1
|
Srinivasan S, Zhu C, McShan AC. Structure, function, and immunomodulation of the CD8 co-receptor. Front Immunol 2024; 15:1412513. [PMID: 39253084 PMCID: PMC11381289 DOI: 10.3389/fimmu.2024.1412513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Expressed on the surface of CD8+ T cells, the CD8 co-receptor is a key component of the T cells that contributes to antigen recognition, immune cell maturation, and immune cell signaling. While CD8 is widely recognized as a co-stimulatory molecule for conventional CD8+ αβ T cells, recent reports highlight its multifaceted role in both adaptive and innate immune responses. In this review, we discuss the utility of CD8 in relation to its immunomodulatory properties. We outline the unique structure and function of different CD8 domains (ectodomain, hinge, transmembrane, cytoplasmic tail) in the context of the distinct properties of CD8αα homodimers and CD8αβ heterodimers. We discuss CD8 features commonly used to construct chimeric antigen receptors for immunotherapy. We describe the molecular interactions of CD8 with classical MHC-I, non-classical MHCs, and Lck partners involved in T cell signaling. Engineered and naturally occurring CD8 mutations that alter immune responses are discussed. The applications of anti-CD8 monoclonal antibodies (mABs) that target CD8 are summarized. Finally, we examine the unique structure and function of several CD8/mAB complexes. Collectively, these findings reveal the promising immunomodulatory properties of CD8 and CD8 binding partners, not only to uncover basic immune system function, but to advance efforts towards translational research for targeted immunotherapy.
Collapse
Affiliation(s)
- Shreyaa Srinivasan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, United States
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Andrew C. McShan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
2
|
Cross DL, Layton ED, Yu KK, Smith MT, Aguilar MS, Li S, Wilcox EC, Chapuis AG, Mayanja-Kizza H, Stein CM, Boom WH, Hawn TR, Bradley P, Newell EW, Seshadri C. MR1-restricted T cell clonotypes are associated with "resistance" to Mycobacterium tuberculosis infection. JCI Insight 2024; 9:e166505. [PMID: 38716731 PMCID: PMC11141901 DOI: 10.1172/jci.insight.166505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/27/2024] [Indexed: 05/14/2024] Open
Abstract
T cells are required for protective immunity against Mycobacterium tuberculosis. We recently described a cohort of Ugandan household contacts of tuberculosis cases who appear to "resist" M. tuberculosis infection (resisters; RSTRs) and showed that these individuals harbor IFN-γ-independent T cell responses to M. tuberculosis-specific peptide antigens. However, T cells also recognize nonprotein antigens via antigen-presenting systems that are independent of genetic background, known as donor-unrestricted T cells (DURTs). We used tetramer staining and flow cytometry to characterize the association between DURTs and "resistance" to M. tuberculosis infection. Peripheral blood frequencies of most DURT subsets were comparable between RSTRs and latently infected controls (LTBIs). However, we observed a 1.65-fold increase in frequency of MR1-restricted T (MR1T) cells among RSTRs in comparison with LTBIs. Single-cell RNA sequencing of 18,251 MR1T cells sorted from 8 donors revealed 5,150 clonotypes that expressed a common transcriptional program, the majority of which were private. Sequencing of the T cell receptor α/T cell receptor δ (TCRα/δ) repertoire revealed several DURT clonotypes were expanded among RSTRs, including 2 MR1T clonotypes that recognized mycobacteria-infected cells in a TCR-dependent manner. Overall, our data reveal unexpected donor-specific diversity in the TCR repertoire of human MR1T cells as well as associations between mycobacteria-reactive MR1T clonotypes and resistance to M. tuberculosis infection.
