1
|
Sun J, Lian G, Chen Z, Zou Z, Wang L. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS NANO 2024; 18:34572-34595. [PMID: 39652059 DOI: 10.1021/acsnano.4c13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Photothermal catalysis is an emerging field with significant potential for sustainable chemical production processes. The merger of single-atom catalysts (SACs) and photothermal catalysis has garnered widespread attention for its ability to achieve precise bond activation and superior catalytic performance. This review provides a comprehensive overview of the recent progress of SACs in photothermal catalysis, focusing on their underlying mechanisms and applications. The dynamic structural evolution of SACs during photothermal processes is highlighted, and the current advancements and future perspectives in the design, screening, and scaling up of SACs for photothermal processes are discussed. This review aims to provide insights into their continued development in this rapidly evolving field.
Collapse
Affiliation(s)
- Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
2
|
Xie Z, Zhuang J, Chen H, Shao L, Chen Z, Jiang Y, Bi S, Wei X, Chen A, Wang SB, Jiang N. Janus Photothermal Films with Orientated Plasmonic Particle-in-Cavity Surfaces Enabling Heat Control in Solar-Thermal-Electric Generators. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68006-68015. [PMID: 39580809 DOI: 10.1021/acsami.4c17131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Solar thermoelectric generators (STEGs) consisting of solar absorbers and thermoelectric generators (TEGs) can utilize solar energy to generate electrical power. However, performances of STEGs are limited by the heat losses of solar absorbers in air, which become more and more significant with an increase in the solar absorbing area. Herein, we describe the preparation of Au@AgPd nanostructure monolayer/poly(vinyl alcohol) (PVA) Janus photothermal films with broadband plasmonic absorption in the visible and near-infrared regions. By uniaxially stretching the Janus film, Au@AgPd can align along the stretching direction, which creates particle-in-cavity structures on the PVA surface. Benefiting from the oriented plasmonic particle-in-cavity configuration, the Janus films effectively convert sunlight into heat, trap the heat within their micrometer-depth structure, and facilitate its transfer along the direction of the nanostructure orientation. Integration of the Janus films with commercial TEGs allows thermal concentration onto a small thermoelectric surface, yielding an open-circuit voltage of 308 mV under 102 mW/cm2 natural sunlight illumination. Heat losses in commercial TEGs integrated with Janus films are reduced by approximately 50% while maintaining the same voltage output. Furthermore, incorporating the Janus films into a conventional STEG with carbon-based solar absorbers significantly enhances solar-thermal-electric conversion performance, achieving an output power density of 1.3 W m-2. Our design of Janus photothermal films with oriented particle-in-cavity surfaces can be extended to various solar-thermal systems for high-efficiency solar energy conversion and heat management.
Collapse
Affiliation(s)
- Zongming Xie
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Junhao Zhuang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Haowen Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lei Shao
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhongyi Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Yunpeng Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Siqi Bi
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Xin Wei
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Aizheng Chen
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Shi-Bin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| | - Nina Jiang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen 361021, P. R. China
| |
Collapse
|
3
|
Xiao Z, Li P, Zhang H, Zhang S, Zhao Y, Gu J, Lian Z, Li G, Zou JJ, Wang D. Boosting photo-thermal co-catalysis CO 2 methanation by tuning interface electron transfer via Mott-Schottky heterojunction effect. J Colloid Interface Sci 2024; 672:642-653. [PMID: 38865878 DOI: 10.1016/j.jcis.2024.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Photo-thermal co-catalytic reduction of CO2 to synthesize value-added chemicals presents a promising approach to addressing environmental issues. Nevertheless, traditional catalysts exhibit low light utilization efficiency, leading to the generation of a reduced number of electron-hole pairs and rapid recombination, thereby limiting catalytic performance enhancement. Herein, a Mott-Schottky heterojunction catalyst was developed by incorporating nitrogen-doped carbon coated TiO2 supported nickel (Ni) nanometallic particles (Ni/x-TiO2@NC). The optimal Ni/0.5-TiO2@NC sample displayed a conversion rate of 71.6 % and a methane (CH4) production rate of 65.3 mmol/(gcat·h) during photo-thermal co-catalytic CO2 methanation under full-spectrum illumination, with a CH4 selectivity exceeding 99.6 %. The catalyst demonstrates good stability as it shows no decay after two reaction cycles. The Mott-Schottky heterojunction catalysts display excellent efficiency in separating photo-generated electron-hole pairs and elevate the catalysts' temperature, thus accelerating the reaction rate. The in-situ experiments revealed that light-induced electron transfer effectively facilitates H2 dissociation and enhances surface defects, thereby promoting CO2 adsorption. This study introduces a novel approach for developing photo-thermal catalysts for CO2 reduction, aiming to enhance solar energy utilization and facilitate interface electron transfer.
