrative review, we aim to depict the inflammatory process in CF lung, with a particular emphasis on those genetic polymorphisms that could modify the clinical outcome of the respiratory disease in PWCF. The natural history of CF has been changed since the introduction of CFTR modulator therapies in the clinical arena. However, also in this case, there is a patient-to-patient variable response. We provide an overview on inflammatory/immunity gene variants that affect CFLD severity and an appraisal of the effects of CFTR modulator therapies on the inflammatory process in lung disease and how this knowledge may advance the optimization of the management of PWCF.
Collapse
Affiliation(s)
- Annalucia Carbone
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Pamela Vitullo
- Cystic Fibrosis Support Center, Ospedale “G. Tatarella”, 71042 Cerignola, Italy;
| | - Sante Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy; (A.C.); (S.D.G.)
| |
Collapse
|
17
|
Lu Y, Deng M, Yin Y, Hou G, Zhou X. Global Trends in Research Regarding Macrophages Associated with Chronic Obstructive Pulmonary Disease: A Bibliometric Analysis from 2011 to 2022. Int J Chron Obstruct Pulmon Dis 2023; 18:2163-2177. [PMID: 37810373 PMCID: PMC10558051 DOI: 10.2147/copd.s419634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/21/2023] [Indexed: 10/10/2023] Open
Abstract
Purpose Chronic obstructive pulmonary disease (COPD) is a prevalent respiratory condition characterized by chronic airway inflammation, where macrophages from the innate immune system may exert a pivotal influence. Our study aimed to summarize the present state of knowledge and to identify the focal points and emerging developments regarding macrophages associated with COPD through bibliometrics. Methods Publications regarding research on macrophages associated with COPD from January 1, 2011, to January 1, 2022, were retrieved from the Science Citation Index-Expanded (SCI-E) which is part of the Web of Science database. In total, 1521 publications were analyzed using bibliometric methodology. VOSviewer was used to analyze the annual publications, countries, institutions, authors, journals, and research hotspots. Results Based on the bibliometric analysis, publications relating to macrophages associated with COPD tended to increase from 2011 to 2022. The United States was the largest producer and most influential country in this field. Research during the past decade has focused on inflammation in the lungs. Most previous studies have mainly focused on the mechanisms that promote the initiation and progression of COPD. Macrophage-related oxidative stress and immunity, communication between macrophages and epithelial cells, and interventions for acute exacerbations have become the focus of more recent studies and will become a hot topic in the future. Conclusion Global research on macrophage-associated COPD has been growing rapidly in the past decade. The hot topics in this field gradually tended to shift focus from "inflammation" to "oxidative stress", "epithelial-cells", and "exacerbations". The significance of macrophages in coordinating immune responses, interacting with other cells, and exhibiting dysregulated capacities has attracted increasing attention to COPD pathogenesis. The adoption of new technologies may provide a more promising and comprehensive understanding of the specific role of macrophages in COPD in the future.
Collapse
Affiliation(s)
- Ye Lu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Mingming Deng
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
| | - Yan Yin
- Department of Respiratory and Critical Care Medicine, First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Gang Hou
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, People’s Republic of China
- National Center for Respiratory Medicine, Beijing, People’s Republic of China
- Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- National Clinical Research Center for Respiratory Diseases, Beijing, People’s Republic of China
| | - Xiaoming Zhou
- Department of Respirology, Fuwai Hospital, National Center for Cardiovascular Diseases, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Žaloudíková M. Mechanisms and Effects of Macrophage Polarization and Its Specifics in Pulmonary Environment. Physiol Res 2023; 72:S137-S156. [PMID: 37565418 PMCID: PMC10660583 DOI: 10.33549/physiolres.935058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 06/09/2023] [Indexed: 12/01/2023] Open
Abstract
Macrophages are a specific group of cells found in all body tissues. They have specific characteristics in each of the tissues that correspond to the functional needs of the specific environment. These cells are involved in a wide range of processes, both pro-inflammatory and anti-inflammatory ("wound healing"). This is due to their specific capacity for so-called polarization, a phenotypic change that is, moreover, partially reversible compared to other differentiated cells of the human body. This promises a wide range of possibilities for its influence and thus therapeutic use. In this article, we therefore review the mechanisms that cause polarization, the basic classification of polarized macrophages, their characteristic markers and the effects that accompany these phenotypic changes. Since the study of pulmonary (and among them mainly alveolar) macrophages is currently the focus of scientific interest of many researchers and these macrophages are found in very specific environments, given mainly by the extremely high partial pressure of oxygen compared to other locations, which specifically affects their behavior, we will focus our review on this group.
