1
|
Shoji T, Tanaka Y, Nakashima Y, Mizohata E, Komaki M, Sugawara S, Takaya J, Yonekura-Sakakibara K, Morita H, Saito K, Hirai T. Enhanced Production of Rebaudioside D and Rebaudioside M through V155T Substitution in the Glycosyltransferase UGT91D2 from Stevia rebaudiana. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 39783863 DOI: 10.1021/acs.jafc.4c09392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Steviol glycosides (SGs) are noncaloric natural sweeteners found in the leaves of stevia (Stevia rebaudiana). These diterpene glycosides are biosynthesized by attaching varying numbers of monosaccharides, primarily glucose, to steviol aglycone. Rebaudioside (Reb) D and Reb M are highly glucosylated SGs that are valued for their superior sweetness and organoleptic properties, yet they are present in limited quantities in stevia leaves. This study aims to improve the substrate preference and catalytic efficiency of UDP-sugar-dependent glycosyltransferase UGT91D2 from stevia, which acts as a bottleneck in the biosynthesis of Reb D and Reb M. We modeled the structure of UGT91D2 and substituted two amino acid residues, Y134 and V155, which are located near the glycosyl acceptor and donor, respectively. Expression of the UGT91D2V155T in budding yeast significantly enhanced the production of Reb D and Reb M. Furthermore, transient expression in Nicotiana benthamiana revealed that the V155T substitution improved the glucosylation activity of UGT91D2, suggesting that this substitution enhances UDP-glucose binding and reduces side reactions involving nonglucose donors. By coexpressing multiple stevia UGT genes in N. benthamiana, we successfully produced highly glucosylated SGs from steviol. Our results provide insights into the substrate specificity of UGT91D2 and contribute to the engineering of SG biosynthesis.
Collapse
Affiliation(s)
- Tsubasa Shoji
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yoshikazu Tanaka
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Sorakugun, Kyoto 618-8504, Japan
| | - Yu Nakashima
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Eiichi Mizohata
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Maki Komaki
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Sorakugun, Kyoto 618-8504, Japan
| | - Satoko Sugawara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Junichiro Takaya
- Research Institute, Suntory Global Innovation Center Ltd., 8-1-1 Seikadai, Seika-cho, Sorakugun, Kyoto 618-8504, Japan
| | - Keiko Yonekura-Sakakibara
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Hiroyuki Morita
- Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama, Toyama 930-0194, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tadayoshi Hirai
- Research Institute, Suntory Global Innovation Center Ltd., Kyoto 618-8504, Japan
| |
Collapse
|
2
|
Srivastava P, Ghosh S. Insights into functional divergence, catalytic versatility and specificity of small molecule glycosyltransferases. Int J Biol Macromol 2024; 292:138821. [PMID: 39708858 DOI: 10.1016/j.ijbiomac.2024.138821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Glycosylation is one of the most fundamental biochemical processes in cells. It plays crucial roles in diversifying plant natural products for structures, bioavailability and bioactivity, and thus, renders the glycosylated compounds valuable as food additives, nutraceuticals and pharmaceuticals. Moreover, glycosylated compounds impact plant growth, development and stress response. Therefore, understanding the biochemical function of the glycosyltransferases (GTs) is crucial to the elucidation of natural product biosynthetic pathways, improving plant traits and development of processes for industrially-important compounds. UDP-dependent glycosyltransferases (UGTs) that belong to the glycosyltransferase family-1 (GT1) and catalyze the transfer of glycosyl moieties from UDP-sugars to various small molecules, are the key players in natural product glycosylation. Recent studies also found the involvement of non-canonical cellulose synthase-like (CesAs) and glycosyl hydrolase (GH) family enzymes in the glycosylation of plant specialized metabolites. Decades of research on GTs provided critical insights into catalytic mechanism, substrate/product specificity and catalytic promiscuity, but biochemical function and physiological roles of GTs in majority of the natural product biosynthetic pathways remain to be understood. It is also important to redefine high-throughput strategies of GT mining to uncover novel biochemical function, considering that GTs are the large superfamily members in plants and other organisms. This review underscores the roles of GTs in small molecule glycosylation, plant development and stress responses, highlighting the catalytic versatility and substrate/product specificity of GTs in shaping plant metabolic diversity, and discusses the emerging strategies for mining of uncharacterized GTs to unravel biochemical and physiological functions and to elucidate natural product biosynthetic pathways.
Collapse
Affiliation(s)
- Payal Srivastava
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India; Department of Plant Biology, Michigan State University, 612 Wilson Rd, East Lansing, MI 48824, USA(1)
| | - Sumit Ghosh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Chen J, Pan H, Xie J, Tang K, Li Y, Jia H, Zhu L, Yan M, Wei P. Semirational Design of a UDP-Glycosyltransferase from Nicotiana tomentosiformis for Efficient Biosynthesis of Rebaudioside M2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27334-27345. [PMID: 39625115 DOI: 10.1021/acs.jafc.4c09051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Rebaudioside M2 (RebM2) is characterized as 13-[(2-O-β-d-glucopyranosyl-3-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy] ent-kaur-16-en-19-oic acid-[(2-O-β-d-glucopyranosyl-6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester], an isomer of rebaudioside M with a 1 → 6 sugar linkage. The product was found in the biotransformation of rebaudioside D (RebD) catalyzed by a glycosyltransferase from Nicotiana tomentosiformis (NtUGT). Herein, guided by consensus engineering and molecular dynamics simulations, a variant NtUGTF72L/L123P/L157P with enhanced activity and thermostability was obtained. It exhibits a strikingly reduced Km (22.47 mM to 0.15 mM) toward RebD, and the catalytic efficiency was over 5000-fold higher than that of the wildtype. When an Arabidopsis sucrose synthase AtSuSy was used for UDP-glucose recycling, NtUGTF72L/L123P/L157P effectively converted 80 g/L RebD to 90.14 g/L RebM2. In a one-pot three-enzyme reaction involving an engineered glycosyltransferase UGTSL2N358F, which catalyzed the conversion of RebA into RebD, 78.8 g/L of RebM2 (with a yield of 84.56%) was produced from 70 g/L of RebA, avoiding the use of the naturally rare and poorly soluble RebD as the starting material. This work will provide a promising biocatalyst for RebM2 biosynthesis on a large scale and create an opportunity to accelerate the exploration of the biological activity of RebM2 and its potential as a candidate for superior SG sweeteners.
