1
|
Graue J, Timmen M, Schmitz K, Kronenberg D, Böhm M, Sivaraj KK, Bixel MG, Stange R. Anti-inflammatory treatment using alpha melanocyte stimulating hormone (α-MSH) does not alter osteoblasts differentiation and fracture healing. BMC Musculoskelet Disord 2025; 26:123. [PMID: 39915758 PMCID: PMC11800508 DOI: 10.1186/s12891-025-08374-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Alpha-melanocyte-stimulating-hormone (α-MSH) has been identified as a new anti-inflammatory treatment compound in rheumatoid arthritis (RA) and other inflammatory diseases. However, its direct effect on bone cell differentiation or on bone regeneration, which is an inflammatory process, too, has not been investigated, yet. Bone tissue is significantly affected in inflammatory joint diseases. Additionally, inflammatory signaling is essential -in bone regeneration during fracture healing. Therefore, we evaluated the impact of α-MSH-treatment on bone forming cells in an inflammatory setting in vitro and as a treatment approach in a murine fracture healing model in vivo. METHODS The influence of α-MSH treatment and melanocortin-receptor expression patterns was investigated in vitro in the presence of either IL-1β or/and TNF-α as an inflammatory stimulus. Osteoblast cell function was evaluated by analyzing proliferation and mineralisation capacities. Using quantitative real time PCR, we analyzed mRNA expression of receptors. To explore the impact of α-MSH on bone regeneration in vivo, treatment with α-MSH or NaCl (control) was performed in a murine fracture-healing model using a closed femur fracture stabilized with an intramedullary implant (female, n = 6-8 mice per group). RESULTS α-MSH-treatment did not impair either proliferation nor mineralisation of osteoblastic cells under native or inflammatory conditions (no significant differences found). All four melanocortin receptor-molecules were expressed in murine osteoblastic cells but in very limited amounts and this did not change upon treatment with inflammatory cytokines or α-MSH or both at the same time. Callus formation in fractured femurs of α-MSH-treated mice was slightly delayed at day 14 post fracture with regard to less cartilage formation (NaCl: 19.9%; α-MSH: 13.5%) and soft tissue remodeling (NaCl: 15.2%; α-MSH: 19.5%) but these results were not significantly different and fracture healing overall occurred in a regular way. CONCLUSION α-MSH has no negative impact on bone or bone-forming cells in native, inflammatory, or regenerative contexts. We can conclude from our results, that treatment of inflammatory diseases using α-MSH does not interfere significantly with bone regeneration in a murine fracture model and therefore treatment with α-MSH could be continued without negative effects on bone formation and bone regeneration in patients. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Johanna Graue
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Katharina Schmitz
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Daniel Kronenberg
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany
| | - Markus Böhm
- Department of Dermatology, University Hospital Muenster, Von-Esmarch-Str. 58, 48149, Muenster, Germany
| | - Kishor K Sivaraj
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Muenster, Germany
| | - M Gabriele Bixel
- Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149, Muenster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University of Muenster, Albert-Schweitzer-Campus 1, D3, 48149, Muenster, Germany.
| |
Collapse
|
2
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single-nucleus transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. eLife 2024; 13:RP92519. [PMID: 39642053 PMCID: PMC11623931 DOI: 10.7554/elife.92519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nucleus atlas of the periosteum at steady state and of the fracture site during the early stages of bone repair (https://fracture-repair-atlas.cells.ucsc.edu). We identified periosteal SSPCs expressing stemness markers (Pi16 and Ly6a/SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt, and the circadian clock signaling, respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
Affiliation(s)
- Simon Perrin
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | - Maria Ethel
- Univ Paris Est Creteil, INSERM, IMRBCreteilFrance
| | | | | | | | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163ParisFrance
- INSERM US24/CNRS UAR3633, Paris Cité UniversityParisFrance
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163ParisFrance
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163ParisFrance
| | | |
Collapse
|
3
|
Li X, Deng Z, Lu W. Mechanistic study of the effect of flexible fixation and load-bearing stress environment on fracture healing and shaping. Animal Model Exp Med 2024; 7:816-823. [PMID: 38978345 PMCID: PMC11680484 DOI: 10.1002/ame2.12448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/27/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND The biomechanical environment created by suture-button fixation Latarjet is conducive to the healing and shaping of the transplanted coracoid, but its mechanism remains unclear. The latest research has found that the absence of stem cell chemokine (CXCL12) impeded bone regeneration in Sonic Hedgehog (SHH)-deficient animals. However, whether the biomechanical environment affects SHH and CXCL12 function has not been studied. METHODS Rat fracture models were constructed to simulate stress environments under non-load-bearing and load-bearing conditions. The fracture healing and shaping, as well as the expression levels of SHH and CXCL12, were assessed through gross viewing, micro-computed tomography (micro-CT), and histochemical staining. RESULTS Under flexible fixation, the relative bone volume (BV/TV) of rats exposed to the load-bearing stress environment was significantly higher than that of rats under a non-load-bearing stress environment (p ≤ 0.05). Adverse bone shaping was not observed in rats subjected to flexible fixation. The levels of SHH and CXCL12 in load-bearing rats exhibited significant elevation (p ≤ 0.05). Under a load-bearing stress environment, no significant difference was observed in the BV/TV between the flexible fixation group and the rigid fixation group (p ≥ 0.05), but there was excessive hyperplasia of the fracture callus in the rigid fixation group. The levels of SHH and CXCL12 in rats subjected to rigid fixation were significantly elevated (p ≤ 0.05). CONCLUSIONS Flexible fixation and load-bearing stress environment may contribute to bone healing and shaping by influencing the levels of SHH and CXCL12, suggested that this mechanism may be relevant to the healing and shaping of the transplanted coracoid after suture-button fixation Latarjet.
Collapse
Affiliation(s)
- Xingfu Li
- Department of Sports MedicineShenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University)ShenzhenGuangdongChina
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National‐Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical EngineeringShenzhen University Medical SchoolShenzhenGuangdongChina
| | - Zhenhan Deng
- Department of Sports MedicineShenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University)ShenzhenGuangdongChina
- Department of Orthopedics SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Wei Lu
- Department of Sports MedicineShenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University)ShenzhenGuangdongChina
| |
Collapse
|
4
|
Weng Y, Feng Y, Li Z, Xu S, Wu D, Huang J, Wang H, Wang Z. Zfp260 choreographs the early stage osteo-lineage commitment of skeletal stem cells. Nat Commun 2024; 15:10186. [PMID: 39582024 PMCID: PMC11586402 DOI: 10.1038/s41467-024-54640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 11/26/2024] Open
Abstract
The initial fine-tuning processes are crucial for successful bone regeneration, as they guide skeletal stem cells through progenitor differentiation toward osteo- or chondrogenic fate. While fate determination processes are well-documented, the mechanisms preceding progenitor commitment remain poorly understood. Here, we identified a transcription factor, Zfp260, as pivotal for stem cell maturation into progenitors and directing osteogenic differentiation. Zfp260 is markedly up-regulated as cells transition from stem to progenitor stages; its dysfunction causes lineage arrest at the progenitor stage, impairing bone repair. Zfp260 is required for maintaining chromatin accessibility and regulates Runx2 expression by forming super-enhancer complexes. Furthermore, the PKCα kinase phosphorylates Zfp260 at residues Y173, S182, and S197, which are essential for its functional activity. Mutations at these residues significantly impair its functionality. These findings position Zfp260 as a vital factor bridging stem cell activation with progenitor cell fate determination, unveiling a element fundamental to successful bone regeneration.