Collapse
Affiliation(s)
- M Žaloudíková
- Department of Physiology, Second Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
19
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
20
|
Lemmens-Gruber R, Tzotzos S. The Epithelial Sodium Channel-An Underestimated Drug Target. Int J Mol Sci 2023; 24:ijms24097775. [PMID: 37175488 PMCID: PMC10178586 DOI: 10.3390/ijms24097775] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023] Open
Abstract
Epithelial sodium channels (ENaC) are part of a complex network of interacting biochemical pathways and as such are involved in several disease states. Dependent on site and type of mutation, gain- or loss-of-function generated symptoms occur which span from asymptomatic to life-threatening disorders such as Liddle syndrome, cystic fibrosis or generalized pseudohypoaldosteronism type 1. Variants of ENaC which are implicated in disease assist further understanding of their molecular mechanisms in order to create models for specific pharmacological targeting. Identification and characterization of ENaC modifiers not only furthers our basic understanding of how these regulatory processes interact, but also enables discovery of new therapeutic targets for the disease conditions caused by ENaC dysfunction. Numerous test compounds have revealed encouraging results in vitro and in animal models but less in clinical settings. The EMA- and FDA-designated orphan drug solnatide is currently being tested in phase 2 clinical trials in the setting of acute respiratory distress syndrome, and the NOX1/ NOX4 inhibitor setanaxib is undergoing clinical phase 2 and 3 trials for therapy of primary biliary cholangitis, liver stiffness, and carcinoma. The established ENaC blocker amiloride is mainly used as an add-on drug in the therapy of resistant hypertension and is being studied in ongoing clinical phase 3 and 4 trials for special applications. This review focuses on discussing some recent developments in the search for novel therapeutic agents.
Collapse
Affiliation(s)
- Rosa Lemmens-Gruber
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | | |
Collapse
|
21
|
Bruscia EM. The effects of elexafactor/tezafactor/ivacaftor beyond the epithelium: spurring macrophages to fight infections. Eur Respir J 2023; 61:61/4/2300216. [PMID: 37003613 DOI: 10.1183/13993003.00216-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/25/2023] [Indexed: 04/03/2023]
|
22
|
Cavinato L, Luly FR, Pastore V, Chiappetta D, Sangiorgi G, Ferrara E, Baiocchi P, Mandarello G, Cimino G, Del Porto P, Ascenzioni F. Elexacaftor/tezacaftor/ivacaftor corrects monocyte microbicidal deficiency in cystic fibrosis. Eur Respir J 2023; 61:2200725. [PMID: 36455959 PMCID: PMC10066567 DOI: 10.1183/13993003.00725-2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/12/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Cystic fibrosis (CF), which is caused by mutations in the CF transmembrane conductance regulator (CFTR), is characterised by chronic bacterial lung infection and inflammation. In CF, monocytes and monocyte-derived macrophages have been shown to display defective phagocytosis and antimicrobial activity against relevant lung pathogens, including Pseudomonas aeruginosa. Thus, we addressed the effect of CFTR triple modulator therapy (elexacaftor/tezacaftor/ivacaftor (ETI)) on the activity of CF monocytes against P. aeruginosa. METHODS Monocytes from people with CF (PWCF) before and after 1 and 6 months of ETI therapy were isolated from blood and infected with P. aeruginosa to assess phagocytic activity and intracellular bacterial killing. The oxidative burst and interleukin-6 secretion were also determined. Monocytes from healthy controls were also included. RESULTS Longitudinal analysis of the clinical parameters confirmed an improvement of lung function and lung microbiology by ETI. Both the phagocytic and microbicidal deficiencies of CF monocytes also improved significantly, although not completely. Furthermore, we measured an exuberant oxidative burst in CF monocytes before therapy, which was reduced considerably by ETI. This led to an improvement of reactive oxygen species-dependent bactericidal activity. Inflammatory response to bacterial stimuli was also lowered compared with pre-therapy. CONCLUSIONS PWCF on ETI therapy, in a real-life setting, in addition to clinical recovery, showed significant improvement in monocyte activity against P. aeruginosa, which may have contributed to the overall effect of ETI on pulmonary disease. This also suggests that CF monocyte dysfunctions may be specifically targeted to ameliorate lung function in CF.