Collapse
Affiliation(s)
- Jiajie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiangtao Xie
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liping Zhu
- Shandong Engineering Research Center for Natural Product Metabolic Engineering and Synthetic Biology, Weifang 255178, China
- Dongtai Hirye Biotechnology Co., Ltd, Jiangsu 224200, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Jian X, Sun Q, Xu W, Qu H, Feng X, Li C. Engineering the Substrate Specificity of UDP-Glycosyltransferases for Synthesizing Triterpenoid Glycosides with a Linear Trisaccharide as Aided by Ancestral Sequence Reconstruction. Angew Chem Int Ed Engl 2024; 63:e202409867. [PMID: 39172135 DOI: 10.1002/anie.202409867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/23/2024]
Abstract
Triterpenoids have wide applications in the pharmaceutical and agricultural industries. The glycosylation of triterpenoids catalyzed by UDP-glycosyltransferases (UGTs) is a crucial method for producing valuable derivatives with enhanced functions. However, only a few UDP-glucosyltransferases have been reported to synthesize the rare triterpenoids with linear-chain trisaccharide at C3-OH. This study revealed that the UGT91H subfamily primarily contributed to the 2"-O-glycosylation of triterpenoids with high regioselectivity, then the substrate scope was further expanded by ancestral sequence reconstruction (ASR). With ancestral enzyme UGT91H_A1 as a model, the sequence-structure-function relationship was explored. A RTAS loop (R212/T213/A214/S215) was identified to affect the substrate specificity of UGT91H_A1. Transferring this RTAS loop to the corresponding position of UGT91H enzymes successfully expanded their substrate spectra. The functional role of RTAS loop was further elucidated by molecular dynamics simulation and quantum mechanical computation. UGT91H_A1 was applied to the low-cost synthesis of terpenoid rhamnosides with a linear trisaccharide in combining with a self-sufficient UDP-rhamnose regeneration system. Finally, we developed a phylogeny-based platform to efficiently mining new UGT91Hs from plant genomic data. This study provided robust biocatalysts for synthesizing various triterpenoid glycosides with a linear trisaccharide and demonstrated ASR as an efficient tool in engineering the function of UDP-glycosyltransferases.
Collapse
Affiliation(s)
- Xing Jian
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Qiuyan Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Wentao Xu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Haobo Qu
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Xudong Feng
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, China
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
5
|
Li M, Zhou Y, Wen Z, Ni Q, Zhou Z, Liu Y, Zhou Q, Jia Z, Guo B, Ma Y, Chen B, Zhang ZM, Wang JB. An efficient C-glycoside production platform enabled by rationally tuning the chemoselectivity of glycosyltransferases. Nat Commun 2024; 15:8893. [PMID: 39406733 PMCID: PMC11480083 DOI: 10.1038/s41467-024-53209-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Despite the broad potential applications of C-glycosides, facile synthetic methods remain scarce. Transforming glycosyltransferases with promiscuous or natural O-specific chemoselectivity to C-glycosyltransferases is challenging. Here, we employ rational directed evolution of the glycosyltransferase MiCGT to generate MiCGT-QDP and MiCGT-ATD mutants which either enhance C-glycosylation or switch to O-glycosylation, respectively. Structural analysis and computational simulations reveal that substrate binding mode govern C-/O-glycosylation selectivity. Notably, directed evolution and mechanism analysis pinpoint the crucial residues dictating the binding mode, enabling the rational design of four enzymes with superior non-inherent chemoselectivity, despite limited sequence homology. Moreover, our best mutants undergo testing with 34 substrates, demonstrating superb chemoselectivities, regioselectivities, and activities. Remarkably, three C-glycosides and an O-glycoside are produced on a gram scale, demonstrating practical utility. This work establishes a highly selective platform for diverse glycosides, and offers a practical strategy for creating various types of glycosylation platforms to access pharmaceutically and medicinally interesting products.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China
| | - Yang Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Zexing Wen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Qian Ni
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ziqin Zhou
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Yiling Liu
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China
| | - Qiang Zhou
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Bin Guo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yuanhong Ma
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bo Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Zhi-Min Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, Jinan University, Guangzhou, 511436, P. R. China.
| | - Jian-Bo Wang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education) and Key Laboratory of Phytochemical R&D of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China.
- Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Department of General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
- Institute of Pharmaceutical Biotechnology, Zhejiang University School of Medicine, Hangzhou, 310058, P. R. China.
| |
Collapse
|
6
|
Chen J, Liu R, Lyv C, Wu M, Liu S, Jiang M, Zhang Y, Xu D, Hou K, Wu W. Identification of a 301 bp promoter core region of the SrUGT91D2 gene from Stevia rebaudiana that contributes to hormone and abiotic stress inducibility. BMC PLANT BIOLOGY 2024; 24:921. [PMID: 39358690 PMCID: PMC11447968 DOI: 10.1186/s12870-024-05616-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The UDP-glucuronosyltransferase 91D2 (SrUGT91D2) gene is a crucial element in the biosynthetic pathway of steviol glycosides (SGs) and is responsible for creating 1,2-β-D glucosidic bonds at the C19 and C13 positions. This process plays a vital role in the synthesis of rebaudioside M (RM) and rebaudioside D (RD). The promoter, which regulates gene expression, requires functional analysis to understand gene expression regulation. However, investigations into the function of the promoter of SrUGT91D2 (pSrUGT91D2) have not been reported. RESULTS The pSrUGT91D2 was isolated from six S. rebaudiana lines, and subsequent multiple sequence comparisons revealed the presence of a 26 bp inDel fragment (pSrUGT91D2-B1188 type) in lines GP, GX, 110, 1114, and B1188 but not in the pSrUGT91D2 of line 023 (pSrUGT91D2-023 type). Bioinformatics analysis revealed a prevalence of significant cis-regulatory elements (CREs) within the promoter sequences, including those responsive to abscisic acid, light, anaerobic conditions, auxin, drought, low temperature, and MeJA. To verify the activity of pSrUGT91D2, the full-length promoter and a series of 5' deletion fragments (P1-P7) and a 3' deletion fragment (P8) from various lines were fused with the reporter β-glucuronidase (GUS) gene to construct the plant expression vector, pCAMBIA1300-pro∷GUS. The transcriptional activity of these genes was examined in tobacco leaves through transient transformation. GUS tissue staining analysis and enzyme activity assays demonstrated that both the full-length promoter and truncated pSrUGT91D2 were capable of initiating GUS expression in tobacco leaves. Interestingly, P8-pSrUGT91D2-B1188 (containing the inDel segment, 301 bp) exhibited enhanced activity in driving GUS gene expression. Transient expression studies of P8-pSrUGT91D2-B1188 and P8-pSrUGT91D2-023 in response to exogenous hormones (abscisic acid and indole-3-acetic acid) and light indicated the necessity of the inDel region for P8 to exhibit transcriptional activity, as it displayed strong responsiveness to abscisic acid (ABA), indole-3-acetic acid (IAA), and light induction. CONCLUSIONS These findings contribute to a deeper understanding of the regulatory mechanism of the upstream region of the SrUGT91D2 gene and provide a theoretical basis for future studies on the interaction between CREs of pSrUGT91D2 and related transcription factors.