Collapse
Affiliation(s)
- Yuteng Weng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Yanhuizhi Feng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zeyuan Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Shuyu Xu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Di Wu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Jie Huang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Haicheng Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology, Shanghai, 200072, China.
- Department of Oral and Maxillofacial Surgery, Department of Oral Implantology, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
5
|
Neag G, Lewis J, Turner JD, Manning JE, Dean I, Finlay M, Poologasundarampillai G, Woods J, Sahu MA, Khan KA, Begum J, McGettrick HM, Bellantuono I, Heath V, Jones SW, Buckley CD, Bicknell R, Naylor AJ. Type-H endothelial cell protein Clec14a orchestrates osteoblast activity during trabecular bone formation and patterning. Commun Biol 2024; 7:1296. [PMID: 39394430 PMCID: PMC11470016 DOI: 10.1038/s42003-024-06971-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 09/26/2024] [Indexed: 10/13/2024] Open
Abstract
Type-H capillary endothelial cells control bone formation during embryogenesis and postnatal growth but few signalling mechanisms underpinning this influence have been characterised. Here, we identify a highly expressed type-H endothelial cell protein, Clec14a, and explore its role in coordinating osteoblast activity. Expression of Clec14a and its ligand, Mmrn2 are high in murine type-H endothelial cells but absent from osteoblasts. Clec14a-/- mice have premature condensation of the type-H vasculature and expanded distribution of osteoblasts and bone matrix, increased long-bone length and bone density indicative of accelerated skeletal development, and enhanced osteoblast maturation. Antibody-mediated blockade of the Clec14a-Mmrn2 interaction recapitulates the Clec14a-/- phenotype. Endothelial cell expression of Clec14a regulates osteoblast maturation and mineralisation activity during postnatal bone development in mice. This finding underscores the importance of type-H capillary control of osteoblast activity in bone formation and identifies a novel mechanism that mediates this vital cellular crosstalk.
Collapse
Affiliation(s)
- Georgiana Neag
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Jonathan Lewis
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Jason D Turner
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Julia E Manning
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Isaac Dean
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Melissa Finlay
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | | | - Jonathan Woods
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Muhammad Arham Sahu
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Kabir A Khan
- School of Medical Sciences, University of Birmingham, Birmingham, UK
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Jenefa Begum
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Helen M McGettrick
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Ilaria Bellantuono
- Healthy Lifespan Institute, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Victoria Heath
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Simon W Jones
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
| | - Christopher D Buckley
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Roy Bicknell
- School of Medical Sciences, University of Birmingham, Birmingham, UK
| | - Amy J Naylor
- Rheumatology Research Group, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.
| |
Collapse
|
6
|
Batoon L, Hawse JR, McCauley LK, Weivoda MM, Roca H. Efferocytosis and Bone Dynamics. Curr Osteoporos Rep 2024; 22:471-482. [PMID: 38914730 DOI: 10.1007/s11914-024-00878-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 06/26/2024]
Abstract
PURPOSE OF REVIEW This review summarizes the recently published scientific evidence regarding the role of efferocytosis in bone dynamics and skeletal health. RECENT FINDINGS Several types of efferocytes have been identified within the skeleton, with macrophages being the most extensively studied. Efferocytosis is not merely a 'clean-up' process vital for maintaining skeletal homeostasis; it also plays a crucial role in promoting resolution pathways and orchestrating bone dynamics, such as osteoblast-osteoclast coupling during bone remodeling. Impaired efferocytosis has been associated with aging-related bone loss and various skeletal pathologies, including osteoporosis, osteoarthritis, rheumatoid arthritis, and metastatic bone diseases. Accordingly, emerging evidence suggests that targeting efferocytic mechanisms has the potential to alleviate these conditions. While efferocytosis remains underexplored in the skeleton, recent discoveries have shed light on its pivotal role in bone dynamics, with important implications for skeletal health and pathology. However, there are several knowledge gaps and persisting technical limitations that must be addressed to fully unveil the contributions of efferocytosis in bone.
Collapse
Affiliation(s)
- Lena Batoon
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA.
| | - John R Hawse
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Laurie K McCauley
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA
- Department of Pathology, Medical School, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Megan M Weivoda
- Division of Hematology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hernan Roca
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, 48109-1078, USA.
| |
Collapse
|
7
|
Benoit RY, Zagrodnik JL, Carew SJ, Moore CS. Bruton Tyrosine Kinase Inhibition Decreases Inflammation and Differentially Impacts Phagocytosis and Cellular Metabolism in Mouse- and Human-derived Myeloid Cells. Immunohorizons 2024; 8:652-667. [PMID: 39259208 PMCID: PMC11447691 DOI: 10.4049/immunohorizons.2400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Bruton tyrosine kinase (BTK) is a kinase expressed by various immune cells and is often activated under proinflammatory states. Although the majority of BTK-related research has historically focused on B cells, understanding the role of BTK in non-B cell populations is critical given myeloid cells also express BTK at comparable levels. In this study, we investigated and compared how BTK inhibition in human and murine myeloid cells alters cell phenotype and function. All experiments were performed using two BTK inhibitors (evobrutinib and tolebrutinib) that are currently in late-stage clinical trials for the treatment of multiple sclerosis. Assays were performed to assess the impact of BTK inhibition on cytokine and microRNA expression, phagocytic capacity, and cellular metabolism. In all cells, both evobrutinib and tolebrutinib significantly decreased phosphorylated BTK and LPS-induced cytokine release. BTK inhibition also significantly decreased the oxygen consumption rate and extracellular acidification rate in myeloid cells, and significantly decreased phagocytosis in murine-derived cells, but not human macrophages. To further elucidate the mechanism, we also investigated the expression of microRNAs known to impact the function of myeloid cells. BTK inhibition resulted in an altered microRNA expression profile (i.e., decreased miR-155-5p and increased miR-223-3p), which is consistent with a decreased proinflammatory myeloid cell phenotype. In summary, these results provide further insights into the mechanism of action of BTK inhibitors in the context of immune-related diseases, while also highlighting important species-specific and cell-specific differences that should be considered when interpreting and comparing results between preclinical and human studies.