Collapse
Affiliation(s)
- Luca Cavinato
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesco R Luly
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Valentina Pastore
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Daniele Chiappetta
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Gloria Sangiorgi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eva Ferrara
- Cystic Fibrosis Reference Center of Lazio Region, Policlinico Umberto I, Rome, Italy
| | - Pia Baiocchi
- Department of Public Health and Infectious Disease, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Mandarello
- Department of Onco-Hematology, Immunotransfusion Service, ASL Viterbo, Rome, Italy
| | - Giuseppe Cimino
- Cystic Fibrosis Reference Center of Lazio Region, Policlinico Umberto I, Rome, Italy
| | - Paola Del Porto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Fiorentina Ascenzioni
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Effendi WI, Nagano T. Epigenetics Approaches toward Precision Medicine for Idiopathic Pulmonary Fibrosis: Focus on DNA Methylation. Biomedicines 2023; 11:biomedicines11041047. [PMID: 37189665 DOI: 10.3390/biomedicines11041047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Genetic information is not transmitted solely by DNA but by the epigenetics process. Epigenetics describes molecular missing link pathways that could bridge the gap between the genetic background and environmental risk factors that contribute to the pathogenesis of pulmonary fibrosis. Specific epigenetic patterns, especially DNA methylation, histone modifications, long non-coding, and microRNA (miRNAs), affect the endophenotypes underlying the development of idiopathic pulmonary fibrosis (IPF). Among all the epigenetic marks, DNA methylation modifications have been the most widely studied in IPF. This review summarizes the current knowledge concerning DNA methylation changes in pulmonary fibrosis and demonstrates a promising novel epigenetics-based precision medicine.
Collapse
|
24
|
Yang J, Liang C, Liu L, Wang L, Yu G. High-Fat Diet Related Lung Fibrosis-Epigenetic Regulation Matters. Biomolecules 2023; 13:biom13030558. [PMID: 36979493 PMCID: PMC10046645 DOI: 10.3390/biom13030558] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/12/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Pulmonary fibrosis (PF) is an interstitial lung disease characterized by the destruction of the pulmonary parenchyma caused by excessive extracellular matrix deposition. Despite the well-known etiological factors such as senescence, aberrant epithelial cell and fibroblast activation, and chronic inflammation, PF has recently been recognized as a metabolic disease and abnormal lipid signature was observed both in serum and bronchoalveolar lavage fluid (BALF) of PF patients and mice PF model. Clinically, observational studies suggest a significant link between high-fat diet (HFD) and PF as manifested by high intake of saturated fatty acids (SFAs) and meat increases the risk of PF and mice lung fibrosis. However, the possible mechanisms between HFD and PF remain unclear. In the current review we emphasize the diversity effects of the epigenetic dysregulation induced by HFD on the fibrotic factors such as epithelial cell injury, abnormal fibroblast activation and chronic inflammation. Finally, we discuss the potential ways for patients to improve their conditions and emphasize the prospect of targeted therapy based on epigenetic regulation for scientific researchers or drug developers.