Collapse
Affiliation(s)
- Jinsong Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Renlang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengcheng Lyv
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengyang Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Siqin Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Meiyan Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yurou Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dongbei Xu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kai Hou
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
7
|
Ali MY, Gao J, Zhang Z, Hossain MM, Sethupathy S, Zhu D. Directional co-immobilization of artificial multimeric-enzyme complexes as a robust biocatalyst for biosynthesis curcumin glucosides and regeneration of UDP-glucose. Int J Biol Macromol 2024; 278:135035. [PMID: 39182864 DOI: 10.1016/j.ijbiomac.2024.135035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/18/2024] [Accepted: 08/22/2024] [Indexed: 08/27/2024]
Abstract
Site-directed protein immobilization allows the homogeneous orientation of proteins while maintaining high activity, which is advantageous for various applications. In this study, the use of SpyCatcher/SpyTag technology and magnetic nickel ferrite (NiFe2O4 NPs) nanoparticles were used to prepare a site-directed immobilization of BsUGT2m from Bacillus subtilis and AtSUSm from Arabidopsis thaliana for enhancing curcumin glucoside production with UDP-glucose regeneration from sucrose and UDP. The immobilization of self-assembled multienzyme complex (MESAs) enzymes were characterized for immobilization parameters and stability, including thermal, pH, storage stability, and reusability. The immobilized MESAs exhibited a 2.5-fold reduction in UDP consumption, enhancing catalytic efficiency. Moreover, the immobilized MESAs demonstrated high storage and temperature stability over 21 days at 4 °C and 25 °C, outperforming their free counterparts. Reusability assays showed that the immobilized MESAs retained 78.7 % activity after 10 cycles. Utilizing fed-batch technology, the cumulative titer of curcumin 4'-O-β-D-glucoside reached 6.51 mM (3.57 g/L) and 9.45 mM (5.18 g/L) for free AtSUSm/BsUGT2m and immobilized MESAs, respectively, over 12 h. This study demonstrates the efficiency of magnetic nickel ferrite nanoparticles in co-immobilizing enzymes, enhancing biocatalysts' catalytic efficiency, reusability, and stability.
Collapse
Affiliation(s)
- Mohamed Yassin Ali
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China; Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Jiayue Gao
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhenghao Zhang
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Md Muzammel Hossain
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China
| | - Daochen Zhu
- International Joint Laboratory on Synthetic Biology and Biomass Biorefinery, Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
8
|
Xu WK, Zhao CX, Yang XW, Chen YG, Long LP, Yan YF, Guo K, Li SH, Liu Y. Characterization of a glycosyltransferase from Paris polyphylla for application in biosynthesis of rare ophiopogonins and ginsenosides. PHYTOCHEMISTRY 2024; 225:114173. [PMID: 38851474 DOI: 10.1016/j.phytochem.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/02/2024] [Accepted: 06/04/2024] [Indexed: 06/10/2024]
Abstract
Saponins are bioactive components of many medicinal plants, possessing complicated chemical structures and extensive pharmacological activities, but the production of high-value saponins remains challenging. In this study, a 6'-O-glucosyltransferase PpUGT7 (PpUGT91AH7) was functionally characterized from Paris polyphylla Smith var. yunnanensis (Franch.) Hand. -Mazz., which can transfer a glucosyl group to the C-6' position of diosgenin-3-O-rhamnosyl-(1 → 2)-glucoside (1), pennogenin-3-O-rhamnosyl-(1 → 2)-glucoside (2), and diosgenin-3-O-glucoside (5). The KM and Kcat values of PpUGT7 towards the substrate 2 were 8.4 μM and 2 × 10-3 s-1, respectively. Through molecular docking and site-directed mutagenesis, eight residues were identified to interact with the sugar acceptor 2 and be crucial for enzyme activity. Moreover, four rare ophiopogonins and ginsenosides were obtained by combinatorial biosynthesis, including an undescribed compound ruscogenin-3-O-glucosyl-(1 → 6)-glucoside (10). Firstly, two monoglycosides 9 and 11 were generated using a known sterol 3-O-β-glucosyltransferase PpUGT80A40 with ruscogenin (7) and 20(S)-protopanaxadiol (8) as substrates, which were further glycosylated to the corresponding diglycosides 10 and 12 under the catalysis of PpUGT7. In addition, compounds 7-11 were found to show inhibitory effects on the secretion of TNF-α and IL-6 in macrophages RAW264.7. The findings provide valuable insights into the enzymatic glycosylation processes in the biosynthesis of bioactive saponins in P. polyphylla var. yunnanensis, and also serve as a reference for utilizing UDP-glycosyltransferases to construct high-value or rare saponins for development of new therapeutic agents.