Collapse
Affiliation(s)
- Rochelle Y. Benoit
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Jennifer L. Zagrodnik
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Samantha J. Carew
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| | - Craig S. Moore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada
| |
Collapse
|
8
|
Sivaraj KK, Majev PG, Dharmalingam B, Schröder S, Banjanin B, Stehling M, Zeuschner D, Nordheim A, Schneider RK, Adams RH. Endothelial LATS2 is a suppressor of bone marrow fibrosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:951-969. [PMID: 39155965 PMCID: PMC11324521 DOI: 10.1038/s44161-024-00508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/13/2024] [Indexed: 08/20/2024]
Abstract
Myelofibrosis and osteosclerosis are fibrotic diseases disrupting bone marrow function that occur in various leukemias but also in response to non-malignant alterations in hematopoietic cells. Here we show that endothelial cell-specific inactivation of the Lats2 gene, encoding Hippo kinase large tumor suppressor kinase 2, or overexpression of the downstream effector YAP1 induce myofibroblast formation and lead to extensive fibrosis and osteosclerosis, which impair bone marrow function and cause extramedullary hematopoiesis in the spleen. Mechanistically, loss of LATS2 induces endothelial-to-mesenchymal transition, resulting in increased expression of extracellular matrix and secreted signaling molecules. Changes in endothelial cells involve increased expression of serum response factor target genes, and, strikingly, major aspects of the LATS2 mutant phenotype are rescued by inactivation of the Srf gene. These findings identify the endothelium as a driver of bone marrow fibrosis, which improves understanding of myelofibrotic and osteosclerotic diseases, for which drug therapies are currently lacking.
Collapse
Affiliation(s)
- Kishor K. Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Paul-Georg Majev
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Silke Schröder
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Bella Banjanin
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martin Stehling
- Flow Cytometry Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Dagmar Zeuschner
- Electron Microscopy Unit, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- Institute for Cell and Tumor Biology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
9
|
Perrin S, Ethel M, Bretegnier V, Goachet C, Wotawa CA, Luka M, Coulpier F, Masson C, Ménager M, Colnot C. Single nuclei transcriptomics reveal the differentiation trajectories of periosteal skeletal/stem progenitor cells in bone regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.23.546220. [PMID: 39211065 PMCID: PMC11361009 DOI: 10.1101/2023.06.23.546220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bone regeneration is mediated by skeletal stem/progenitor cells (SSPCs) that are mainly recruited from the periosteum after bone injury. The composition of the periosteum and the steps of SSPC activation and differentiation remain poorly understood. Here, we generated a single-nuclei atlas of the periosteum at steady-state and of the fracture site during early stages of bone repair ( https://fracture-repair-atlas.cells.ucsc.edu ). We identified periosteal SSPCs expressing stemness markers ( Pi16 and Ly6a /SCA1) and responding to fracture by adopting an injury-induced fibrogenic cell (IIFC) fate, prior to undergoing osteogenesis or chondrogenesis. We identified distinct gene cores associated with IIFCs and their engagement into osteogenesis and chondrogenesis involving Notch, Wnt and the circadian clock signaling respectively. Finally, we show that IIFCs are the main source of paracrine signals in the fracture environment, suggesting a crucial paracrine role of this transient IIFC population during fracture healing. Overall, our study provides a complete temporal topography of the early stages of fracture healing and the dynamic response of periosteal SSPCs to injury, redefining our knowledge of bone regeneration.
Collapse
|
10
|
Trompet D, Melis S, Chagin AS, Maes C. Skeletal stem and progenitor cells in bone development and repair. J Bone Miner Res 2024; 39:633-654. [PMID: 38696703 DOI: 10.1093/jbmr/zjae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/04/2024]
Abstract
Bone development, growth, and repair are complex processes involving various cell types and interactions, with central roles played by skeletal stem and progenitor cells. Recent research brought new insights into the skeletal precursor populations that mediate intramembranous and endochondral bone development. Later in life, many of the cellular and molecular mechanisms determining development are reactivated upon fracture, with powerful trauma-induced signaling cues triggering a variety of postnatal skeletal stem/progenitor cells (SSPCs) residing near the bone defect. Interestingly, in this injury context, the current evidence suggests that the fates of both SSPCs and differentiated skeletal cells can be considerably flexible and dynamic, and that multiple cell sources can be activated to operate as functional progenitors generating chondrocytes and/or osteoblasts. The combined implementation of in vivo lineage tracing, cell surface marker-based cell selection, single-cell molecular analyses, and high-resolution in situ imaging has strongly improved our insights into the diversity and roles of developmental and reparative stem/progenitor subsets, while also unveiling the complexity of their dynamics, hierarchies, and relationships. Albeit incompletely understood at present, findings supporting lineage flexibility and possibly plasticity among sources of osteogenic cells challenge the classical dogma of a single primitive, self-renewing, multipotent stem cell driving bone tissue formation and regeneration from the apex of a hierarchical and strictly unidirectional differentiation tree. We here review the state of the field and the newest discoveries in the origin, identity, and fates of skeletal progenitor cells during bone development and growth, discuss the contributions of adult SSPC populations to fracture repair, and reflect on the dynamism and relationships among skeletal precursors and differentiated cell lineages. Further research directed at unraveling the heterogeneity and capacities of SSPCs, as well as the regulatory cues determining their fate and functioning, will offer vital new options for clinical translation toward compromised fracture healing and bone regenerative medicine.
Collapse
Affiliation(s)
- Dana Trompet
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Seppe Melis
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| | - Andrei S Chagin
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, 40530 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17177 Stockholm, Sweden
| | - Christa Maes
- Laboratory of Skeletal Cell Biology and Physiology (SCEBP), Skeletal Biology and Engineering Research Center (SBE), Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
11
|
Zhang XF, Wang ZX, Zhang BW, Huang KP, Ren TX, Wang T, Cheng X, Hu P, Xu WH, Li J, Zhang JX, Wang H. TGF-β1-triggered BMI1 and SMAD2 cooperatively regulate miR-191 to modulate bone formation. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102164. [PMID: 38549914 PMCID: PMC10973191 DOI: 10.1016/j.omtn.2024.102164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Transforming growth factor β 1 (TGF-β1), as the most abundant signaling molecule in bone matrix, is essential for bone homeostasis. However, the signaling transduction of TGF-β1 in the bone-forming microenvironment remains unknown. Here, we showed that microRNA-191 (miR-191) was downregulated during osteogenesis and further decreased by osteo-favoring TGF-β1 in bone marrow mesenchymal stem cells (BMSCs). MiR-191 was lower in bone tissues from children than in those from middle-aged individuals and it was negatively correlated with collagen type I alpha 1 chain (COL1A1). MiR-191 depletion significantly increased osteogenesis and bone formation in vivo. Hydrogels embedded with miR-191-low BMSCs displayed a powerful bone repair effect. Mechanistically, transcription factors BMI1 and SMAD2 coordinately controlled miR-191 level. In detail, BMI1 and pSMAD2 were both upregulated by TGF-β1 under osteogenic condition. SMAD2 activated miR-191 transcription, while BMI1 competed with SMAD2 for binding to miR-191 promoter region, thus disturbing the activation of SMAD2 on miR-191 and reducing miR-191 level. Altogether, our findings reveal that miR-191 regulated by TGF-β1-induced BMI1 and SMAD2 negatively modulated bone formation and regeneration, and inhibition of miR-191 might be therapeutically useful to enhance bone repair in clinic.