Collapse
Affiliation(s)
- Zhourong Xiao
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
| | - Peng Li
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hui Zhang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Senlin Zhang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yanyan Zhao
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhiyou Lian
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhu Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ji-Jun Zou
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST), Hebei Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| |
Collapse
|
4
|
Yang Z, Wu ZY, Lin Z, Liu T, Ding L, Zhai W, Chen Z, Jiang Y, Li J, Ren S, Lin Z, Liu W, Feng J, Zhang X, Li W, Yu Y, Zhu B, Ding F, Li Z, Zhu J. Optically selective catalyst design with minimized thermal emission for facilitating photothermal catalysis. Nat Commun 2024; 15:7599. [PMID: 39217177 PMCID: PMC11365982 DOI: 10.1038/s41467-024-51896-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Converting solar energy into fuels is pursued as an attractive route to reduce dependence on fossil fuel. In this context, photothermal catalysis is a very promising approach through converting photons into heat to drive catalytic reactions. There are mainly three key factors that govern the photothermal catalysis performance: maximized solar absorption, minimized thermal emission and excellent catalytic property of catalyst. However, the previous research has focused on improving solar absorption and catalytic performance of catalyst, largely neglected the optimization of thermal emission. Here, we demonstrate an optically selective catalyst based Ti3C2Tx Janus design, that enables minimized thermal emission, maximized solar absorption and good catalytic activity simultaneously, thereby achieving excellent photothermal catalytic performance. When applied to Sabatier reaction and reverse water-gas shift (RWGS) as demonstrations, we obtain an approximately 300% increase in catalytic yield through reducing the thermal emission of catalyst by ~70% under the same irradiation intensity. It is worth noting that the CO2 methanation yield reaches 3317.2 mmol gRu-1 h-1 at light power of 2 W cm-2, setting a performance record among catalysts without active supports. We expect that this design opens up a new pathway for the development of high-performance photothermal catalysts.
Collapse
Affiliation(s)
- Zhengwei Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Zhen-Yu Wu
- Department of Chemistry, Institute of Innovative Material, Guangdong Provincial Key Laboratory of Sustainable Biomimetic Materials and Green Energy, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zhexing Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Tianji Liu
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Liping Ding
- School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an, China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zipeng Chen
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Yi Jiang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Jinlei Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Siyun Ren
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Zhenhui Lin
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Wangxi Liu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Jianyong Feng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Xing Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Wei Li
- GPL Photonics Laboratory, State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jilin, PR China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Bin Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China.
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaosheng Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, PR China.
| |
Collapse
|
5
|
Yang F, Liu X, Xing C, Chen Z, Zhao L, Liu X, Gao W, Zhu L, Liu H, Zhou W. RuCo/ZrO 2 Tandem Catalysts with Photothermal Confinement Effect for Enhanced CO 2 Methanation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406828. [PMID: 38984724 PMCID: PMC11425663 DOI: 10.1002/advs.202406828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/03/2024] [Indexed: 07/11/2024]
Abstract
Photothermal CO2 methanation reaction represents a promising strategy for addressing CO2-related environmental issues. The presence of efficient tandem catalytic sites with a localized high-temperature is an effective pathway to enhance the performance of CO2 methanation. Here the bimetallic RuCo nanoparticles anchored on ZrO2 fiber cotton (RuCo/ZrO2) as a photothermal catalyst for CO2 methanation are prepared. A significant photothermal CO2 methanation performance with optimal CH4 selectivity (99%) and rate (169.93 mmol gcat -1 h-1) is achieved. The photothermal energy of the RuCo bimetallic nanoparticles, confined by the infrared insulation and low thermal conductivity of the ZrO2 fiber cotton (ZrO2 FC), provides a localized high-temperature. In situ spectroscopic experiments on RuCo/ZrO2, Ru/ZrO2, and Co/ZrO2 indicate that the construction of tandem catalytic sites, where the Co site favors CO2 conversion to CO while incorporating Ru enhances CO* adsorption for subsequent hydrogenation, results in a higher selectivity toward CH4. This work opens a new insight into designing tandem catalysts with a photothermal confinement effect in CO2 methanation reaction.