Collapse
Affiliation(s)
- Juntang Yang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Chenxi Liang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lulu Liu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Lan Wang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
25
|
Multiple Beneficial Effects of Aloesone from Aloe vera on LPS-Induced RAW264.7 Cells, Including the Inhibition of Oxidative Stress, Inflammation, M1 Polarization, and Apoptosis. Molecules 2023; 28:molecules28041617. [PMID: 36838606 PMCID: PMC9960963 DOI: 10.3390/molecules28041617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Aloesone is a major metabolic compound in Aloe vera, which has been widely used as a food source and therapeutic agent in several countries. Our recent study demonstrated that aloesone has anti-epileptic effects on glutamate-induced neuronal injury by suppressing the production of reactive oxygen species (ROS). Unless ROS are naturally neutralized by the endogenous antioxidant system, they lead to the activation of inflammation, polarization, and apoptosis. This study aimed to identify the multiple beneficial effects of aloesone and explore its molecular mechanism in macrophages. Hence, the murine macrophage cell line RAW264.7 was pretreated with aloesone and then exposed to lipopolysaccharides (LPS). The results demonstrated that aloesone, within a dosage range of 0.1-100 µM, dramatically decreased the LPS-induced elevation of ROS production, reduced nitric oxide (NO) release, inhibited the M1 polarization of RAW264.7 cells, and prevented cells from entering the LPS-induced early and late phases of apoptosis in a dose-dependent manner. Simultaneously, aloesone significantly decreased the mRNA expression of inflammation-related genes (iNOS, IL-1ꞵ, TNF-α) and increased the expression of antioxidant enzymes (Gpx-1 and SOD-1). The core genes HSP90AA1, Stat3, Mapk1, mTOR, Fyn, Ptk2b, and Lck were closely related to these beneficial effects of aloesone. Furthermore, immunofluorescence staining and flow cytometry data confirmed that aloesone significantly repressed the activation of mTOR, p-mTOR, and HIF-1α induced by LPS and inhibited the protein expression of TLR4, which is the target of LPS. In conclusion, aloesone demonstrated multiple protective effects against LPS-induced oxidative stress, inflammation, M1 polarization, and apoptosis in macrophages, suggesting its potential as a prodrug.
Collapse
|
26
|
Liu C, Liu Y, Xi L, He Y, Liang Y, Mak JCW, Mao S, Wang Z, Zheng Y. Interactions of Inhaled Liposome with Macrophages and Neutrophils Determine Particle Biofate and Anti-Inflammatory Effect in Acute Lung Inflammation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:479-493. [PMID: 36583377 DOI: 10.1021/acsami.2c17660] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Since most current studies have focused on exploring how phagocyte internalization of drug-loaded nanovesicles by macrophages would affect the function and therapeutic effects of infiltrated neutrophils or monocytes, research has evaluated the specificity of the inhaled nanovesicles for targeting various phagocytes subpopulations. In this study, liposomes with various charges (including neutral (L1), anionic (L2), and cationic at inflammatory sites (L3)) were constructed to investigate how particle charge determined their interactions with key phagocytes (including macrophages and neutrophils) in acute lung injury (ALI) models and to establish correlations with their biofate and overall anti-inflammatory effect. Our results clearly indicated that neutrophils were capable of rapidly sequestering L3 with a 3.2-fold increase in the cellular liposome distribution, compared to that in AMs, while 70.5% of L2 were preferentially uptaken by alveolar macrophages (AMs). Furthermore, both AMs and the infiltrated neutrophils performed as the potential vesicles for the inhaled liposomes to prolong their lung retention in ALI models, whereas AMs function as sweepers to recognize and process liposomes in the healthy lung. Finally, inhaled roflumilast-loaded macrophage or neutrophil preferential liposomes (L2 or L3) exhibited optimal anti-inflammatory effect because of the decreased AMs phagocytic capacity or the prolonged circulation times of neutrophils. Such findings will be beneficial in exploiting a potential pathway to specifically manipulate lung phagocyte functions in lung inflammatory diseases where these cells play crucial roles.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| | - Yihan Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| | - Long Xi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| | - Yuan He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou221004, China
| | - Yingmin Liang
- School of Clinical Medicine, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong999077, China
| | - Judith Choi Wo Mak
- School of Clinical Medicine, Department of Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong999077, China
| | - Shirui Mao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Zhenping Wang
- Department of Dermatology, School of Medicine, University of California, San Diego, San Diego, California92093, United States