Collapse
Affiliation(s)
- Deborah L. Cross
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erik D. Layton
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Krystle K.Q. Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Malisa T. Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Melissa S. Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Shamin Li
- Vaccine and Infectious Disease Division and
| | - Elise C. Wilcox
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Aude G. Chapuis
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Catherine M. Stein
- Department of Medicine and
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Thomas R. Hawn
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Philip Bradley
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | | | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
3
|
Shete A, Ghate M, Iwasaki-Hozumi H, Patil S, Shidhaye P, Bai G, Matsuba T, Pharande P, Mahajan B, Randive A, Mukherjee A, Hattori T. Dynamics of Matricellular Protein Levels in Blood Predict Recovery in Patients with Human Immunodeficiency Virus-Tuberculosis Coinfection. Viruses 2024; 16:664. [PMID: 38793546 PMCID: PMC11126111 DOI: 10.3390/v16050664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Chronic immune activation in tuberculosis (TB) associated with human immunodeficiency virus (HIV) infection (HIV/TB) modifies their clinical course. We prospectively measured osteopontin (OPN), full-length galectin-9 (FL-Gal9), and total-Gal9 (T-Gal9) levels in 32 patients with HIV/TB coinfection treated with anti-tuberculosis and antiretroviral therapies over 6-18 months to determine the amelioration of inflammatory conditions in response to the therapies. We observed a significant time-dependent decrease in FL-Gal9 in both pulmonary TB (PTB, n = 20) and extrapulmonary TB (EPTB, n = 12) patients. The levels of T-Gal9, OPN, and CRP decreased significantly after treatment in only PTB patients. We calculated the inflammatory score (INS) indicating immunologic recovery based on the decline in OPN, FL-Gal9, T-Gal9, and CRP levels. Baseline levels of T-Gal9 and OPN positively correlated with INS in all TB and only PTB patients, respectively, indicating that their levels predict better recovery. In contrast, FL-Gal9 levels at the second visit negatively correlated with INS in EPTB patients. The decrease rate in OPN levels at the second visit also correlated positively with INS in PTB patients. Women showed a higher INS and lower levels of FL-Gal9 than men. The patients with moderate grade severity on chest X-ray had higher CD4 cell numbers than those with limited grade severity. Monitoring these markers will help to predict and assess the response to therapy as well as to devise strategies to reduce the complications caused by chronic immune activation in patients with HIV/TB coinfection.
Collapse
Affiliation(s)
- Ashwini Shete
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Manisha Ghate
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Hiroko Iwasaki-Hozumi
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-0018, Japan;
| | - Sandip Patil
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Pallavi Shidhaye
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Gaowa Bai
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Takashi Matsuba
- School of Pharmaceutical Science, Kyushu University of Medical Sciences, Nobeoka 882-8508, Japan;
| | - Pratiksha Pharande
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Bharati Mahajan
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Aarti Randive
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Anupam Mukherjee
- Indian Council of Medical Research—National Institute of Translational Virology and AIDS Research (ICMR-NITVAR, Formerly National AIDS Research Institute), Pune 411026, India; (A.S.); (M.G.); (S.P.); (P.S.); (P.P.); (B.M.); (A.R.); (A.M.)
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, Takahashi 716-0018, Japan;
- Shizuoka Graduate University of Public Health, Shizuoka City 420-0881, Japan
| |
Collapse
|
4
|
Wei J, Ge X, Qian Y, Jiang K, Chen X, Lu W, Yang H, Fu D, Fang Y, Zhou X, Xiao Q, Tang Y, Ding K. Development and verification of a combined immune- and cancer-associated fibroblast related prognostic signature for colon adenocarcinoma. Front Immunol 2024; 15:1291938. [PMID: 38312843 PMCID: PMC10834644 DOI: 10.3389/fimmu.2024.1291938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
Introduction To better understand the role of immune escape and cancer-associated fibroblasts (CAFs) in colon adenocarcinoma (COAD), an integrative analysis of the tumor microenvironment was performed using a set of 12 immune- and CAF-related genes (ICRGs). Methods Univariate and least absolute shrinkage and selection operator (LASSO) Cox regression analyses were used to establish a prognostic signature based on the expression of these 12 genes (S1PR5, AEN, IL20RB, FGF9, OSBPL1A, HSF4, PCAT6, FABP4, KIF15, ZNF792, CD1B and GLP2R). This signature was validated in both internal and external cohorts and was found to have a higher C-index than previous COAD signatures, confirming its robustness and reliability. To make use of this signature in clinical settings, a nomogram incorporating ICRG signatures and key clinical parameters, such as age and T stage, was developed. Finally, the role of S1PR5 in the immune response of COAD was validated through in vitro cytotoxicity experiments. Results The developed nomogram exhibited slightly improved predictive accuracy compared to the ICRG signature alone, as indicated by the areas under the receiver operating characteristic curves (AUC, nomogram:0.838; ICRGs:0.807). The study also evaluated the relationships between risk scores (RS) based on the expression of the ICRGs and other key immunotherapy variables, including immune checkpoint expression, immunophenoscore (IPS), and microsatellite instability (MSI). Integration of these variables led to more precise prediction of treatment efficacy, enabling personalized immunotherapy for COAD patients. Knocking down S1PR5 can enhance the efficacy of PD-1 monoclonal antibody, promoting the cytotoxicity of T cells against HCT116 cells ((p<0.05). Discussion These findings indicate that the ICRG signature may be a valuable tool for predicting prognostic risk, evaluating the efficacy of immunotherapy, and tailoring personalized treatment options for patients with COAD.