Collapse
Affiliation(s)
- Wen-Ke Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chen-Xiao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xiao-Wen Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yue-Gui Chen
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China
| | - Li-Ping Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuan-Feng Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Kai Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Sheng-Hong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, PR China.
| | - Yan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, and Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| |
Collapse
|
9
|
Li L, Fu J, Liu N. Advances in the Structures, Pharmacological Activities, and Biosynthesis of Plant Diterpenoids. J Microbiol Biotechnol 2024; 34:1563-1579. [PMID: 39081244 PMCID: PMC11380518 DOI: 10.4014/jmb.2402.02014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 08/29/2024]
Abstract
More and more diterpenoids have attracted extensive attention due to the diverse chemical structures and excellent biological activities, and have been developed into clinical drugs or consumer products. The vast majority of diterpenoids are derived from plants. With the long-term development of plant medicinal materials, the natural resources of many plant diterpenoids are decreasing, and the biosynthetic mechanism of key active components has increasingly become a research hotspot. Using synthetic biology to engineer microorganisms into "cell factories" to produce the desired compounds is an essential means to solve these problems. In this review, we depict the plant-derived diterpenoids from chemical structure, biological activities, and biosynthetic pathways. We use representative plant diterpenes as examples to expound the research progress on their biosynthesis, and summarize the heterologous production of plant diterpenoids in microorganisms in recent years, hoping to lay the foundation for the development and application of plant diterpenoids in the future.
Collapse
Affiliation(s)
- Leilei Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Jia Fu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Nan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
10
|
Gong S, Li C, Chu Q, Gao W, Su P, Cui G, Tang J, Qu G, Sun Z, Guo J, Huang L. Rationally Engineered Novel Glycosyltransferase UGT74DD1 from Siraitia grosvenorii Catalyzes the Generation of the Sweetener Mogroside III. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18214-18224. [PMID: 39101349 DOI: 10.1021/acs.jafc.4c04235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Mogrosides are natural compounds highly valued in the food sector for their exceptional sweetness. Here, we report a novel O-glycosyltransferase (UGT74DD1) from Siraitia grosvenorii that catalyzes the conversion of mogrol to mogroside IIE. Site-directed mutagenesis yielded the UGT74DD1-W351A mutant, which exhibited the new capability to transform mogroside IIE into the valuable sweetener mogroside III, but with low catalytic activity. Subsequently, using structure-guided directed evolution with combinatorial active-site saturation testing, the superior mutant M6 (W351A/Q373 K/E49H/Q335W/S278C/D17F) were obtained, which showed a 46.1-fold increase in catalytic activity compared to UGT74DD1-W351A. Molecular dynamics simulations suggested that the enhanced activity and extended substrate profiles of M6 are due to its enlarged substrate-binding pocket and strengthened enzyme-substrate hydrogen bonding interactions. Overall, we redesigned UGT74DD1, yielding mutants that catalyze the conversion of mogrol into mogroside III. This study thus broadens the toolbox of UGTs capable of catalyzing the formation of valuable polyglycoside compounds.
Collapse
Affiliation(s)
- Shukun Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Qi Chu
- School of Food Engineering, Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, Ludong University, Yantai 264025, Shandong, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Guanghong Cui
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Jinfu Tang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Juan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| | - Luqi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China
| |
Collapse
|
11
|
Wang Z, Du X, Ye G, Wang H, Liu Y, Liu C, Li F, Ågren H, Zhou Y, Li J, He C, Guo DA, Ye M. Functional characterization, structural basis, and protein engineering of a rare flavonoid 2'- O-glycosyltransferase from Scutellaria baicalensis. Acta Pharm Sin B 2024; 14:3746-3759. [PMID: 39220864 PMCID: PMC11365401 DOI: 10.1016/j.apsb.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/21/2024] [Accepted: 03/25/2024] [Indexed: 09/04/2024] Open
Abstract
Glycosylation is an important post-modification reaction in plant secondary metabolism, and contributes to structural diversity of bioactive natural products. In plants, glycosylation is usually catalyzed by UDP-glycosyltransferases. Flavonoid 2'-O-glycosides are rare glycosides. However, no UGTs have been reported, thus far, to specifically catalyze 2'-O-glycosylation of flavonoids. In this work, UGT71AP2 was identified from the medicinal plant Scutellaria baicalensis as the first flavonoid 2'-O-glycosyltransferase. It could preferentially transfer a glycosyl moiety to 2'-hydroxy of at least nine flavonoids to yield six new compounds. Some of the 2'-O-glycosides showed noticeable inhibitory activities against cyclooxygenase 2. The crystal structure of UGT71AP2 (2.15 Å) was solved, and mechanisms of its regio-selectivity was interpreted by pK a calculations, molecular docking, MD simulation, MM/GBSA binding free energy, QM/MM, and hydrogen‒deuterium exchange mass spectrometry analysis. Through structure-guided rational design, we obtained the L138T/V179D/M180T mutant with remarkably enhanced regio-selectivity (the ratio of 7-O-glycosylation byproducts decreased from 48% to 4%) and catalytic efficiency of 2'-O-glycosylation (k cat/K m, 0.23 L/(s·μmol), 12-fold higher than the native). Moreover, UGT71AP2 also possesses moderate UDP-dependent de-glycosylation activity, and is a dual function glycosyltransferase. This work provides an efficient biocatalyst and sets a good example for protein engineering to optimize enzyme catalytic features through rational design.
Collapse
Affiliation(s)
- Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Du
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei 230601, China
| | - Guo Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Haotian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yizhan Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chenrui Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Fudong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Yang Zhou
- School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Uppsala SE-751 20, Sweden
| | - Chao He
- Anhui Key Laboratory of Modern Biomanufacturing and School of Life Sciences, Anhui University, Hefei 230601, China
| | - De-An Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
12
|
Cui S, Zhang S, Wang N, Su X, Luo Z, Ma X, Li M. Structural insights into the catalytic selectivity of glycosyltransferase SgUGT94-289-3 towards mogrosides. Nat Commun 2024; 15:6423. [PMID: 39080270 PMCID: PMC11289153 DOI: 10.1038/s41467-024-50662-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/17/2024] [Indexed: 08/02/2024] Open
Abstract
Mogrosides constitute a series of natural sweeteners extracted from Siraitia grosvenorii fruits. These mogrosides are glucosylated to different degrees, with mogroside V (M5) and siamenoside I (SIA) being two mogrosides with high intensities of sweetness. SgUGT94-289-3 constitutes a uridine diphosphate (UDP)-dependent glycosyltransferase (UGT) responsible for the biosynthesis of M5 and SIA, by continuously catalyzing glucosylation on mogroside IIe (M2E) and on the subsequent intermediate mogroside products. However, the mechanism of its promiscuous substrate recognition and multiple catalytic modes remains unclear. Here, we report multiple complex structures and the enzymatic characterization of the glycosyltransferase SgUGT94-289-3. We show that SgUGT94-289-3 adopts a dual-pocket organization in its active site, which allows the two structurally distinct reactive ends of mogrosides to be presented from different pockets to the active site for glucosylation reaction, thus enabling both substrate promiscuity and catalytic regioselectivity. We further identified a structural motif that is essential to catalytic activity and regioselectivity, and generated SgUGT94-289-3 mutants with greatly improved M5/SIA production from M2E in an in vitro one-pot setup.