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau999078, China
| |
Collapse
|
27
|
Alharbi KS, Alshehri SM, Alenezi SK. Epigenetic Optimization in Chronic Obstructive Pulmonary Disease (COPD). TARGETING EPIGENETICS IN INFLAMMATORY LUNG DISEASES 2023:99-110. [DOI: 10.1007/978-981-99-4780-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
28
|
Öz HH, Cheng EC, Di Pietro C, Tebaldi T, Biancon G, Zeiss C, Zhang PX, Huang PH, Esquibies SS, Britto CJ, Schupp JC, Murray TS, Halene S, Krause DS, Egan ME, Bruscia EM. Recruited monocytes/macrophages drive pulmonary neutrophilic inflammation and irreversible lung tissue remodeling in cystic fibrosis. Cell Rep 2022; 41:111797. [PMID: 36516754 PMCID: PMC9833830 DOI: 10.1016/j.celrep.2022.111797] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 09/30/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
Persistent neutrophil-dominated lung inflammation contributes to lung damage in cystic fibrosis (CF). However, the mechanisms that drive persistent lung neutrophilia and tissue deterioration in CF are not well characterized. Starting from the observation that, in patients with CF, c-c motif chemokine receptor 2 (CCR2)+ monocytes/macrophages are abundant in the lungs, we investigate the interplay between monocytes/macrophages and neutrophils in perpetuating lung tissue damage in CF. Here we show that CCR2+ monocytes in murine CF lungs drive pathogenic transforming growth factor β (TGF-β) signaling and sustain a pro-inflammatory environment by facilitating neutrophil recruitment. Targeting CCR2 to lower the numbers of monocytes in CF lungs ameliorates neutrophil inflammation and pathogenic TGF-β signaling and prevents lung tissue damage. This study identifies CCR2+ monocytes as a neglected contributor to the pathogenesis of CF lung disease and as a therapeutic target for patients with CF, for whom lung hyperinflammation and tissue damage remain an issue despite recent advances in CF transmembrane conductance regulator (CFTR)-specific therapeutic agents.
Collapse
Affiliation(s)
- Hasan H Öz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Ee-Chun Cheng
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | | | - Toma Tebaldi
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123 Trento, Italy
| | - Giulia Biancon
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Caroline Zeiss
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ping-Xia Zhang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Pamela H Huang
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Sofia S Esquibies
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Clemente J Britto
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jonas C Schupp
- Department of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Respiratory Medicine, Hannover Medical School and Biomedical Research in End-stage and Obstructive Lung Disease Hannover, German Lung Research Center (DZL), Hannover, Germany
| | - Thomas S Murray
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Halene
- Department of Hematology, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Diane S Krause
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA; Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Marie E Egan
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| | - Emanuela M Bruscia
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
29
|
Wagner C, Balázs A, Schatterny J, Zhou-Suckow Z, Duerr J, Schultz C, Mall MA. Genetic Deletion of Mmp9 Does Not Reduce Airway Inflammation and Structural Lung Damage in Mice with Cystic Fibrosis-like Lung Disease. Int J Mol Sci 2022; 23:13405. [PMID: 36362203 PMCID: PMC9657231 DOI: 10.3390/ijms232113405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 09/10/2023] Open
Abstract
Elevated levels of matrix metalloprotease 9 (MMP-9) and neutrophil elastase (NE) are associated with bronchiectasis and lung function decline in patients with cystic fibrosis (CF). MMP-9 is a potent extracellular matrix-degrading enzyme which is activated by NE and has been implicated in structural lung damage in CF. However, the role of MMP-9 in the in vivo pathogenesis of CF lung disease is not well understood. Therefore, we used β-epithelial Na+ channel-overexpressing transgenic (βENaC-Tg) mice as a model of CF-like lung disease and determined the effect of genetic deletion of Mmp9 (Mmp9-/-) on key aspects of the pulmonary phenotype. We found that MMP-9 levels were elevated in the lungs of βENaC-Tg mice compared with wild-type littermates. Deletion of Mmp9 had no effect on spontaneous mortality, inflammatory markers in bronchoalveolar lavage, goblet cell metaplasia, mucus hypersecretion and emphysema-like structural lung damage, while it partially reduced mucus obstruction in βENaC-Tg mice. Further, lack of Mmp9 had no effect on increased inspiratory capacity and increased lung compliance in βENaC-Tg mice, whereas both lung function parameters were improved with genetic deletion of NE. We conclude that MMP-9 does not play a major role in the in vivo pathogenesis of CF-like lung disease in mice.