Collapse
Affiliation(s)
- Xiao-Fei Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Zi-Xuan Wang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Bo-Wen Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Kun-Peng Huang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Tian-Xing Ren
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ting Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xing Cheng
- Health Care Management Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Ping Hu
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Wei-Hua Xu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin Li
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Jin-Xiang Zhang
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430000, China
| | - Hui Wang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| |
Collapse
|
12
|
Bixel MG, Sivaraj KK, Timmen M, Mohanakrishnan V, Aravamudhan A, Adams S, Koh BI, Jeong HW, Kruse K, Stange R, Adams RH. Angiogenesis is uncoupled from osteogenesis during calvarial bone regeneration. Nat Commun 2024; 15:4575. [PMID: 38834586 PMCID: PMC11150404 DOI: 10.1038/s41467-024-48579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 05/06/2024] [Indexed: 06/06/2024] Open
Abstract
Bone regeneration requires a well-orchestrated cellular and molecular response including robust vascularization and recruitment of mesenchymal and osteogenic cells. In femoral fractures, angiogenesis and osteogenesis are closely coupled during the complex healing process. Here, we show with advanced longitudinal intravital multiphoton microscopy that early vascular sprouting is not directly coupled to osteoprogenitor invasion during calvarial bone regeneration. Early osteoprogenitors emerging from the periosteum give rise to bone-forming osteoblasts at the injured calvarial bone edge. Microvessels growing inside the lesions are not associated with osteoprogenitors. Subsequently, osteogenic cells collectively invade the vascularized and perfused lesion as a multicellular layer, thereby advancing regenerative ossification. Vascular sprouting and remodeling result in dynamic blood flow alterations to accommodate the growing bone. Single cell profiling of injured calvarial bones demonstrates mesenchymal stromal cell heterogeneity comparable to femoral fractures with increase in cell types promoting bone regeneration. Expression of angiogenesis and hypoxia-related genes are slightly elevated reflecting ossification of a vascularized lesion site. Endothelial Notch and VEGF signaling alter vascular growth in calvarial bone repair without affecting the ossification progress. Our findings may have clinical implications for bone regeneration and bioengineering approaches.
Collapse
Affiliation(s)
- M Gabriele Bixel
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| | - Kishor K Sivaraj
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Melanie Timmen
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Vishal Mohanakrishnan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Anusha Aravamudhan
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Susanne Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Bong-Ihn Koh
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
| | - Hyun-Woo Jeong
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Sequencing Core Facility, D-48149, Münster, Germany
| | - Kai Kruse
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany
- Max Planck Institute for Molecular Biomedicine, Bioinformatics Service Unit, D-48149, Münster, Germany
| | - Richard Stange
- Department of Regenerative Musculoskeletal Medicine, Institute of Musculoskeletal Medicine, University Hospital Münster, D-48149, Münster, Germany
| | - Ralf H Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine and University of Münster, Faculty of Medicine, D-48149, Münster, Germany.
| |
Collapse
|
13
|
Capobianco CA, Hankenson KD, Knights AJ. Temporal dynamics of immune-stromal cell interactions in fracture healing. Front Immunol 2024; 15:1352819. [PMID: 38455063 PMCID: PMC10917940 DOI: 10.3389/fimmu.2024.1352819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Bone fracture repair is a complex, multi-step process that involves communication between immune and stromal cells to coordinate the repair and regeneration of damaged tissue. In the US, 10% of all bone fractures do not heal properly without intervention, resulting in non-union. Complications from non-union fractures are physically and financially debilitating. We now appreciate the important role that immune cells play in tissue repair, and the necessity of the inflammatory response in initiating healing after skeletal trauma. The temporal dynamics of immune and stromal cell populations have been well characterized across the stages of fracture healing. Recent studies have begun to untangle the intricate mechanisms driving the immune response during normal or atypical, delayed healing. Various in vivo models of fracture healing, including genetic knockouts, as well as in vitro models of the fracture callus, have been implemented to enable experimental manipulation of the heterogeneous cellular environment. The goals of this review are to (1): summarize our current understanding of immune cell involvement in fracture healing (2); describe state-of-the art approaches to study inflammatory cells in fracture healing, including computational and in vitro models; and (3) identify gaps in our knowledge concerning immune-stromal crosstalk during bone healing.
Collapse
Affiliation(s)
- Christina A. Capobianco
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kurt D. Hankenson
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Alexander J. Knights
- Department of Orthopaedic Surgery, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell 2024; 59:211-227.e5. [PMID: 38141609 PMCID: PMC10843704 DOI: 10.1016/j.devcel.2023.11.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, UK
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Thomas Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Gong JS, Zhu GQ, Zhang Y, Chen B, Liu YW, Li HM, He ZH, Zou JT, Qian YX, Zhu S, Hu XY, Rao SS, Cao J, Xie H, Wang ZX, Du W. Aptamer-functionalized hydrogels promote bone healing by selectively recruiting endogenous bone marrow mesenchymal stem cells. Mater Today Bio 2023; 23:100854. [PMID: 38024846 PMCID: PMC10665677 DOI: 10.1016/j.mtbio.2023.100854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/22/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Bone regeneration heavily relies on bone marrow mesenchymal stem cells (BMSCs). However, recruiting endogenous BMSCs for in situ bone regeneration remains challenging. In this study, we developed a novel BMSC-aptamer (BMSC-apt) functionalized hydrogel (BMSC-aptgel) and evaluated its functions in recruiting BMSCs and promoting bone regeneration. The functional hydrogels were synthesized between maleimide-terminated 4-arm polyethylene glycols (PEG) and thiol-flanked PEG crosslinker, allowing rapid in situ gel formation. The aldehyde group-modified BMSC-apt was covalently bonded to a thiol-flanked PEG crosslinker to produce high-density aptamer coverage on the hydrogel surface. In vitro and in vivo studies demonstrated that the BMSC-aptgel significantly increased BMSC recruitment, migration, osteogenic differentiation, and biocompatibility. In vivo fluorescence tomography imaging demonstrated that functionalized hydrogels effectively recruited DiR-labeled BMSCs at the fracture site. Consequently, a mouse femur fracture model significantly enhanced new bone formation and mineralization. The aggregated BMSCs stimulated bone regeneration by balancing osteogenic and osteoclastic activities and reduced the local inflammatory response via paracrine effects. This study's findings suggest that the BMSC-aptgel can be a promising and effective strategy for promoting in situ bone regeneration.