Collapse
Affiliation(s)
- Shengrong Cui
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Shumeng Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Ning Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Xiaodong Su
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China
| | - Zuliang Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China.
| | - Xiaojun Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, 100193, Beijing, PR China.
| | - Mei Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, PR China.
| |
Collapse
|
13
|
Yang L, Yang M, Deng Z, Luo Z, Yuan Z, Rao Y, Zhang Y. Highly Efficient Biosynthesis of Rebaudioside M8 through Structure-Guided Engineering of Glycosyltransferase UGT94E13. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15823-15831. [PMID: 38959519 DOI: 10.1021/acs.jafc.4c03565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Given the low-calorie, high-sweetness characteristics of steviol glycosides (SGs), developing SGs with improved taste profiles is a key focus. Rebaudioside M8 (Reb M8), a novel non-natural SG derivative obtained through glycosylation at the C-13 position of rebaudioside D (Reb D) using glycosyltransferase UGT94E13, holds promise for further development due to its enhanced sweetness. However, the low catalytic activity of UGT94E13 hampers further research and commercialization. This study aimed to improve the enzymatic activity of UGT94E13 through semirational design, and a variant UGT94E13-F169G/I185G was obtained with the catalytic activity improved by 13.90 times. A cascade reaction involving UGT94E13-F169G/I185G and sucrose synthase AtSuSy was established to recycle uridine diphosphate glucose, resulting in an efficient preparation of Reb M8 with a yield of 98%. Moreover, according to the analysis of the distances between the substrate Reb D and enzymes as well as between Reb D and the glucose donor through molecular dynamics simulations, it is found that the positive effect of shortening the distance on glycosylation reaction activity accounts for the improved catalytic activity of UGT94E13-F169G/I185G. Therefore, this study addresses the bottleneck in the efficient production of Reb M8 and provides a foundation for its widespread application in the food industry.
Collapse
Affiliation(s)
- Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P. R. China
| | - Mengliang Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhengshan Luo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
14
|
Ji Q, Liu Y, Chen C, Zhang H, Wang J, Mei K. Expression, purification, characterization and crystallization of Panax quinquefolius ginsenoside glycosyltransferase Pq3-O-UGT2. Protein Expr Purif 2024; 216:106430. [PMID: 38184160 DOI: 10.1016/j.pep.2024.106430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
Pq3-O-UGT2, derived from Panax quinquefolius, functions as a ginsenoside glucosyltransferase, utilizing UDP-glucose (UDPG) as the sugar donor to catalyze the glycosylation of Rh2 and F2. An essential step in comprehending its catalytic mechanism involves structural analysis. In preparation for structural analysis, we expressed Pq3-O-UGT2 in the Escherichia coli (E. coli) strain Rosetta (DE3). The recombinant Pq3-O-UGT2 was purified through Ni-NTA affinity purification, a two-step ion exchange chromatography, and subsequently size-exclusion chromatography (SEC). Notably, the purified Pq3-O-UGT2 showed substantial activity toward Rh2 and F2, catalyzing the formation of Rg3 and Rd, respectively. This activity was discernible within a pH range of 4.0-9.0 and temperature range of 30-55 °C, with optimal conditions observed at pH 7.0-8.0 and 37 °C. The catalytic efficiency of Pq3-O-UGT2 toward Rh2 and F2 was 31.43 s-1 mΜ-1 and 169.31 s-1 mΜ-1, respectively. We further crystalized Pq3-O-UGT2 in both its apo form and co-crystalized forms with UDPG, Rh2 and F2, respectively. High-quality crystals were obtained and X-ray diffraction data was collected for all co-crystalized samples. Analysis of the diffraction data revealed that the crystal of Pq3-O-UGT2 co-crystalized with UDP-Glc belonged to space group P1, while the other two crystals belonged to space group P212121. Together, this study has laid a robust foundation for subsequent structural analysis of Pq3-O-UGT2.
Collapse
Affiliation(s)
- Qiushuang Ji
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Yirong Liu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, 300072, China.
| | - Huanyu Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| | - Kunrong Mei
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
15
|
Go SR, Lee SJ, Ahn WC, Park KH, Woo EJ. Enhancing the thermostability and activity of glycosyltransferase UGT76G1 via computational design. Commun Chem 2023; 6:265. [PMID: 38057441 DOI: 10.1038/s42004-023-01070-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The diterpene glycosyltransferase UGT76G1, derived from Stevia rebaudiana, plays a pivotal role in the biosynthesis of rebaudioside A, a natural sugar substitute. Nevertheless, its potential for industrial application is limited by certain enzymatic characteristics, notably thermostability. To enhance the thermostability and enzymatic activity, we employed a computational design strategy, merging stabilizing mutation scanning with a Rosetta-based protein design protocol. Compared to UGT76G1, the designed variant 76_4 exhibited a 9 °C increase in apparent Tm, a 2.55-fold increase rebaudioside A production capacity, and a substantial 11% reduction in the undesirable byproduct rebaudioside I. Variant 76_7 also showed a 1.91-fold enhancement rebaudioside A production capacity, which was maintained up to 55 °C, while the wild-type lost most of its activity. These results underscore the efficacy of structure-based design in introducing multiple mutations simultaneously, which significantly improves the enzymatic properties of UGT76G1. This strategy provides a method for the development of efficient, thermostable enzymes for industrial applications.