Collapse
Affiliation(s)
- Fan Yang
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Xiaoyu Liu
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Chuanshun Xing
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Zizheng Chen
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Lili Zhao
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Xingwu Liu
- Synfuels China Technology Co. Ltd.Leyuan Second South Street Yanqi Development Zone HuairouBeijing101407P. R. China
| | - Wenqiang Gao
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Luyi Zhu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR)School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| |
Collapse
|
6
|
Pan H, Li J, Wang Y, Xia Q, Qiu L, Zhou B. Solar-Driven Biomass Reforming for Hydrogen Generation: Principles, Advances, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402651. [PMID: 38816938 PMCID: PMC11304308 DOI: 10.1002/advs.202402651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Hydrogen (H2) has emerged as a clean and versatile energy carrier to power a carbon-neutral economy for the post-fossil era. Hydrogen generation from low-cost and renewable biomass by virtually inexhaustible solar energy presents an innovative strategy to process organic solid waste, combat the energy crisis, and achieve carbon neutrality. Herein, the progress and breakthroughs in solar-powered H2 production from biomass are reviewed. The basic principles of solar-driven H2 generation from biomass are first introduced for a better understanding of the reaction mechanism. Next, the merits and shortcomings of various semiconductors and cocatalysts are summarized, and the strategies for addressing the related issues are also elaborated. Then, various bio-based feedstocks for solar-driven H2 production are reviewed with an emphasis on the effect of photocatalysts and catalytic systems on performance. Of note, the concurrent generation of value-added chemicals from biomass reforming is emphasized as well. Meanwhile, the emerging photo-thermal coupling strategy that shows a grand prospect for maximally utilizing the entire solar energy spectrum is also discussed. Further, the direct utilization of hydrogen from biomass as a green reductant for producing value-added chemicals via organic reactions is also highlighted. Finally, the challenges and perspectives of photoreforming biomass toward hydrogen are envisioned.
Collapse
Affiliation(s)
- Hu Pan
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Jinglin Li
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Yangang Wang
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Qineng Xia
- College of BiologicalChemical Science and EngineeringJiaxing University899 Guangqiong RoadJiaxingZhejiang314001China
| | - Liang Qiu
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Baowen Zhou
- Key Laboratory for Power Machinery and Engineering of Ministry of EducationResearch Center for Renewable Synthetic FuelSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
7
|
Li X, Li L, Chu X, Liu X, Chen G, Guo Q, Zhang Z, Wang M, Wang S, Tahn A, Sun Y, Feng X. Photothermal CO 2 conversion to ethanol through photothermal heterojunction-nanosheet arrays. Nat Commun 2024; 15:5639. [PMID: 38965244 PMCID: PMC11224241 DOI: 10.1038/s41467-024-49928-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/25/2024] [Indexed: 07/06/2024] Open
Abstract
Photothermal CO2 conversion to ethanol offers a sustainable solution for achieving net-zero carbon management. However, serious carrier recombination and high C-C coupling energy barrier cause poor performance in ethanol generation. Here, we report a Cu/Cu2Se-Cu2O heterojunction-nanosheet array, showcasing a good ethanol yield under visible-near-infrared light without external heating. The Z-scheme Cu2Se-Cu2O heterostructure provides spatially separated sites for CO2 reduction and water oxidation with boosted carrier transport efficiency. The microreactors induced by Cu2Se nanosheets improve the local concentration of intermediates (CH3* and CO*), thereby promoting C-C coupling process. Photothermal effect of Cu2Se nanosheets elevates system's temperature to around 200 °C. Through synergizing electron and heat flows, we achieve an ethanol generation rate of 149.45 µmol g-1 h-1, with an electron selectivity of 48.75% and an apparent quantum yield of 0.286%. Our work can serve as inspiration for developing photothermal catalysts for CO2 conversion into multi-carbon chemicals using solar energy.
Collapse
Affiliation(s)
- Xiaodong Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Li Li
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Xingyuan Chu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Xiaohui Liu
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Guangbo Chen
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Quanquan Guo
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany
| | - Zhen Zhang
- School of Chemistry and Materials Science, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Mingchao Wang
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany
| | - Shuming Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, P. R. China
| | - Alexander Tahn
- Dresden Center for Nanoanalysis (DCN), Dresden University of Technology, Dresden, 01069, Germany
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, 230026, Hefei, P. R. China.
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany.
- Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden (CFAED), Dresden University of Technology, Dresden, 01062, Germany.
| |
Collapse
|
8
|
Fang S, Xu N, Zhou L, Wei T, Yang Y, Liu Y, Zhu J. Self-assembled skin-like metamaterials for dual-band camouflage. SCIENCE ADVANCES 2024; 10:eadl1896. [PMID: 38896621 PMCID: PMC11186495 DOI: 10.1126/sciadv.adl1896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Skin-like soft optical metamaterials with broadband modulation have been long pursued for practical applications, such as cloaking and camouflage. Here, we propose a skin-like metamaterial for dual-band camouflage based on unique Au nanoparticles assembled hollow pillars (NPAHP), which are implemented by the bottom-up template-assisted self-assembly processes. This dual-band camouflage realizes simultaneously high visible absorptivity (~0.947) and low infrared emissivity (~0.074/0.045 for mid-/long-wavelength infrared bands), ideal for visible and infrared dual-band camouflage at night or in outer space. In addition, this self-assembled metamaterial, with a micrometer thickness and periodic through-holes, demonstrates superior skin-like attachability and permeability, allowing close attachment to a wide range of surfaces including the human body. Last but not least, benefiting from the extremely low infrared emissivity, the skin-like metamaterial exhibits excellent high-temperature camouflage performance, with radiation temperature reduction from 678 to 353 kelvin. This work provides a new paradigm for skin-like metamaterials with flexible multiband modulation for multiple application scenarios.