Collapse
Affiliation(s)
- Jiang-Shan Gong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Guo-Qiang Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yu Zhang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Bei Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yi-Wei Liu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Hong-Ming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Ze-Hui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Jing-Tao Zou
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Yu-Xuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Sheng Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Xin-Yue Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
| | - Shan-Shan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Jia Cao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Zhen-Xing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Changsha, Hunan, 410008, China
- Department of Rehabilitation Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
16
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. Stem Cell Res Ther 2023; 14:319. [PMID: 37936199 PMCID: PMC10631132 DOI: 10.1186/s13287-023-03547-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/25/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferable regarding the differentiation of osteoclasts. METHODS In this study, we compared the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. The results were validated using qRT-PCR throughout the differentiation stages. RESULTS Embryoid body-based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. CONCLUSIONS The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
- Alexander Blümke
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Orthopedics and Trauma Surgery, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Erica Ijeoma
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Jessica Simon
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Rachel Wellington
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, School of Medicine, University of Washington, Seattle, WA, USA
- Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Medania Purwaningrum
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
- Department of Biochemistry, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Sergei Doulatov
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Elizabeth Leber
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Marta Scatena
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA
| | - Cecilia M Giachelli
- Department of Bioengineering, Department of Medicine, University of Washington, Foege Hall University of Washington, 3720 15th, Ave NE, Box 355061, Seattle, WA, 98195, USA.
| |
Collapse
|
17
|
Daamouch S, Thiele S, Hofbauer L, Rauner M. Effects of adipocyte-specific Dkk1 deletion on bone homeostasis and obesity-induced bone loss in male mice. Endocr Connect 2023; 12:e230251. [PMID: 37615386 PMCID: PMC10563648 DOI: 10.1530/ec-23-0251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
The link between obesity and low bone strength has become a significant medical concern. The canonical Wnt signaling pathway is a key regulator of mesenchymal stem cell differentiation into either osteoblasts or adipocytes with active Wnt signaling promoting osteoblastogenesis. Our previous research indicated that Dickkopf-1 (Dkk1), a Wnt inhibitor, is upregulated in bone tissue in obesity and that osteoblast-derived Dkk1 drives obesity-induced bone loss. However, Dkk1 is also produced by adipocytes, but the impact of adipogenic Dkk1 on bone remodeling and its role in obesity-induced bone loss remain unclear. Thus, in this study, we investigated the influence of adipogenic Dkk1 on bone homeostasis and obesity-induced bone loss in mice. To that end, deletion of Dkk1 in adipocytes was induced by tamoxifen administration into 8-week-old male Dkk1fl/fl;AdipoQcreERT2 mice. Bone and fat mass were analyzed at 12 and 20 weeks of age. Obesity was induced in 8-week-old male Dkk1fl/fl;AdipoQcre mice with a high-fat diet (HFD) rich in saturated fats for 12 weeks. We observed that 12-week-old male mice without adipogenic Dkk1 had a significant increase in trabecular bone volume in the vertebrae and femoral bones. While histological and serological bone formation markers were not different, the number of osteoclasts and adipocytes was decreased in the vertebral bones of Dkk1fl/fl;AdipoQcre-positive mice. Despite the increased bone mass in 12-week-old male mice, at 20 weeks of age, there was no difference in the bone volume between the controls and Dkk1fl/fl;AdipoQcre-positive mice. Also, Dkk1fl/fl;AdipoQcre-positive mice were not protected from HFD-induced bone loss. Even though mRNA expression levels of Sost, another important Wnt inhibitor, in bone from Dkk1-deficient mice fed with HFD were decreased compared to Dkk1-sufficient mice on an HFD, this did not prevent the HFD-induced suppression of bone formation. In conclusion, adipogenic Dkk1 may play a transient role in bone mass regulation during adolescence, but it does not contribute to bone homeostasis or obesity-induced bone loss later in life.
Collapse
Affiliation(s)
- Souad Daamouch
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Sylvia Thiele
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Lorenz Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Allen-Gondringer A, Gau D, Varghese C, Boone D, Stolz D, Larregina A, Roy P. Vascular endothelial cell-specific disruption of the profilin1 gene leads to severe multiorgan pathology and inflammation causing mortality. PNAS NEXUS 2023; 2:pgad305. [PMID: 37781098 PMCID: PMC10541205 DOI: 10.1093/pnasnexus/pgad305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Actin-binding protein Profilin1 is an important regulator of actin cytoskeletal dynamics in cells and critical for embryonic development in higher eukaryotes. The objective of the present study was to examine the consequence of loss-of-function of Pfn1 in vascular endothelial cells (ECs) in vivo. We utilized a mouse model engineered for tamoxifen-inducible biallelic inactivation of the Pfn1 gene selectively in EC (Pfn1EC-KO). Widespread deletion of EC Pfn1 in adult mice leads to severe health complications presenting overt pathologies (endothelial cell death, infarct, and fibrosis) in major organ systems and evidence for inflammatory infiltrates, ultimately compromising the survival of animals within 3 weeks of gene ablation. Mice deficient in endothelial Pfn1 exhibit selective bias toward the proinflammatory myeloid-derived population of immune cells, a finding further supported by systemic elevation of proinflammatory cytokines. We further show that triggering Pfn1 depletion not only directly upregulates proinflammatory cytokine/chemokine gene expression in EC but also potentiates the paracrine effect of EC on proinflammatory gene expression in macrophages. Consistent with these findings, we provide further evidence for increased activation of Interferon Regulatory Factor 7 (IRF7) and STAT1 in EC when depleted of Pfn1. Collectively, these findings for the first time demonstrate a prominent immunological consequence of loss of endothelial Pfn1 and an indispensable role of endothelial Pfn1 in mammalian survival unlike tolerable phenotypes of Pfn1 loss in other differentiated cell types.
Collapse
Affiliation(s)
| | - David Gau
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | | | - David Boone
- Biomedical Informatics, University of Pittsburgh, Pittsburgh, PA 15206, USA
| | - Donna Stolz
- Cell Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adriana Larregina
- Dermatology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Partha Roy
- Bioengineering, University of Pittsburgh, Pittsburgh, PA 15219, USA
- Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
19
|
Hao RC, Li ZL, Wang FY, Tang J, Li PL, Yin BF, Li XT, Han MY, Mao N, Liu B, Ding L, Zhu H. Single-cell transcriptomic analysis identifies a highly replicating Cd168 + skeletal stem/progenitor cell population in mouse long bones. J Genet Genomics 2023; 50:702-712. [PMID: 37075860 DOI: 10.1016/j.jgg.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/08/2023] [Accepted: 04/09/2023] [Indexed: 04/21/2023]
Abstract
Skeletal stem/progenitor cells (SSPCs) are tissue-specific stem/progenitor cells localized within skeletons and contribute to bone development, homeostasis, and regeneration. However, the heterogeneity of SSPC populations in mouse long bones and their respective regenerative capacity remain to be further clarified. In this study, we perform integrated analysis using single-cell RNA sequencing (scRNA-seq) datasets of mouse hindlimb buds, postnatal long bones, and fractured long bones. Our analyses reveal the heterogeneity of osteochondrogenic lineage cells and recapitulate the developmental trajectories during mouse long bone growth. In addition, we identify a novel Cd168+ SSPC population with highly replicating capacity and osteochondrogenic potential in embryonic and postnatal long bones. Moreover, the Cd168+ SSPCs can contribute to newly formed skeletal tissues during fracture healing. Furthermore, the results of multicolor immunofluorescence show that Cd168+ SSPCs reside in the superficial zone of articular cartilage as well as in growth plates of postnatal mouse long bones. In summary, we identify a novel Cd168+ SSPC population with regenerative potential in mouse long bones, which adds to the knowledge of the tissue-specific stem cells in skeletons.