Collapse
Affiliation(s)
- Seong-Ryeong Go
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Su-Jin Lee
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Woo-Chan Ahn
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Kwang-Hyun Park
- Critical Diseases Diagnostics Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Eui-Jeon Woo
- Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
16
|
Qu G, Liu Y, Ma Q, Li J, Du G, Liu L, Lv X. Progress and Prospects of Natural Glycoside Sweetener Biosynthesis: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15926-15941. [PMID: 37856872 DOI: 10.1021/acs.jafc.3c05074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
To achieve an adequate sense of sweetness with a healthy low-sugar diet, it is necessary to explore and produce sugar alternatives. Recently, glycoside sweeteners and their biosynthetic approaches have attracted the attention of researchers. In this review, we first outlined the synthetic pathways of glycoside sweeteners, including the key enzymes and rate-limiting steps. Next, we reviewed the progress in engineered microorganisms producing glycoside sweeteners, including de novo synthesis, whole-cell catalysis synthesis, and in vitro synthesis. The applications of metabolic engineering strategies, such as cofactor engineering and enzyme modification, in the optimization of glycoside sweetener biosynthesis were summarized. Finally, the prospects of combining enzyme engineering and machine learning strategies to enhance the production of glycoside sweeteners were discussed. This review provides a perspective on synthesizing glycoside sweeteners in microbial cells, theoretically guiding the bioproduction of glycoside sweeteners.
Collapse
Affiliation(s)
- Guanyi Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Qinyuan Ma
- Shandong Jincheng Biological Pharmaceutical Company, Limited, Zibo 255000, P. R. China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
- Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, P. R. China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, P. R. China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, P. R. China
- Yixing Institute of Food Biotechnology Company, Limited, Yixing 214200, P. R. China
| |
Collapse
|
17
|
Wang M, Ji Q, Lai B, Liu Y, Mei K. Structure-function and engineering of plant UDP-glycosyltransferase. Comput Struct Biotechnol J 2023; 21:5358-5371. [PMID: 37965058 PMCID: PMC10641439 DOI: 10.1016/j.csbj.2023.10.046] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023] Open
Abstract
Natural products synthesized by plants have substantial industrial and medicinal values and are therefore attracting increasing interest in various related industries. Among the key enzyme families involved in the biosynthesis of natural products, uridine diphosphate-dependent glycosyltransferases (UGTs) play a crucial role in plants. In recent years, significant efforts have been made to elucidate the catalytic mechanisms and substrate recognition of plant UGTs and to improve them for desired functions. In this review, we presented a comprehensive overview of all currently published structures of plant UGTs, along with in-depth analyses of the corresponding catalytic and substrate recognition mechanisms. In addition, we summarized and evaluated the protein engineering strategies applied to improve the catalytic activities of plant UGTs, with a particular focus on high-throughput screening methods. The primary objective of this review is to provide readers with a comprehensive understanding of plant UGTs and to serve as a valuable reference for the latest techniques used to improve their activities.
Collapse
Affiliation(s)
- Mengya Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Qiushuang Ji
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Bin Lai
- BMBF junior research group Biophotovoltaics, Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany
| | - Yirong Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| | - Kunrong Mei
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
| |
Collapse
|
18
|
Wang HT, Wang ZL, Chen K, Yao MJ, Zhang M, Wang RS, Zhang JH, Ågren H, Li FD, Li J, Qiao X, Ye M. Insights into the missing apiosylation step in flavonoid apiosides biosynthesis of Leguminosae plants. Nat Commun 2023; 14:6658. [PMID: 37863881 PMCID: PMC10589286 DOI: 10.1038/s41467-023-42393-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
Apiose is a natural pentose containing an unusual branched-chain structure. Apiosides are bioactive natural products widely present in the plant kingdom. However, little is known on the key apiosylation reaction in the biosynthetic pathways of apiosides. In this work, we discover an apiosyltransferase GuApiGT from Glycyrrhiza uralensis. GuApiGT could efficiently catalyze 2″-O-apiosylation of flavonoid glycosides, and exhibits strict selectivity towards UDP-apiose. We further solve the crystal structure of GuApiGT, determine a key sugar-binding motif (RLGSDH) through structural analysis and theoretical calculations, and obtain mutants with altered sugar selectivity through protein engineering. Moreover, we discover 121 candidate apiosyltransferase genes from Leguminosae plants, and identify the functions of 4 enzymes. Finally, we introduce GuApiGT and its upstream genes into Nicotiana benthamiana, and complete de novo biosynthesis of a series of flavonoid apiosides. This work reports an efficient phenolic apiosyltransferase, and reveals mechanisms for its sugar donor selectivity.
Collapse
Affiliation(s)
- Hao-Tian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zi-Long Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Ming-Ju Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Rong-Shen Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Jia-He Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Fu-Dong Li
- National Science Center for Physical Sciences at Microscale Division of Molecular & Cell Biophysics and School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, SE-751 20, Uppsala, Sweden.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
19
|
Wang Y, Yu L, Shao J, Zhu Z, Zhang L. Structure-driven protein engineering for production of valuable natural products. TRENDS IN PLANT SCIENCE 2023; 28:460-470. [PMID: 36473772 DOI: 10.1016/j.tplants.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 09/25/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Proteins are the most frequently used biocatalysts, and their structures determine their functions. Modifying the functions of proteins on the basis of their structures lies at the heart of protein engineering, opening a new horizon for metabolic engineering by efficiently generating stable enzymes. Many attempts at classical metabolic engineering have focused on improving specific metabolic fluxes and producing more valuable natural products by increasing gene expression levels and enzyme concentrations. However, most naturally occurring enzymes show limitations, and such limitations have hindered practical applications. Here we review recent advances in protein engineering in synthetic biology, chemoenzymatic synthesis, and plant metabolic engineering and describe opportunities for designing and constructing novel enzymes or proteins with desirable properties to obtain more active natural products.