Collapse
Affiliation(s)
- Shiqi Fang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ning Xu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lin Zhou
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Tianqi Wei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yuhan Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yongmin Liu
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Frontiers Science Center for Critical Earth Material Cycling, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- School of Sustainable Energy and Resources, Nanjing University, Suzhou 215010, China
| |
Collapse
|
9
|
Xiao Y, Feng K, Dawson G, Tolstoy VP, An X, Li C, He L. A feasible interlayer strategy for simultaneous light and heat management in photothermal catalysis. iScience 2024; 27:109792. [PMID: 38784020 PMCID: PMC11112341 DOI: 10.1016/j.isci.2024.109792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 03/25/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Photothermal conversion represents one crucial approach for solar energy harvesting and its exploitation as a sustainable alternative to fossil fuels; however, an efficient, cost-effective, and generalized approach to enhance the photothermal conversion processes is still missing. Herein, we develop a feasible and efficient photothermal conversion strategy that achieves simultaneous light and heat management using supported metal clusters and WSe2 interlayer toward enhanced CO2 hydrogenation photothermal catalysis. The interlayer can simultaneously reduce heat loss in the catalytic layer and improve light absorption, leading to an 8-fold higher CO2 conversion rate than the controls. The optical and thermal performance of WSe2 interlayered catalysts on different substrates was quantified using Raman spectroscopy. This work demonstrates a feasible and generalized approach for effective light and heat management in solar harvesting. It also provides important design guidelines for efficient photothermal converters that facilitate the remediation of the energy and environmental crises faced by humans.
Collapse
Affiliation(s)
- Yi Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Graham Dawson
- Department of Chemistry, Xi’an Jiaotong Liverpool University, Suzhou, Jiangsu 215123, P.R. China
| | - Valeri P. Tolstoy
- Institute of Chemistry, Saint-Petersburg State University, St. Petersburg 199034, Russia
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
10
|
Li Y, Meng F, Wu Q, Yuan D, Wang H, Liu B, Wang J, San X, Gu L, Meng Q. A Ni-O-Ag photothermal catalyst enables 103-m 2 artificial photosynthesis with >17% solar-to-chemical energy conversion efficiency. SCIENCE ADVANCES 2024; 10:eadn5098. [PMID: 38758784 PMCID: PMC11100559 DOI: 10.1126/sciadv.adn5098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The scalable artificial photosynthesis composed of photovoltaic electrolysis and photothermal catalysis is limited by inefficient photothermal CO2 hydrogenation under weak sunlight irradiation. Herein, NiO nanosheets supported with Ag single atoms [two-dimensional (2D) Ni1Ag0.02O1] are synthesized for photothermal CO2 hydrogenation to achieve 1065 mmol g-1 hour-1 of CO production rate under 1-sun irradiation. This performance is attributed to the coupling effect of Ag-O-Ni sites to enhance the hydrogenation of CO2 and weaken the CO adsorption, resulting in 1434 mmol g-1 hour-1 of CO yield at 300°C. Furthermore, we integrate the 2D Ni1Ag0.02O1-supported photothermal reverse water-gas shift reaction with commercial photovoltaic electrolytic water splitting to construct a 103-m2 scale artificial photosynthesis system (CO2 + H2O → CO + H2 + O2), which achieves more than 22 m3/day of green syngas with an adjustable H2/CO ratio (0.4-3) and a photochemical energy conversion efficiency of >17%. This research charts a promising course for designing practical, natural sunlight-driven artificial photosynthesis systems.
Collapse
Affiliation(s)
- Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Fanqi Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qixuan Wu
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Dachao Yuan
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, China
| | - Haixiao Wang
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Bang Liu
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Junwei Wang
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Xingyuan San
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingbo Meng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Zhang L, An X, Feng K, Li J, Liu J, Chen J, Li C, Zhang X, He L. Non-Photochemical Origin of Selectivity Difference between Light and Dark Catalytic Conditions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21987-21996. [PMID: 38636167 DOI: 10.1021/acsami.4c02425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The interest in introducing light into heterogeneous catalysis is driven not only by the urgent need of replacing fossil energy but also by the promise of controlling product selectivity by light. The product selectivity differences observed in recent studies between light and dark reactions are often attributed to photochemical effects. Here, we report the discovery of a non-photochemical origin of selectivity difference, at essentially the same CO2 conversion rate, between photothermal and thermal CO2 hydrogenation reactions over a Ru/TiO2-x catalyst. While the presence of the photochemical effect from ultraviolet light is confirmed, it merely enhances the catalytic activity. Systematic investigation reveals that the gradual formation of an adsorbate-mediated strong metal-support interaction under catalytic conditions is responsible for the variation in the catalytic selectivity. We demonstrate that differences in product selectivity under light/dark reactions do not necessarily originate from photochemical effects. Our study refines the basis for determining photochemical effects and highlights the importance of excluding non-photochemical effects in mechanistic studies of light-controlled product selectivity.