Collapse
Affiliation(s)
- Rui-Cong Hao
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Zhi-Ling Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Fei-Yan Wang
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jie Tang
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pei-Lin Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Bo-Feng Yin
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiao-Tong Li
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Meng-Yue Han
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Ning Mao
- Beijing Institute of Basic Medical Sciences, Beijing 100850, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Li Ding
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Air Force Medical Center, PLA, Beijing 100142, China.
| | - Heng Zhu
- Basic Medical College of Anhui Medical University, Hefei, Anhui 230032, China; Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
20
|
Vonk AC, Zhao X, Pan Z, Hudnall ML, Oakes CG, Lopez GA, Hasel-Kolossa SC, Kuncz AWC, Sengelmann SB, Gamble DJ, Lozito TP. Single-cell analysis of lizard blastema fibroblasts reveals phagocyte-dependent activation of Hedgehog-responsive chondrogenesis. Nat Commun 2023; 14:4489. [PMID: 37563130 PMCID: PMC10415409 DOI: 10.1038/s41467-023-40206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Lizards cannot naturally regenerate limbs but are the closest known relatives of mammals capable of epimorphic tail regrowth. However, the mechanisms regulating lizard blastema formation and chondrogenesis remain unclear. Here, single-cell RNA sequencing analysis of regenerating lizard tails identifies fibroblast and phagocyte populations linked to cartilage formation. Pseudotime trajectory analyses suggest spp1+-activated fibroblasts as blastema cell sources, with subsets exhibiting sulf1 expression and chondrogenic potential. Tail blastema, but not limb, fibroblasts express sulf1 and form cartilage under Hedgehog signaling regulation. Depletion of phagocytes inhibits blastema formation, but treatment with pericytic phagocyte-conditioned media rescues blastema chondrogenesis and cartilage formation in amputated limbs. The results indicate a hierarchy of phagocyte-induced fibroblast gene activations during lizard blastema formation, culminating in sulf1+ pro-chondrogenic populations singularly responsive to Hedgehog signaling. These properties distinguish lizard blastema cells from homeostatic and injury-stimulated fibroblasts and indicate potential actionable targets for inducing regeneration in other species, including humans.
Collapse
Affiliation(s)
- Ariel C Vonk
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Xiaofan Zhao
- Molecular Genomics Core, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Ave, Los Angeles, CA, 90033, USA
| | - Zheyu Pan
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Megan L Hudnall
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Conrad G Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Gabriela A Lopez
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
| | - Sarah C Hasel-Kolossa
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
| | - Alexander W C Kuncz
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Sasha B Sengelmann
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Darian J Gamble
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA
| | - Thomas P Lozito
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, 1425 San Pablo St, Los Angeles, CA, 90033, USA.
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, 1540 Alcazar St, Los Angeles, CA, 90033, USA.
| |
Collapse
|
21
|
Gau D, Daoud A, Allen A, Joy M, Sagan A, Lee S, Lucas PC, Duensing S, Boone D, Osmanbeyoglu HU, Roy P. Vascular endothelial profilin-1 drives a protumorigenic tumor microenvironment and tumor progression in renal cancer. J Biol Chem 2023; 299:105044. [PMID: 37451478 PMCID: PMC10432806 DOI: 10.1016/j.jbc.2023.105044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/06/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023] Open
Abstract
Overexpression of actin-binding protein profilin-1 (Pfn1) correlates with advanced disease features and adverse clinical outcome of patients with clear cell renal carcinoma, the most prevalent form of renal cancer. We previously reported that Pfn1 is predominantly overexpressed in tumor-associated vascular endothelial cells in human clear cell renal carcinoma. In this study, we combined in vivo strategies involving endothelial cell-specific depletion and overexpression of Pfn1 to demonstrate a role of vascular endothelial Pfn1 in promoting tumorigenicity and enabling progressive growth and metastasis of renal carcinoma cells in a syngeneic orthotopic mouse model of kidney cancer. We established an important role of endothelial Pfn1 in tumor angiogenesis and further identified endothelial Pfn1-dependent regulation of several pro- (VEGF, SERPINE1, CCL2) and anti-angiogenic factors (platelet factor 4) in vivo. Endothelial Pfn1 overexpression increases tumor infiltration by macrophages and concomitantly diminishes tumor infiltration by T cells including CD8+ T cells in vivo, correlating with the pattern of endothelial Pfn1-dependent changes in tumor abundance of several prominent immunomodulatory cytokines. These data were also corroborated by multiplexed quantitative immunohistochemistry and immune deconvolution analyses of RNA-seq data of clinical samples. Guided by Upstream Regulator Analysis of tumor transcriptome data, we further established endothelial Pfn1-induced Hif1α elevation and suppression of STAT1 activation. In conclusion, this study demonstrates for the first time a direct causal relationship between vascular endothelial Pfn1 dysregulation, immunosuppressive tumor microenvironment, and disease progression with mechanistic insights in kidney cancer. Our study also provides a conceptual basis for targeting Pfn1 for therapeutic benefit in kidney cancer.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrew Daoud
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Abigail Allen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marion Joy
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - April Sagan
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sanghoon Lee
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Peter C Lucas
- UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Stefan Duensing
- Department of Urology, University of Heidelberg School of Medicine, Heidelberg, Germany
| | - David Boone
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Hatice U Osmanbeyoglu
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
22
|
Blümke A, Ijeoma E, Simon J, Wellington R, Purwaningrum M, Doulatov S, Leber E, Scatena M, Giachelli CM. Comparison of osteoclast differentiation protocols from human induced pluripotent stem cells of different tissue origins. RESEARCH SQUARE 2023:rs.3.rs-3089289. [PMID: 37461708 PMCID: PMC10350192 DOI: 10.21203/rs.3.rs-3089289/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Background Ever since their discovery, induced pluripotent stem cells (iPSCs) have been extensively differentiated into a large variety of cell types. However, a limited amount of work has been dedicated to differentiating iPSCs into osteoclasts. While several differentiation protocols have been published, it remains unclear which protocols or differentiation methods are preferrable regarding the differentiation of osteoclasts. Methods In this study we compare the osteoclastogenesis capacity of a peripheral blood mononuclear cell (PBMC)-derived iPSC line to a fibroblast-derived iPSC line in conjunction with either embryoid body-based or monolayer-based differentiation strategies. Both cell lines and differentiation protocols were investigated regarding their ability to generate osteoclasts and their inherent robustness and ease of use. The ability of both cell lines to remain undifferentiated while propagating using a feeder-free system was assessed using alkaline phosphatase staining. This was followed by evaluating mesodermal differentiation and the characterization of hematopoietic progenitor cells using flow cytometry. Finally, osteoclast yield and functionality based on resorptive activity, Cathepsin K and tartrate-resistant acid phosphatase (TRAP) expression were assessed. Results were validated using qRT-PCR throughout the differentiation stages. Results Embryoid-body based differentiation yielded CD45+, CD14+, CD11b+ subpopulations which in turn differentiated into osteoclasts which demonstrated TRAP positivity, Cathepsin K expression and mineral resorptive capabilities. This was regardless of which iPSC line was used. Monolayer-based differentiation yielded lower quantities of hematopoietic cells that were mostly CD34+ and did not subsequently differentiate into osteoclasts. Conclusions The outcome of this study demonstrates the successful differentiation of osteoclasts from iPSCs in conjunction with the embryoid-based differentiation method, while the monolayer-based method did not yield osteoclasts. No differences were observed regarding osteoclast differentiation between the PBMC and fibroblast-derived iPSC lines.