Collapse
Affiliation(s)
- Yun Wang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Luyao Yu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Jie Shao
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Lei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China; Biomedical Innovation R&D Centre, School of Medicine, Shanghai University, Shanghai 200444, China; Department of Pharmaceutical Botany, School of Pharmacy, Second Military Medical University, Shanghai 200433, China; Innovative Drug R&D Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China.
| |
Collapse
|
20
|
Yang S, Hou X, Deng Z, Yang L, Ping Q, Yuan Z, Zhang Y, Rao Y. Improving the thermostability of glycosyltransferase YojK by targeting mutagenesis for highly efficient biosynthesis of rebaudioside D. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Yao Y, Gu J, Luo Y, Zhang Y, Wang Y, Pang Y, Jia S, Xu C, Li D, Suo F, Shen G, Guo B. A Novel 3- O-rhamnoside: 2″- O-xylosyltransferase Responsible for Terminal Modification of Prenylflavonol Glycosides in Epimedium pubescens Maxim. Int J Mol Sci 2022; 23:16050. [PMID: 36555695 PMCID: PMC9786081 DOI: 10.3390/ijms232416050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Prenylated flavonol glycosides in Epimedium plants, as key medicinal components, are known to have great pharmaceutical activities for human health. Among the main prenylated flavonol glycosides, the modification mechanism of different sugar moieties is still not well understood. In the current study, a novel prenylated flavonol rhamnoside xylosyltransferase gene (EpF3R2″XylT) was cloned from E. pubescens, and the enzymatic activity of its decoding proteins was examined in vitro with different prenylated flavonol rhamnoside substrates and different 3-O-monosaccharide moieties. Furthermore, the functional and structural domains of EpF3R2″XylT were analyzed by bioinformatic approaches and 3-D protein structure remodeling. In summary, EpF3R2″XylT was shown to cluster with GGT (glycosyltransferase that glycosylates sugar moieties of glycosides) through phylogenetic analysis. In enzymatic analysis, EpF3R2″XylT was proven to transfer xylose moiety from UDP-xylose to prenylated flavonol rhamnoside at the 2″-OH position of rhamnose. The analysis of enzymatic kinetics showed that EpF3R2″XylT had the highest substrate affinity toward icariin with the lowest Km value of 75.96 ± 11.91 mM. Transient expression of EpF3R2″XylT in tobacco leaf showed functional production of EpF3R2″XylT proteins in planta. EpF3R2″XylT was preferably expressed in the leaves of E. pubescens, which is consistent with the accumulation levels of major prenylflavonol 3-O-triglycoside. The discovery of EpF3R2″XylT will provide an economical and efficient alternative way to produce prenylated flavonol trisaccharides through the biosynthetic approach.
Collapse
Affiliation(s)
- Yu Yao
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiajun Gu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanjiao Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yixin Zhang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yuanyue Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Yongzhen Pang
- Institute of Animal Sciences, The Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shangang Jia
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Chaoqun Xu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Doudou Li
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Fengmei Suo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Guoan Shen
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Baolin Guo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
22
|
Pan H, Xiao L, Tang K, Xia H, Li Y, Jia H, Wei P, Yan M. Screening UDP-Glycosyltransferases for Effectively Transforming Stevia Glycosides: Enzymatic Synthesis of Glucosylated Derivatives of Rubusoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:15178-15188. [PMID: 36424346 DOI: 10.1021/acs.jafc.2c06185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Five plant-derived uridine diphosphate glycosyltransferases (UGTs) that catalyzed the glucosylation of stevia glycosides (SGs) were uncovered as the result of sequence mining considering the catalytic residues and conserved motifs of the known UGTs. Thereinto, LbUGT from Lycium barbarum with high activity toward rubusoside has been enzymatically characterized. The recombinant LbUGT was demonstrated to catalyze the β-1,6-glucosylation at C19 of rubusoside, producing a monoglucosyl derivative 13-[(O-β-d-glucopyranosyl) oxy] ent-kaur-16-en-19-oic acid-[(6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester], which was then submitted to a β-1,2-glucosylation by LbUGT, resulting in a diglucosyl derivative 13-[(O-β-d-glucopyranosyl) oxy] ent-kaur-16-en-19-oic acid-[(2-O-β-d-glucopyranosyl-6-O-β-d-glucopyranosyl-β-d-glucopyranosyl) ester]. The di-glycosylated product of rubusoside showed an obvious increase in sweetness intensity (134 times sweeter than 5% sucrose) and almost eliminated the unpleasant bitter taste. This work will provide a reference for the taste improvement of SGs.
Collapse
Affiliation(s)
- Huayi Pan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liang Xiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kexin Tang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Haojun Xia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Honghua Jia
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ping Wei
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ming Yan
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
23
|
Franceus J, Lormans J, Desmet T. Building mutational bridges between carbohydrate-active enzymes. Curr Opin Biotechnol 2022; 78:102804. [PMID: 36156353 DOI: 10.1016/j.copbio.2022.102804] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
The commercial value of specialty carbohydrates and glycosylated compounds has sparked considerable interest in the synthetic potential of carbohydrate-active enzymes (CAZymes). Protein engineering methods have proven to be highly successful in expanding the range of glycosylation reactions that these enzymes can perform efficiently and cost-effectively. The past few years have witnessed meaningful progress in this area, largely due to a sharper focus on the understanding of structure-function relationships and mechanistic intricacies. Here, we summarize recent studies that demonstrate how protein engineers have become much better at traversing the fitness landscape of CAZymes through mutational bridges that connect the different activity types.
Collapse
Affiliation(s)
- Jorick Franceus
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jolien Lormans
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|
24
|
Xu Y, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Sustainable bioproduction of natural sugar substitutes: Strategies and challenges. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Li J, Mu S, Yang J, Liu C, Zhang Y, Chen P, Zeng Y, Zhu Y, Sun Y. Glycosyltransferase engineering and multi-glycosylation routes development facilitating synthesis of high-intensity sweetener mogrosides. iScience 2022; 25:105222. [PMID: 36248741 PMCID: PMC9557039 DOI: 10.1016/j.isci.2022.105222] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/22/2022] [Accepted: 09/23/2022] [Indexed: 11/29/2022] Open
Abstract
Mogrosides are widely served as natural zero-calorie sweeteners. To date, the biosynthesis of high-intensity sweetness mogrosides V from mogrol has not been achieved because of inefficient and uncontrollable multi-glycosylation process. To address this challenge, we reported three UDP-glycosyltransferases (UGTs) catalyzing the primary and branched glycosylation of mogrosides and increased the catalytic efficiency by 74-400-folds toward branched glycosylation using an activity-based sequence conservative analysis engineering strategy. The computational studies provided insights into the origin of improved catalytic activity. By virtue of UGT mutants, we provided regio- and bond-controllable multi-glycosylation routes, successfully facilitating sequential glycosylation of mogrol to three kinds of mogroside V in excellent yield of 91-99%. Meanwhile, the feasibility of the routes was confirmed in engineered yeasts. It suggested that the multi-glycosylation routes would be combined with mogrol synthetic pathway to de novo produce mogrosides from glucose by aid of metabolic engineering and synthetic biology strategies in the future.