Collapse
Affiliation(s)
- Lin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Kai Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Juan Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Jingjing Liu
- Institute of Information Technology, Suzhou Institute of Trade and Commerce, Suzhou 215009, Jiangsu, P. R. China
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
12
|
Liu S, Wang X, Chen Y, Li Y, Wei Y, Shao T, Ma J, Jiang W, Xu J, Dong Y, Wang C, Liu H, Gao C, Xiong Y. Efficient Thermal Management with Selective Metamaterial Absorber for Boosting Photothermal CO 2 Hydrogenation under Sunlight. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311957. [PMID: 38324747 DOI: 10.1002/adma.202311957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Indexed: 02/09/2024]
Abstract
Photothermal catalytic CO2 hydrogenation is a prospective strategy to simultaneously reduce CO2 emission and generate value-added fuels. However, the demand of extremely intense light hinders its development in practical applications. Herein, this work reports the novel design of Ni-based selective metamaterial absorber and employs it as the photothermal catalyst for CO2 hydrogenation. The selective absorption property reduces the heat loss caused by radiation while possessing effectively solar absorption, thus substantially increasing local photothermal temperature. Notably, the enhancement of local electric field by plasmon resonance promotes the adsorption and activation of reactants. Moreover, benefiting from the ingenious morphology that Ni nanoparticles (NPs) are encapsulated by SiO2 matrix through co-sputtering, the greatly improved dispersion of Ni NPs enables enhancing the contact with reaction gas and preventing the agglomeration. Consequently, the catalyst exhibits an unprecedented CO2 conversion rate of 516.9 mmol gcat -1 h-1 under 0.8 W cm-2 irradiation, with near 90% CO selectivity and high stability. Significantly, this designed photothermal catalyst demonstrates the great potential in practical applications under sunlight. This work provides new sights for designing high-performance photothermal catalysts by thermal management.
Collapse
Affiliation(s)
- Shengkun Liu
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xin Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
| | - Yihong Chen
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yaping Li
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yu Wei
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Tianyi Shao
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jun Ma
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenbin Jiang
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Junchi Xu
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yueyue Dong
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chengming Wang
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hengjie Liu
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Chao Gao
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yujie Xiong
- School of Chemistry and Materials Science, Center for Micro and Nanoscale Research and Fabrication, Hefei National Research Center for Physical Sciences at the Microscale, Instruments Center for Physical Science, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Engineering Research Center of Carbon Neutrality, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241000, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
13
|
Ding X, Liu W, Zhao J, Wang L, Zou Z. Photothermal CO 2 Catalysis toward the Synthesis of Solar Fuel: From Material and Reactor Engineering to Techno-Economic Analysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312093. [PMID: 38683953 DOI: 10.1002/adma.202312093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/25/2024] [Indexed: 05/02/2024]
Abstract
Carbon dioxide (CO2), a member of greenhouse gases, contributes significantly to maintaining a tolerable environment for all living species. However, with the development of modern society and the utilization of fossil fuels, the concentration of atmospheric CO2 has increased to 400 ppm, resulting in a serious greenhouse effect. Thus, converting CO2 into valuable chemicals is highly desired, especially with renewable solar energy, which shows great potential with the manner of photothermal catalysis. In this review, recent advancements in photothermal CO2 conversion are discussed, including the design of catalysts, analysis of mechanisms, engineering of reactors, and the corresponding techno-economic analysis. A guideline for future investigation and the anthropogenic carbon cycle are provided.
Collapse
Affiliation(s)
- Xue Ding
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| | - Wenxuan Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Junhua Zhao
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
- The Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, Guangdong, 518129, P. R. China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, P. R. China
| |
Collapse
|
14
|
Wang Y, Shi J, Liu X, Chen B, Wang X. Modeling of the synergistic anti-reflection effect in gradient refractive index films integrated with subwavelength structures for photothermal conversion. Phys Chem Chem Phys 2024; 26:10850-10867. [PMID: 38525533 DOI: 10.1039/d4cp00527a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Photothermal materials generally suffer from challenges such as low photothermal conversion efficiency and inefficient full-spectrum utilization of solar energy. This paper proposes gradient refractive index transparent ceramics (GRITCs) integrated with subwavelength nanostructure arrays and simulates the synergistic anti-reflection effect by an admittance recursive model. An innovative subwavelength structure, possessing a superior light-trapping capability, is initially crafted based on this model. Subsequently, various intelligent optimization algorithms including genetic algorithm, particle swarm optimization, and simulated annealing are employed to optimize the structure of gradient refractive index films respectively. Finally, the photothermal conversion efficiencies of devices based on different photothermal materials are calculated. The simulations and finite-difference time-domain calculations demonstrate that the three-layer GRITCs integrated with an optimal SNA exhibit outstanding full-spectrum and omnidirectional anti-reflection performance. The solar transmittance of the devices can exceed 97% for light wavelengths ranging from 300 to 2500 nm over the full angle of incidence. Our results reveal that the synergistic anti-reflection effect in the SNAs and GRITCs can enhance the photothermal conversion efficiency by more than 20%.