Collapse
Affiliation(s)
| | - Erica Ijeoma
- University of Washington Department of Bioengineering
| | - Jessica Simon
- University of Washington Department of Bioengineering
| | | | | | | | | | - Marta Scatena
- University of Washington Department of Bioengineering
| | | |
Collapse
|
23
|
Bando Y, Nagasaka A, Onozawa G, Sakiyama K, Owada Y, Amano O. Integrin expression and extracellular matrix adhesion of septoclasts, pericytes, and endothelial cells at the chondro-osseous junction and the metaphysis of the proximal tibia in young mice. J Anat 2023; 242:831-845. [PMID: 36602038 PMCID: PMC10093157 DOI: 10.1111/joa.13820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
We previously reported that septoclasts, which are uncalcified growth plate (GP) cartilage matrix-resorbing cells, are derived from pericytes surrounding capillary endothelial cells. Resorption of the GP is assumed to be regulated synchronously by septoclasts, pericytes, and endothelial cells. To reveal the contribution of the extracellular matrix (ECM) to the regulatory mechanisms of septoclastic cartilage resorption, we investigated the spatial correlation between the cells and the ECM in the GP matrix and basement membrane (BM) and investigated the expression of integrins-ECM receptors-in the cells. Septoclasts attached to the transverse septa containing collagen-II/-X at the tip of their processes and to the longitudinal septa containing collagen-II/-X at the spine-like processes extending from their bodies and processes. Collagen-IV and laminin α4 in the BM were sparsely detected between septoclasts and capillary endothelial cells at the chondro-osseous junction (COJ) and were absent in the outer surface of pericytes at the metaphysis. Integrin α1/α2, integrin α1, and integrin α2/α6 were detected in the cell membranes of septoclasts, pericytes, and endothelial cells, respectively. These results suggest that the adhesion between septoclasts and the cartilage ECM forming the scaffolds for cartilage resorption and migration is provided by integrin α2-collagen-II/-X interaction and that the adhesions between the BM and pericytes or endothelial cells are mediated by integrin α1-collagen-IV and integrin α2/α6-laminin interaction, respectively.
Collapse
Affiliation(s)
- Yasuhiko Bando
- Division of HistologyMeikai University School of DentistrySaitamaJapan
| | - Arata Nagasaka
- Division of HistologyMeikai University School of DentistrySaitamaJapan
| | - Go Onozawa
- Division of HistologyMeikai University School of DentistrySaitamaJapan
- Division of Oral and Maxillofacial SurgeryMeikai University School of DentistrySaitamaJapan
| | - Koji Sakiyama
- Division of AnatomyMeikai University School of DentistrySaitamaJapan
| | - Yuji Owada
- Department of Organ AnatomyTohoku University Graduate School of MedicineSendaiJapan
| | - Osamu Amano
- Division of HistologyMeikai University School of DentistrySaitamaJapan
| |
Collapse
|
24
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
25
|
Extracellular Vesicles from NMN Preconditioned Mesenchymal Stem Cells Ameliorated Myocardial Infarction via miR-210-3p Promoted Angiogenesis. Stem Cell Rev Rep 2023; 19:1051-1066. [PMID: 36696015 DOI: 10.1007/s12015-022-10499-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.
Collapse
|
26
|
Feng S, Li J, Tian J, Lu S, Zhao Y. Application of Single-Cell and Spatial Omics in Musculoskeletal Disorder Research. Int J Mol Sci 2023; 24:2271. [PMID: 36768592 PMCID: PMC9917071 DOI: 10.3390/ijms24032271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders, including fractures, scoliosis, heterotopic ossification, osteoporosis, osteoarthritis, disc degeneration, and muscular injury, etc., can occur at any stage of human life. Understanding the occurrence and development mechanism of musculoskeletal disorders, as well as the changes in tissues and cells during therapy, might help us find targeted treatment methods. Single-cell techniques provide excellent tools for studying alterations at the cellular level of disorders. However, the application of these techniques in research on musculoskeletal disorders is still limited. This review summarizes the current single-cell and spatial omics used in musculoskeletal disorders. Cell isolation, experimental methods, and feasible experimental designs for single-cell studies of musculoskeletal system diseases have been reviewed based on tissue characteristics. Then, the paper summarizes the latest findings of single-cell studies in musculoskeletal disorders from three aspects: bone and ossification, joint, and muscle and tendon disorders. Recent discoveries about the cell populations involved in these diseases are highlighted. Furthermore, the therapeutic responses of musculoskeletal disorders, especially single-cell changes after the treatments of implants, stem cell therapies, and drugs are described. Finally, the application potential and future development directions of single-cell and spatial omics in research on musculoskeletal diseases are discussed.
Collapse
Affiliation(s)
- Site Feng
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sheng Lu
- The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
27
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Kim JH(T, Szeto GL, Qin L, Gottardi RL, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulated bone development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524918. [PMID: 36711590 PMCID: PMC9882292 DOI: 10.1101/2023.01.20.524918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Endochondral ossification requires coordinated mobilization of osteoblast precursors with blood vessels. During adult bone homeostasis, vessel adjacent osteoblast precursors respond to and are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Previously, we found that deletion of the mechanoresponsive transcriptional regulators, YAP and TAZ, from Osterix-expressing osteoblast precursors and their progeny caused perinatal lethality. Here, we show that embryonic YAP/TAZ signaling couples vessel-associated osteoblast precursor mobilization to angiogenesis in developing long bones. Osterix-conditional YAP/TAZ deletion impaired endochondral ossification in the primary ossification center but not intramembranous osteogenesis in the bone collar. Single-cell RNA sequencing revealed YAP/TAZ regulation of the angiogenic chemokine, Cxcl12, which was expressed uniquely in vessel-associated osteoblast precursors. YAP/TAZ signaling spatially coupled osteoblast precursors to blood vessels and regulated vascular morphogenesis and vessel barrier function. Further, YAP/TAZ signaling regulated vascular loop morphogenesis at the chondro-osseous junction to control hypertrophic growth plate remodeling. In human cells, mesenchymal stromal cell co-culture promoted 3D vascular network formation, which was impaired by stromal cell YAP/TAZ depletion, but rescued by recombinant CXCL12 treatment. Lastly, YAP and TAZ mediated mechanotransduction for load-induced osteogenesis in embryonic bone.