Collapse
Affiliation(s)
- Jingsun Wei
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoxu Ge
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yucheng Qian
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kai Jiang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Lu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hang Yang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Dongliang Fu
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yimin Fang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyi Zhou
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Qian Xiao
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Tang
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| | - Kefeng Ding
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang, China
- Department of Colorectal Surgery and Oncology, Cancer Center of Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Wang H, Liu D, Zhou X. Effect of Mycolic Acids on Host Immunity and Lipid Metabolism. Int J Mol Sci 2023; 25:396. [PMID: 38203570 PMCID: PMC10778799 DOI: 10.3390/ijms25010396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 01/12/2024] Open
Abstract
Mycolic acids constitute pivotal constituents within the cell wall structure of Mycobacterium tuberculosis. Due to their structural diversity, the composition of mycolic acids exhibits substantial variations among different strains, endowing them with the distinctive label of being the 'signature' feature of mycobacterial species. Within Mycobacterium tuberculosis, the primary classes of mycolic acids include α-, keto-, and methoxy-mycolic acids. While these mycolic acids are predominantly esterified to the cell wall components (such as arabinogalactan, alginate, or glucose) of Mycobacterium tuberculosis, a fraction of free mycolic acids are secreted during in vitro growth of the bacterium. Remarkably, different types of mycolic acids possess varying capabilities to induce foamy macro-phages and trigger immune responses. Additionally, mycolic acids play a regulatory role in the lipid metabolism of host cells, thereby exerting influence over the progression of tuberculosis. Consequently, the multifaceted properties of mycolic acids shape the immune evasion strategy employed by Mycobacterium tuberculosis. A comprehensive understanding of mycolic acids is of paramount significance in the pursuit of developing tuberculosis therapeutics and unraveling the intricacies of its pathogenic mechanisms.
Collapse
Affiliation(s)
- Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100086, China; (H.W.); (D.L.)
- National Key Laboratory of Veterinary Public Health and Safety, Beijing 100086, China
| | - Dingpu Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100086, China; (H.W.); (D.L.)
- National Key Laboratory of Veterinary Public Health and Safety, Beijing 100086, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing 100086, China; (H.W.); (D.L.)
- National Key Laboratory of Veterinary Public Health and Safety, Beijing 100086, China
| |
Collapse
|
6
|
Jalbert E, Liu C, Mave V, Lang N, Kagal A, Valvi C, Paradkar M, Gupte N, Lokhande R, Bharadwaj R, Kulkarni V, Gupta A, Weinberg A. Comparative immune responses to Mycobacterium tuberculosis in people with latent infection or sterilizing protection. iScience 2023; 26:107425. [PMID: 37564701 PMCID: PMC10410524 DOI: 10.1016/j.isci.2023.107425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 03/22/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
There is great need for vaccines against tuberculosis (TB) more efficacious than the licensed BCG. Our goal was to identify new vaccine benchmarks by identifying immune responses that distinguish individuals able to eradicate the infection (TB-resisters) from individuals with latent infection (LTBI-participants). TB-resisters had higher frequencies of circulating CD8+ glucose monomycolate (GMM)+ Granzyme-B+ T cells than LTBI-participants and higher proportions of polyfunctional conventional and nonconventional T cells expressing Granzyme-B and/or PD-1 after ex vivo M. tuberculosis stimulation of blood mononuclear cells. LTBI-participants had higher expression of activation markers and cytokines, including IL10, and IFNγ. An exploratory analysis of BCG-recipients with minimal exposure to TB showed absence of CD8+GMM+Granzyme-B+ T cells, lower or equal proportions of Granzyme-B+PD-1+ polyfunctional T cells than TB-resisters and higher or equal than LTBI-participants. In conclusion, high Granzyme-B+PD-1+ T cell responses to M. tuberculosis and, possibly, of CD8+GMM+Granzyme-B+ T cells may be desirable for new TB vaccines.