Collapse
Affiliation(s)
- Yixuan Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Jingxu Shi
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiangjun Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Bing Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Xiangfu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
- The State Key Laboratory of Refractories and Metallurgy (Wuhan University of Science and Technology), Wuhan, 430081, China
| |
Collapse
|
15
|
Wu P, Liu H, Xie Z, Xie L, Liu G, Xu Y, Chen J, Lu CZ. Excellent Charge Separation of NCQDs/ZnS Nanocomposites for the Promotion of Photocatalytic H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16601-16611. [PMID: 38502203 DOI: 10.1021/acsami.3c15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Carbon Quantum dots (CQDs) are widely studied because of their good optical and electronic characteristics and because they can easily generate photocarriers. Nitrogen-doped CQDs (NCQDs) may exhibit improved hydrophilic, optical, and electron-transfer properties, which are conducive to photocatalytic hydrogen evolution. In this paper, NCQD-modified ZnS catalysts were successfully prepared. Under the irradiation of the full spectrum, the H2 evolution rate of the optimal catalyst 0.25 wt % NCQDs/ZnS achieves 5.70 mmol g-1 h-1, which is 11.88, 43.84, and 5.14 times the values of ZnS (0.48 mmol g-1 h-1), NCQDs (0.13 mmol g-1 h-1), and CQDs/ZnS (1.11 mmol g-1 h-1), respectively. Furthermore, it shows good stability, indicating that the modification of NCQDs prevents the photocorrosion and oxidation of ZnS. The enhanced performance is due to NCQD loading, which promotes the separation of photogenerated carriers, optimizes the structures, and increases the specific surface area. This work highlights the fact that NCQD-modified ZnS may afford a new strategy to synthesize ZnS-based photocatalysts with enhanced H2 production performance.
Collapse
Affiliation(s)
- Panpan Wu
- School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Haizhen Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ziyu Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Linjun Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guozhong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yingchao Xu
- School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Jing Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Gao L, Wang H, Wang Y, Liu B, Zhang W, Li Y. Sunlight-driven CO 2utilization over two-dimensional Co-based nanosheets. NANOTECHNOLOGY 2023; 35:055402. [PMID: 37879324 DOI: 10.1088/1361-6528/ad06cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Reverse water gas shift (RWGS) reaction is an intriguing strategy to realize carbon neutrality, however, the endothermic process usually needs high temperature that supplied by non-renewable fossil fuels, resulting in secondary energy and environmental issues. Photothermal catalysis are ideal substitutes for the conventional thermal catalysis, providing that high reaction efficiency is achievable. Two-dimensional (2D) materials are highly active as RWGS catalysts, however, their industrial application is restricted by the preparation cost. In this study, a series of 2D Co-based catalysts for photothermal RWGS reaction with tunable selectivity were prepared by self-assembly method based on cheap amylum, by integrating the 2D catalysts with our homemade photothermal device, sunlight driven efficient RWGS reaction was realized. The prepared 2D Co0.5Ce0.5Oxexhibited a full selectivity toward CO (100%) and could be heated to 318 °C under 1 kW m-2irradiation with the CO generation rate of 14.48 mmol g-1h-1, pointing out a cheap and universal method to prepare 2D materials, and zero consumption CO generation from photothermal RWGS reaction.
Collapse
Affiliation(s)
- Linjie Gao
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Haixiao Wang
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Yachuan Wang
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Bang Liu
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| | - Weifeng Zhang
- Intelligent Sensor Network Engineering Research Center of Hebei Province, Faculty of Information Engineering, Hebei GEO University, Shijiazhuang, 050031, People's Republic of China
| | - Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, Engineering Research Center of Zero-carbon Energy Buildings and Measurement Techniques, Ministry of Education, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, People's Republic of China
| |
Collapse
|
17
|
Zhu Z, Tang R, Li C, An X, He L. Promises of Plasmonic Antenna-Reactor Systems in Gas-Phase CO 2 Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302568. [PMID: 37338243 PMCID: PMC10460874 DOI: 10.1002/advs.202302568] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/26/2023] [Indexed: 06/21/2023]
Abstract
Sunlight-driven photocatalytic CO2 reduction provides intriguing opportunities for addressing the energy and environmental crises faced by humans. The rational combination of plasmonic antennas and active transition metal-based catalysts, known as "antenna-reactor" (AR) nanostructures, allows the simultaneous optimization of optical and catalytic performances of photocatalysts, and thus holds great promise for CO2 photocatalysis. Such design combines the favorable absorption, radiative, and photochemical properties of the plasmonic components with the great catalytic potentials and conductivities of the reactor components. In this review, recent developments of photocatalysts based on plasmonic AR systems for various gas-phase CO2 reduction reactions with emphasis on the electronic structure of plasmonic and catalytic metals, plasmon-driven catalytic pathways, and the role of AR complex in photocatalytic processes are summarized. Perspectives in terms of challenges and future research in this area are also highlighted.