Collapse
Affiliation(s)
- Joseph M. Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P. Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun (Thomas) Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo L. Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathanial A. Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C. Nowlan
- Department of Bioengineering, Imperial College London, London, United Kingdom
- School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland
- UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D. Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
28
|
Gugala Z. What's New in Musculoskeletal Basic Science. J Bone Joint Surg Am 2022; 104:2047-2052. [PMID: 36476737 DOI: 10.2106/jbjs.22.00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zbigniew Gugala
- Department of Orthopaedic Surgery and Rehabilitation, The University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
29
|
Wagener N, Lehmann W, Böker KO, Röhner E, Di Fazio P. Chondral/Desmal Osteogenesis in 3D Spheroids Sensitized by Psychostimulants. J Clin Med 2022; 11:6218. [PMID: 36294540 PMCID: PMC9605537 DOI: 10.3390/jcm11206218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) affects 6.4 million children in the United States of America. Children and adolescents, the main consumers of ADHD medication, are in the bone growth phase, which extends over a period of up to two decades. Thus, impaired proliferation and maturation of chondrocytes and osteoblasts can result in impaired bone formation. The aim of this study is to investigate, for the first time, the effects of the ADHD-medication modafinil, atomoxetine and guanfacine on bone growth and repair in vitro. Using two-dimensional and three-dimensional cell models, we investigated the chondrogenic/osteogenic differentiation, proliferation and viability of human mesenchymal progenitor cells. Real-time cell proliferation was measured by xCELLigence. Live/dead staining and size measurement of hMSC- and MG63 monolayer and spheroids were performed after administration of therapeutic plasma concentrations of modafinil, atomoxetine and guanfacine. Chondrogenic differentiation was quantified by RTqPCR. The chondrogenic and osteogenic differentiation was evaluated by histological cryo-sections. Modafinil, atomoxetine and guanfacine reduced chondrogenic and osteogenic differentiation terms of transcript expression and at the histological level. Cell viability of the MG63- and hMSC monolayer was not impeded by ADHD-medication. Our in vitro results indicate that modafinil, atomoxetine and guanfacine may impair chondrogenic and osteogenic differentiation in a 3D model reflecting the in vivo physiologic condition.
Collapse
Affiliation(s)
- Nele Wagener
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
- Center for Musculoskeletal Surgery, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Wolfgang Lehmann
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Kai O. Böker
- Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Goettingen, Robert-Koch-Str. 40, 37099 Göttingen, Germany
| | - Eric Röhner
- Orthopaedic Department, Heinrich-Braun-Hospital Zwickau, 08060 Zwickau, Germany
| | - Pietro Di Fazio
- Department of Visceral Thoracic and Vascular Surgery, Philipps University Marburg, Baldingerstraße, 35043 Marburg, Germany
| |
Collapse
|
30
|
Abstract
The tissue-resident skeletal stem cells (SSCs), which are self-renewal and multipotent, continuously provide cells (including chondrocytes, bone cells, marrow adipocytes, and stromal cells) for the development and homeostasis of the skeletal system. In recent decade, utilizing fluorescence-activated cell sorting, lineage tracing, and single-cell sequencing, studies have identified various types of SSCs, plotted the lineage commitment trajectory, and partially revealed their properties under physiological and pathological conditions. In this review, we retrospect to SSCs identification and functional studies. We discuss the principles and approaches to identify bona fide SSCs, highlighting pioneering findings that plot the lineage atlas of SSCs. The roles of SSCs and progenitors in long bone, craniofacial tissues, and periosteum are systematically discussed. We further focus on disputes and challenges in SSC research.
Collapse
|
31
|
Could BMPs Therapy Be Improved if BMPs Were Used in Composition Acting during Bone Formation in Endochondral Ossification? Int J Mol Sci 2022; 23:ijms231810327. [PMID: 36142232 PMCID: PMC9499665 DOI: 10.3390/ijms231810327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022] Open
Abstract
The discovery of bone morphogenetic proteins (BMPs) inspired hope for the successful treatment of bone disorders, but side effects worsening the clinical effects were eventually observed. BMPs exert a synergistic effect, stimulating osteogenesis; however, predicting the best composition of growth factors for use in humans is difficult. Chondrocytes present within the growth plate produce growth factors stored in calcified cartilage adhering to metaphysis. These factors stimulate initial bone formation in metaphysis. We have previously determined the growth factors present in bovine calcified cartilage and produced by rat epiphyseal chondrocytes. The results suggest that growth factors stimulating physiological ossification are species dependent. The collection of human calcified cartilage for growth factors determination does not appear feasible, but chondrocytes for mRNA determination could be obtained. Their collection from young recipients, in view of the Academy of Medical Royal Colleges Recommendation, would be ethical. The authors of this review do not have facilities to conduct such a study and can only appeal to competent institutions to undertake the task. The results could help to formulate a better recipe for the stimulation of bone formation and improve clinical results.
Collapse
|
32
|
Abstract
Osteoclasts, the only cells that can resorb bone, play a central role in bone homeostasis as well as bone damage under pathological conditions such as osteoporosis, arthritis, periodontitis, and bone metastasis. Recent studies using single-cell technologies have uncovered the regulatory mechanisms underlying osteoclastogenesis at unprecedented resolution and shed light on the possibility that there is heterogeneity in the origin, function, and fate of osteoclast-lineage cells. Here, we discuss the current advances and emerging concepts in osteoclast biology.
Collapse
|
33
|
Tosun B, Wolff LI, Houben A, Nutt S, Hartmann C. Osteoclasts and Macrophages-Their Role in Bone Marrow Cavity Formation During Mouse Embryonic Development. J Bone Miner Res 2022; 37:1761-1774. [PMID: 35689447 DOI: 10.1002/jbmr.4629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/19/2022] [Accepted: 06/04/2022] [Indexed: 11/09/2022]
Abstract
The formation of the bone marrow cavity is a prerequisite for endochondral ossification. In reviews and textbooks, it is occasionally reported that osteoclasts are essential for bone marrow cavity formation removing hypertrophic chondrocytes. Mice lacking osteoclasts or having functionally defective osteoclasts have osteopetrotic bones, yet they still form a bone marrow cavity. Here, we investigated the role of osteoclasts and macrophages in bone marrow cavity formation during embryogenesis. Macrophages can assist osteoclasts in matrix removal by phagocytosing resorption byproducts. Rank-deficient mice, lacking osteoclasts, and Pu.1-deficient mice, lacking monocytes, macrophages, and osteoclasts, displayed a delay in bone marrow cavity formation and a lengthening of the zone of hypertrophic chondrocytes. F4/80-positive monocyte/macrophage numbers increased by about fourfold in the bone marrow cavity of E18.5 Rank-deficient mice. Based on lineage-tracing experiments, the majority of the excess F4/80 cells were derived from definitive hematopoietic precursors of the fetal liver. In long bones of both Rank-/- and Pu.1-/- specimens, Mmp9-positive cells were still present. In addition to monocytes, macrophages, and osteoclasts, Ctsb-positive septoclasts were lost in Pu.1-/- specimens. The mineralization pattern was altered in Rank-/- and Pu.1-/- specimens, revealing a significant rise in transverse-oriented mineralized structures. Taken together, our findings imply that early on during bone marrow cavity formation, osteoclasts facilitate the entry of blood vessels and later the turnover of hypertrophic chondrocytes, whereas macrophages appear to play no major role. Furthermore, the absence of septoclasts in Pu.1-/- specimens suggests that septoclasts are either derived from Pu.1-dependent precursors or require PU.1 activity for their differentiation. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Benjamin Tosun
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Lena Ingeborg Wolff
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Astrid Houben
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| | - Stephen Nutt
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, The University of Melbourne, Parkville, Australia
| | - Christine Hartmann
- Institute of Musculoskeletal Medicine, Department of Bone and Skeletal Research, Medical Faculty of the Westphalian Wilhelms University, Münster, Germany
| |
Collapse
|