Collapse
Affiliation(s)
- Jiao Li
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Shicheng Mu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Jiangang Yang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Cui Liu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yanfei Zhang
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Peng Chen
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yan Zeng
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yueming Zhu
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Yuanxia Sun
- National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 Xi Qi Dao, Tianjin Airport Economic Area, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| |
Collapse
|
26
|
Efficient synthesis of rebaudioside D2 through UGT94D1-catalyzed regio-selective glycosylation. Carbohydr Res 2022; 522:108687. [DOI: 10.1016/j.carres.2022.108687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/20/2022]
|
27
|
Yan Y, Mo T, Huang W, Xu X, Tian W, Wang Y, Song Y, Li J, Shi S, Liu X, Tu P. Glycosylation of Aromatic Glycosides by a Promiscuous Glycosyltransferase UGT71BD1 from Cistanche tubulosa. JOURNAL OF NATURAL PRODUCTS 2022; 85:1826-1836. [PMID: 35791759 DOI: 10.1021/acs.jnatprod.2c00407] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Multiple-glycosylated glycosides are a major source of bioactive leads. However, most of the currently reported glycosyltransferases (GTases) mainly catalyze glycosylation of aglycones without sugar group substitution. GTases accepting diverse glycosides as substrates are rarely reported. In this article, a new GTase UGT71BD1 was identified from Cistanche tubulosa, a desert herb plant abundant with various phenylethanoid glycosides (PhGs). Interestingly, UGT71BD1 showed no activity toward the aglycone of PhGs. Instead, it could catalyze the further glycosylation of PhG compounds to produce new phenylethanoid multiglycosylated glycosides, including the natural rarely separated tetraglycoside PhGs. Extensive assays found the unprecedented substrate promiscuity of UGT71BD1 toward diverse glycosides including flavonoid glycosides, stilbene glycosides, and coumarin glycosides, performing further mono- or diglycosylation with efficient conversion rates. Using UGT71BD1, six multiglycosylated glycosides were prepared and structurally identified by NMR spectroscopy. These products showed enhanced pharmacological activities compared with the substrates. Docking, dynamic simulation, and mutagenesis studies identified key residues for UGT71BD1's activity and revealed that the sugar modules in glycosides play crucial roles in substrate recognition, thus partly illuminating the unusual substrate preference of UGT71BD1 toward diverse glycosides. UGT71BD1 could be a potential enzyme tool for glycosylation of diverse glycosides.
Collapse
Affiliation(s)
- Yaru Yan
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Ting Mo
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Wenqian Huang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiping Xu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Weisheng Tian
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yingxia Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Yuelin Song
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Jun Li
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Shepo Shi
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Xiao Liu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, People's Republic of China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
28
|
De novo biosynthesis of rubusoside and rebaudiosides in engineered yeasts. Nat Commun 2022; 13:3040. [PMID: 35650215 PMCID: PMC9160076 DOI: 10.1038/s41467-022-30826-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/11/2022] [Indexed: 12/24/2022] Open
Abstract
High-sugar diet causes health problems, many of which can be addressed with the use of sugar substitutes. Rubusoside and rebaudiosides are interesting molecules, considered the next generation of sugar substitutes due to their low-calorie, superior sweetness and organoleptic properties. However, their low abundance in nature makes the traditional plant extraction process neither economical nor environmental-friendly. Here we engineer baker's yeast Saccharomyces cerevisiae as a chassis for the de novo production of rubusoside and rebaudiosides. In this process, we identify multiple issues that limit the production, including rate-liming steps, product stress on cellular fitness and unbalanced metabolic networks. We carry out a systematic engineering strategy to solve these issues, which produces rubusoside and rebaudiosides at titers of 1368.6 mg/L and 132.7 mg/L, respectively. The rubusoside chassis strain here constructed paves the way towards a sustainable, large-scale fermentation-based manufacturing of diverse rebaudiosides.
Collapse
|
29
|
Chen M, Song F, Qin Y, Han S, Rao Y, Liang S, Lin Y. Improving Thermostability and Catalytic Activity of Glycosyltransferase From Panax ginseng by Semi-Rational Design for Rebaudioside D Synthesis. Front Bioeng Biotechnol 2022; 10:884898. [PMID: 35573234 PMCID: PMC9092651 DOI: 10.3389/fbioe.2022.884898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
As a natural sweetener and sucrose substitute, the biosynthesis and application of steviol glycosides containing the component rebaudioside D have attracted worldwide attention. Here, a glycosyltransferase PgUGT from Panax ginseng was first reported for the biosynthesis of rebaudioside D. With the three-dimensional structures built by homology modeling and deep-learning–based modeling, PgUGT was semi-rationally designed by FireProt. After detecting 16 site-directed variants, eight of them were combined in a mutant Mut8 with both improved enzyme activity and thermostability. The enzyme activity of Mut8 was 3.2-fold higher than that of the wild type, with an increased optimum reaction temperature from 35 to 40°C. The activity of this mutant remained over 93% when incubated at 35°C for 2 h, which was 2.42 times higher than that of the wild type. Meanwhile, when the enzymes were incubated at 40°C, where the wild type was completely inactivated after 1 h, the residual activity of Mut8 retained 59.0% after 2 h. This study would provide a novel glycosyltransferase with great potential for the industrial production of rebaudioside D and other steviol glycosides.
Collapse
Affiliation(s)
- Meiqi Chen
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Fangwei Song
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yuxi Qin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shuli Liang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Shuli Liang, ; Ying Lin,
| | - Ying Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Shuli Liang, ; Ying Lin,
| |
Collapse
|
30
|
Huang W, He Y, Jiang R, Deng Z, Long F. Functional and Structural Dissection of a Plant Steroid 3-O-Glycosyltransferase Facilitated the Engineering Enhancement of Sugar Donor Promiscuity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Wei Huang
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yue He
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Renwang Jiang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zixin Deng
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Feng Long
- Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|