Collapse
Affiliation(s)
- Zhijie Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Rui Tang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
| | - Chaoran Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Xingda An
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Le He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
18
|
Wei B, Zhu H, Wu Q, Cai G, Liu Q. Capped MIM metamaterial for ultra-broadband perfect absorbing and its application in radiative cooling. APPLIED OPTICS 2023; 62:5660-5665. [PMID: 37707182 DOI: 10.1364/ao.490095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/03/2023] [Indexed: 09/15/2023]
Abstract
Radiative cooling, which needs no external energy to lower the temperature, has drawn great interest in recent years. As a potential candidate, the design of a metamaterial cooler remains a big challenge due to the complexity of the nanostructure and the low average absorptivity. In this work, a capped metal-insulator-metal metamaterial is proposed to achieve ultra-broadband perfect absorbing. The numerical results show that its average absorptivity is 94% in the 8-13 µm wavelength band under normal incidence, bringing about the excellent selective thermal emissivity in the IR atmospheric transparent window. Together with polarization insensitivity and wide angle independency, the proposed metamaterial can realize a net cooling power as high as 120.7W/m 2 under the circumstance without sunshine. As a proof of concept, it is applied to coat the heat sink of a 3D integrated circuit chip. The result shows that the temperature of the observation point lowers 18.3 K after coating. This work offers the promising application of passive radiative cooling in thermal management for personnel, electronic devices, and many others.
Collapse
|
19
|
Li Y, Bai X, Yuan D, Yu C, San X, Guo Y, Zhang L, Ye J. Cu-based high-entropy two-dimensional oxide as stable and active photothermal catalyst. Nat Commun 2023; 14:3171. [PMID: 37264007 DOI: 10.1038/s41467-023-38889-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023] Open
Abstract
Cu-based nanocatalysts are the cornerstone of various industrial catalytic processes. Synergistically strengthening the catalytic stability and activity of Cu-based nanocatalysts is an ongoing challenge. Herein, the high-entropy principle is applied to modify the structure of Cu-based nanocatalysts, and a PVP templated method is invented for generally synthesizing six-eleven dissimilar elements as high-entropy two-dimensional (2D) materials. Taking 2D Cu2Zn1Al0.5Ce5Zr0.5Ox as an example, the high-entropy structure not only enhances the sintering resistance from 400 °C to 800 °C but also improves its CO2 hydrogenation activity to a pure CO production rate of 417.2 mmol g-1 h-1 at 500 °C, 4 times higher than that of reported advanced catalysts. When 2D Cu2Zn1Al0.5Ce5Zr0.5Ox are applied to the photothermal CO2 hydrogenation, it exhibits a record photochemical energy conversion efficiency of 36.2%, with a CO generation rate of 248.5 mmol g-1 h-1 and 571 L of CO yield under ambient sunlight irradiation. The high-entropy 2D materials provide a new route to simultaneously achieve catalytic stability and activity, greatly expanding the application boundaries of photothermal catalysis.
Collapse
Affiliation(s)
- Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- College of Mechanical and Electrical Engineering, Key Laboratory Intelligent Equipment and New Energy Utilization of Livestock and Poultry Breeding, Hebei Agricultural University, Baoding, 071001, China.
| | - Xianhua Bai
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Dachao Yuan
- College of Mechanical and Electrical Engineering, Key Laboratory Intelligent Equipment and New Energy Utilization of Livestock and Poultry Breeding, Hebei Agricultural University, Baoding, 071001, China
| | - Chenyang Yu
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xingyuan San
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yunna Guo
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Liqiang Zhang
- Clean Nano Energy Center, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China.
| | - Jinhua Ye
- Research Center for Solar Driven Carbon Neutrality, Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan.