Collapse
Affiliation(s)
- Claudius Wagner
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Anita Balázs
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jolanthe Schatterny
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Zhe Zhou-Suckow
- Department of Translational Pulmonology, University of Heidelberg, 69117 Heidelberg, Germany
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
| | - Julia Duerr
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Carsten Schultz
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Marcus A. Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité—Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- German Center for Lung Research (DZL), Associated Partner Site, Augustenburger Platz 1, 13353 Berlin, Germany
| |
Collapse
|
30
|
Li X, Kolling FW, Aridgides D, Mellinger D, Ashare A, Jakubzick CV. ScRNA-seq expression of IFI27 and APOC2 identifies four alveolar macrophage superclusters in healthy BALF. Life Sci Alliance 2022; 5:e202201458. [PMID: 35820705 PMCID: PMC9275597 DOI: 10.26508/lsa.202201458] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 12/15/2022] Open
Abstract
Alveolar macrophages (AMs) reside on the luminal surface of the airways and alveoli, ensuring proper gas exchange by ingesting cellular debris and pathogens, and regulating inflammatory responses. Therefore, understanding the heterogeneity and diverse roles played by AMs, interstitial macrophages, and recruited monocytes is critical for treating airway diseases. We performed single-cell RNA sequencing on 113,213 bronchoalveolar lavage cells from four healthy and three uninflamed cystic fibrosis subjects and identified two MARCKS+LGMN+IMs, FOLR2+SELENOP+ and SPP1+PLA2G7+ IMs, monocyte subtypes, DC1, DC2, migDCs, plasmacytoid DCs, lymphocytes, epithelial cells, and four AM superclusters (families) based on the gene expression of IFI27 and APOC2 These four AM families have at least eight distinct functional members (subclusters) named after their differentially expressed gene(s): IGF1, CCL18, CXCL5, cholesterol, chemokine, metallothionein, interferon, and small-cluster AMs. Interestingly, the chemokine cluster further divides with each subcluster selectively expressing a unique combination of chemokines. One of the most striking observations, besides the heterogeneity, is the conservation of AM family members in relatively equal ratio across all AM superclusters and individuals. Transcriptional data and TotalSeq technology were used to investigate cell surface markers that distinguish resident AMs from recruited monocytes. Last, other AM datasets were projected onto our dataset. Similar AM superclusters and functional subclusters were observed, along with a significant increase in chemokine and IFN AM subclusters in individuals infected with COVID-19. Overall, functional specializations of the AM subclusters suggest that there are highly regulated AM niches with defined programming states, highlighting a clear division of labor.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Fred W Kolling
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| | - Daniel Aridgides
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Diane Mellinger
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Alix Ashare
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH, USA
| |
Collapse
|
31
|
Hill DB, Button B, Rubinstein M, Boucher RC. Physiology and pathophysiology of human airway mucus. Physiol Rev 2022; 102:1757-1836. [PMID: 35001665 PMCID: PMC9665957 DOI: 10.1152/physrev.00004.2021] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 01/27/2023] Open
Abstract
The mucus clearance system is the dominant mechanical host defense system of the human lung. Mucus is cleared from the lung by cilia and airflow, including both two-phase gas-liquid pumping and cough-dependent mechanisms, and mucus transport rates are heavily dependent on mucus concentration. Importantly, mucus transport rates are accurately predicted by the gel-on-brush model of the mucociliary apparatus from the relative osmotic moduli of the mucus and periciliary-glycocalyceal (PCL-G) layers. The fluid available to hydrate mucus is generated by transepithelial fluid transport. Feedback interactions between mucus concentrations and cilia beating, via purinergic signaling, coordinate Na+ absorptive vs Cl- secretory rates to maintain mucus hydration in health. In disease, mucus becomes hyperconcentrated (dehydrated). Multiple mechanisms derange the ion transport pathways that normally hydrate mucus in muco-obstructive lung diseases, e.g., cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), non-CF bronchiectasis (NCFB), and primary ciliary dyskinesia (PCD). A key step in muco-obstructive disease pathogenesis is the osmotic compression of the mucus layer onto the airway surface with the formation of adherent mucus plaques and plugs, particularly in distal airways. Mucus plaques create locally hypoxic conditions and produce airflow obstruction, inflammation, infection, and, ultimately, airway wall damage. Therapies to clear adherent mucus with hydrating and mucolytic agents are rational, and strategies to develop these agents are reviewed.