Collapse
Affiliation(s)
- Emilie Jalbert
- Department of Pediatrics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Cuining Liu
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Vidya Mave
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Nancy Lang
- Department of Pediatrics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| | - Anju Kagal
- Department of Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Chhaya Valvi
- Department of Pediatrics, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Mandar Paradkar
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Nikhil Gupte
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Rahul Lokhande
- Department of Pulmonary Medicine, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Renu Bharadwaj
- Department of Microbiology, Byramjee Jeejeebhoy Government Medical College and Sassoon General Hospital, Pune, Maharashtra, India
| | - Vandana Kulkarni
- Byramjee Jeejeebhoy Government Medical College- Johns Hopkins University Clinical Research Site (BJGMC-JHU CRS), Pune, Maharashtra, India
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Amita Gupta
- Johns Hopkins Center for Infectious Diseases in India, Pune, Maharashtra, India
- School of Medicine, Center for Clinical Global Health Education (CCGHE), Johns Hopkins University, Baltimore, MD, USA
| | - Adriana Weinberg
- Departments of Pediatrics, Medicine and Pathology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Magliozzi R, Howell OW, Calabrese M, Reynolds R. Meningeal inflammation as a driver of cortical grey matter pathology and clinical progression in multiple sclerosis. Nat Rev Neurol 2023:10.1038/s41582-023-00838-7. [PMID: 37400550 DOI: 10.1038/s41582-023-00838-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/05/2023]
Abstract
Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.
Collapse
Affiliation(s)
- Roberta Magliozzi
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Owain W Howell
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
- Institute of Life Sciences, Swansea University, Swansea, UK
| | - Massimiliano Calabrese
- Neurology Section of Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Reynolds
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
8
|
Qu L, Yin T, Zhao Y, Lv W, Liu Z, Chen C, Liu K, Shan S, Zhou R, Li X, Dong H. Histone demethylases in the regulation of immunity and inflammation. Cell Death Discov 2023; 9:188. [PMID: 37353521 DOI: 10.1038/s41420-023-01489-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 06/25/2023] Open
Abstract
Pathogens or danger signals trigger the immune response. Moderate immune response activation removes pathogens and avoids excessive inflammation and tissue damage. Histone demethylases (KDMs) regulate gene expression and play essential roles in numerous physiological processes by removing methyl groups from lysine residues on target proteins. Abnormal expression of KDMs is closely associated with the pathogenesis of various inflammatory diseases such as liver fibrosis, lung injury, and autoimmune diseases. Despite becoming exciting targets for diagnosing and treating these diseases, the role of these enzymes in the regulation of immune and inflammatory response is still unclear. Here, we review the underlying mechanisms through which KDMs regulate immune-related pathways and inflammatory responses. In addition, we also discuss the future applications of KDMs inhibitors in immune and inflammatory diseases.
Collapse
Affiliation(s)
- Lihua Qu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Tong Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yijin Zhao
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenting Lv
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ziqi Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kejun Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, Hubei, China
| | - Rui Zhou
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoqing Li
- Biological Targeted Therapy Key Laboratory in Hubei, Huazhong University of Science and Technology, Wuhan, Hubei, China.
- Center for Stem Cell Research and Application, Union Hospital, Tongji Medical School, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Huifen Dong
- Hubei Province Key Laboratory of Allergy and Immunology, Wuhan University, Wuhan, Hubei, China.
- Department of Pathogenic Biology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Neves EGA, Koh CC, Lucinda PPD, Souza-Silva TG, Medeiros NI, Pantaleão A, Mutarelli A, Gomes JDAS, Silva SDA, Gollob KJ, Nunes MDCP, Dutra WO. Blocking activation of CD4 -CD8 - T cells modulates their cytotoxic potential and decreases the expression of inflammatory and chemotactic receptors. Clin Immunol 2023; 251:109331. [PMID: 37088297 PMCID: PMC10257888 DOI: 10.1016/j.clim.2023.109331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/31/2023] [Accepted: 04/15/2023] [Indexed: 04/25/2023]
Abstract
CD4-CD8- (double negative - DN) T cells represent a small fraction of circulating T lymphocytes but are a major source of pro-inflammatory cytokines in patients with infectious diseases, including chronic Chagas cardiomyopathy (CCC), one of the deadliest cardiopathies known. Chagas disease is caused by an infection with the protozoan parasite Trypanosoma cruzi and can lead to either an asymptomatic form or a high-mortality cardiac disease. While circulating DN T cells represent a major inflammatory cytokine-expressing cell population in Chagas disease, their potential to be recruited to the heart and to perform cytotoxicity has not been determined. Our previous studies showed that blocking DN T cell activation decreases the expression of IFN-gamma, a cytokine involved in the severity of CCC. Here, studying a well-characterized cohort of Chagas patients with CCC or the asymptomatic form of Chagas disease (indeterminate form, IND), we evaluated the expression of cytotoxic molecules, cytokine and chemokine receptors in γδ+ and αβ+ DN T cells by multiparameter flow cytometry, and investigated whether blocking the activation of DN T cells influences the expression of these molecules. We observed that DN T cells from CCC display a higher expression of granzyme A, perforin, inflammatory molecules, and inflammatory chemokine receptors than cells from IND. Messenger RNA coding for these molecules is also upregulated in the heart of CCC patients. Importantly, blocking the activation of DN T cells from CCC modulates their cytotoxic potential and the expression of inflammatory and of chemokine receptors, suggesting that targeting DN T cell activation may be a valid strategy to reduce recruitment to the heart, inflammation, cytotoxicity and, thereby diminish CCC progression and severity.
Collapse
Affiliation(s)
- Eula Graciele Amorim Neves
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Carolina Cattoni Koh
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Pedro Paulo Diniz Lucinda
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Thaiany Goulart Souza-Silva
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Nayara I Medeiros
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Alexandre Pantaleão
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Antônio Mutarelli
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Juliana de Assis Silva Gomes
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil
| | - Silvana de Araújo Silva
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Kenneth John Gollob
- Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, SP 05652-900, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil
| | - Maria do Carmo Pereira Nunes
- Depto. Clínica Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais, Av. Prof. Alfredo Balena, 190 - Santa Efigênia, Belo Horizonte, MG 30130-100, Brazil
| | - Walderez Ornelas Dutra
- Lab. Biologia das Interações Celulares, Depto. Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos, 6627 - Pampulha, Belo Horizonte, MG 31270-901, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, INCT-DT, Salvador, BA, Brazil.
| |
Collapse
|
10
|
Yun L, Li W, Wu T, Zhang M. Effect of sea cucumber peptides on the immune response and gut microbiota composition in ovalbumin-induced allergic mice. Food Funct 2022; 13:6338-6349. [PMID: 35612003 DOI: 10.1039/d2fo00536k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of food allergies has increased in Asian countries. The aim of this study was to determine the potential value of sea cucumber peptide (SCP) for anti-allergic therapeutics in terms of their effect on immune response and gut microbiota composition. Results exhibited that SCP could significantly improve the allergy symptoms caused by ovalbumin and could reduce the risk of IgE mediated allergic disorders, as well as repair the morphological damage in the colon. Flow cytometry analysis indicated that SCP could improve the ratio of CD4+/CD8+ T lymphocytes. 16S rRNA results indicated that SCP could differently impact the composition of microbiota. The relative abundances of Bacteroidetes and Firmicutes and the Bacteroidetes/Firmicutes ratio were altered in normal mice. When compared with the OVA treated group, the SCP treated groups showed an increase in the relative abundance of Lachnospiraceae, Muribaculaceae and Ruminococcaceae, and a decrease in Bacteroidaceae, Prevotellaceae, and Lactobacillaceae. These results demonstrate that SCP exhibits potential antiallergic activities in a mouse model of ovalbumin allergy by regulating intestinal microbiota diversity and upregulating the immune response of T lymphocyte subpopulations, which might provide important evidence that SCP can be developed into a novel functional food for inhibiting ovalbumin allergy.
Collapse
Affiliation(s)
- Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, P. R. China.
| | - Wen Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, P. R. China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|