Collapse
Affiliation(s)
- David B Hill
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Joint Department of Biomedical Engineering, The University of North Carolina and North Carolina State University, Chapel Hill, North Carolina
| | - Brian Button
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, Physics, and Chemistry, Duke University, Durham, North Carolina
| | - Richard C Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
32
|
Margaroli C, Horati H, Garratt LW, Giacalone VD, Schofield C, Dittrich AS, Rosenow T, Dobosh BS, Lim HS, Frey DL, Veltman M, Silva GL, Brown MR, Schultz C, Tiddens HAWM, Ranganathan S, Chandler JD, Qiu P, Peng L, Scholte BJ, Mall MA, Kicic A, Guglani L, Stick SM, Janssens HM, Tirouvanziam R. Macrophage PD-1 associates with neutrophilia and reduced bacterial killing in early cystic fibrosis airway disease. J Cyst Fibros 2022; 21:967-976. [PMID: 35732550 DOI: 10.1016/j.jcf.2022.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/17/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Macrophages are the major resident immune cells in human airways coordinating responses to infection and injury. In cystic fibrosis (CF), neutrophils are recruited to the airways shortly after birth, and actively exocytose damaging enzymes prior to chronic infection, suggesting a potential defect in macrophage immunomodulatory function. Signaling through the exhaustion marker programmed death protein 1 (PD-1) controls macrophage function in cancer, sepsis, and airway infection. Therefore, we sought to identify potential associations between macrophage PD-1 and markers of airway disease in children with CF. METHODS Blood and bronchoalveolar lavage fluid (BALF) were collected from 45 children with CF aged 3 to 62 months and structural lung damage was quantified by computed tomography. The phenotype of airway leukocytes was assessed by flow cytometry, while the release of enzymes and immunomodulatory mediators by molecular assays. RESULTS Airway macrophage PD-1 expression correlated positively with structural lung damage, neutrophilic inflammation, and infection. Interestingly, even in the absence of detectable infection, macrophage PD-1 expression was elevated and correlated with neutrophilic inflammation. In an in vitro model mimicking leukocyte recruitment into CF airways, soluble mediators derived from recruited neutrophils directly induced PD-1 expression on recruited monocytes/macrophages, suggesting a causal link between neutrophilic inflammation and macrophage PD-1 expression in CF. Finally, blockade of PD-1 in a short-term culture of CF BALF leukocytes resulted in improved pathogen clearance. CONCLUSION Taken together, these findings suggest that in early CF lung disease, PD-1 upregulation associates with airway macrophage exhaustion, neutrophil takeover, infection, and structural damage.
Collapse
Affiliation(s)
- Camilla Margaroli
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hamed Horati
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Luke W Garratt
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Vincent D Giacalone
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Craig Schofield
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - A Susanne Dittrich
- Department of Translational Pulmonology, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) and Department of Pulmonology, and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Tim Rosenow
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia
| | - Brian S Dobosh
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Hong S Lim
- Department of Biomedical engineering, The Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Dario L Frey
- Department of Translational Pulmonology, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) and Department of Pulmonology, and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany
| | - Mieke Veltman
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - George L Silva
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Milton R Brown
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Carsten Schultz
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States of America
| | - Harm A W M Tiddens
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Sarath Ranganathan
- Department of Pediatrics, University of Melbourne, Melbourne, Australia; Murdoch Children's Research Institute, and Department of Respiratory and Sleep Medicine, Royal Children's Hospital, Parkville, Australia
| | - Joshua D Chandler
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Peng Qiu
- Department of Biomedical engineering, The Georgia Institute of Technology and Emory University, Atlanta, GA, United States of America
| | - Limin Peng
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America; Department of Biostatistics, Emory University School of Public Health, Atlanta, GA, United States of America
| | - Bob J Scholte
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Marcus A Mall
- Department of Translational Pulmonology, Translational Lung Research Center (TLRC), German Center for Lung Research (DZL) and Department of Pulmonology, and Critical Care Medicine, Thoraxklinik at the University of Heidelberg, Heidelberg, Germany; Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anthony Kicic
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital and Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia; School of Public Heath, Curtin University, Perth, Western Australia, Australia
| | - Lokesh Guglani
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Stephen M Stick
- AREST-CF Program, Telethon Kids Institute, University of Western Australia, Perth, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital and Faculty of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Hettie M Janssens
- Department of Pediatrics, Div. of Respiratory Medicine and Allergology, I-BALL program, Erasmus MC-Sophia Children's Hospital, University Hospital Rotterdam, Rotterdam, The Netherlands
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, IMPEDE-CF Program, Emory University School of Medicine, Atlanta, GA, United States of America.
| |
Collapse
|
33
|
Neff SL, Hampton TH, Puerner C, Cengher L, Doing G, Lee AJ, Koeppen K, Cheung AL, Hogan DA, Cramer RA, Stanton BA. CF-Seq, an accessible web application for rapid re-analysis of cystic fibrosis pathogen RNA sequencing studies. Sci Data 2022; 9:343. [PMID: 35710652 PMCID: PMC9203545 DOI: 10.1038/s41597-022-01431-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/25/2022] [Indexed: 01/13/2023] Open
Abstract
Researchers studying cystic fibrosis (CF) pathogens have produced numerous RNA-seq datasets which are available in the gene expression omnibus (GEO). Although these studies are publicly available, substantial computational expertise and manual effort are required to compare similar studies, visualize gene expression patterns within studies, and use published data to generate new experimental hypotheses. Furthermore, it is difficult to filter available studies by domain-relevant attributes such as strain, treatment, or media, or for a researcher to assess how a specific gene responds to various experimental conditions across studies. To reduce these barriers to data re-analysis, we have developed an R Shiny application called CF-Seq, which works with a compendium of 128 studies and 1,322 individual samples from 13 clinically relevant CF pathogens. The application allows users to filter studies by experimental factors and to view complex differential gene expression analyses at the click of a button. Here we present a series of use cases that demonstrate the application is a useful and efficient tool for new hypothesis generation. (CF-Seq: http://scangeo.dartmouth.edu/CFSeq/ ).
Collapse
Affiliation(s)
- Samuel L Neff
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Charles Puerner
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Liviu Cengher
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Georgia Doing
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Katja Koeppen
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | | | - Deborah A Hogan
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Robert A Cramer
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Bruce A Stanton
- Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
34
|
Grubb BR, Livraghi-Butrico A. Animal models of cystic fibrosis in the era of highly effective modulator therapies. Curr Opin Pharmacol 2022; 64:102235. [DOI: 10.1016/j.coph.2022.102235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
|
35
|
Cui X, Zhang Y, Lu Y, Xiang M. ROS and Endoplasmic Reticulum Stress in Pulmonary Disease. Front Pharmacol 2022; 13:879204. [PMID: 35559240 PMCID: PMC9086276 DOI: 10.3389/fphar.2022.879204] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Pulmonary diseases are main causes of morbidity and mortality worldwide. Current studies show that though specific pulmonary diseases and correlative lung-metabolic deviance own unique pathophysiology and clinical manifestations, they always tend to exhibit common characteristics including reactive oxygen species (ROS) signaling and disruptions of proteostasis bringing about accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER). ER is generated by the unfolded protein response. When the adaptive unfolded protein response (UPR) fails to preserve ER homeostasis, a maladaptive or terminal UPR is engaged, leading to the disruption of ER integrity and to apoptosis, which is called ER stress. The ER stress mainly includes the accumulation of misfolded and unfolded proteins in lumen and the disorder of Ca2+ balance. ROS mediates several critical aspects of the ER stress response. We summarize the latest advances in of the UPR and ER stress in the pathogenesis of pulmonary disease and discuss potential therapeutic strategies aimed at restoring ER proteostasis in pulmonary disease.
Collapse
Affiliation(s)
- Xiangning Cui
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingdong Lu
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
36
|
Pseudomonas aeruginosa in the Cystic Fibrosis Lung. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1386:347-369. [DOI: 10.1007/978-3-031-08491-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|