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo, 060-0814, Japan.
| |
Collapse
|
20
|
Gu K, Zhong H. A general methodology to measure the light-to-heat conversion efficiency of solid materials. LIGHT, SCIENCE & APPLICATIONS 2023; 12:120. [PMID: 37193685 DOI: 10.1038/s41377-023-01167-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/09/2023] [Accepted: 04/23/2023] [Indexed: 05/18/2023]
Abstract
Light-to-heat conversion has been intensively investigated due to the potential applications including photothermal therapy and solar energy harvesting. As a fundamental property of materials, accurate measurement of light-to-heat conversion efficiency (LHCE) is of vital importance in developing advanced materials for photothermal applications. Herein, we report a photothermal and electrothermal equivalence (PEE) method to measure the LHCE of solid materials by simulating the laser heating process with electric heating process. The temperature evolution of samples during electric heating process was firstly measured, enabling us to derive the heat dissipation coefficient by performing a linear fitting at thermal equilibrium. The LHCE of samples can be calculated under laser heating with the consideration of heat dissipation coefficient. We further discussed the effectiveness of assumptions by combining the theoretical analysis and experimental measurements, supporting the obtained small error within 5% and excellent reproducibility. This method is versatile to measure the LHCE of inorganic nanocrystals, carbon-based materials and organic materials, indicating the applicability of a variety of materials.
Collapse
Affiliation(s)
- Kai Gu
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081, Beijing, China
| | - Haizheng Zhong
- Beijing Key Laboratory of Nanophotonics & Ultrafine Optoelectronic Systems, School of Materials Sciences & Engineering, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
21
|
Cao W, Li Y, Yan B, Zeng Z, Liu P, Ke Z, Yang G. Laser-Induced Methanol Decomposition for Ultrafast Hydrogen Production. RESEARCH (WASHINGTON, D.C.) 2023; 6:0132. [PMID: 37228638 PMCID: PMC10204739 DOI: 10.34133/research.0132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/11/2023] [Indexed: 05/27/2023]
Abstract
Methanol (CH3OH) is a liquid hydrogen (H2) source that effectively releases H2 and is convenient for transportation. Traditional thermocatalytic CH3OH reforming reaction is used to produce H2, but this process needs to undergo high reaction temperature (e.g., 200 °C) along with a catalyst and a large amount of carbon dioxide (CO2) emission. Although photocatalysis and photothermal catalysis under mild conditions are proposed to replace the traditional thermal catalysis to produce H2 from CH3OH, they still inevitably produce CO2 emissions that are detrimental to carbon neutrality. Here, we, for the first time, report an ultrafast and highly selective production of H2 without any catalysts and no CO2 emission from CH3OH by laser bubbling in liquid (LBL) at room temperature and atmospheric pressure. We demonstrate that a super high H2 yield rate of 33.41 mmol·h-1 with 94.26% selectivity is achieved upon the laser-driven process. This yield is 3 orders of magnitude higher than the best value reported for photocatalytic and photothermal catalytic H2 production from CH3OH to date. The energy conversion efficiency of laser light to H2 and CO can be up to 8.5%. We also establish that the far from thermodynamic equilibrium state with high temperature inside the laser-induced bubble and the kinetic process of rapid quenching of bubbles play crucial roles in H2 production upon LBL. Thermodynamically, the high temperature induced using laser in bubbles ensures fast and efficient release of H2 from CH3OH decomposition. Kinetically, rapidly quenching of laser-induced bubbles can inhibit reverse reaction and can keep the products in the initial stage, which guarantees high selectivity. This study presents a laser-driven ultrafast and highly selective production of H2 from CH3OH under normal conditions beyond catalytic chemistry.
Collapse
Affiliation(s)
- Weiwei Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yinwu Li
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Bo Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Pu Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Zhuofeng Ke
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, Sun Yat-sen University, Guangzhou 510275, P. R. China
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
22
|
Su F, Xie J, Li X, He Z, Wang H, Zhang J, Xin Y, Zhang A, Yao D, Zheng Y. Electrostatically Assisted Construction Modified MXene-IL-Based Nanofluids for Photothermal Conversion. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36882929 DOI: 10.1021/acsami.2c22517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Solar energy, as renewable energy, has paid extensive attention for solar thermal utilization due to its unique characteristics such as rich resources, easy access, clean, and pollution-free. Among them, solar thermal utilization is the most extensive one. Nanofluid-based direct absorption solar collectors (DASCs), as an important alternative method, can further improve the solar thermal efficiency. Notably, the stability of photothermal conversion materials and flowing media is critical to the performance of DASC. Herein, we first proposed novel Ti3C2Tx-IL-based nanofluids by the electrostatic interaction, which consists of functional Ti3C2Tx modified with PDA and PEI as a photothermal conversion material and ionic liquid with low viscosity as the flow medium. Ti3C2Tx-IL-based nanofluids exhibit excellent cycle stability, wide spectrum, and efficient solar energy absorption performance. Besides, Ti3C2Tx-IL-based nanofluids maintain liquid state in a range of -80 to 200 °C, and its viscosity was as low as 0.3 Pa·s at 0 °C. Moreover, the equilibrium temperature of Ti3C2Tx@PDA-IL at a very low mass fraction of 0.04% reached 73.9 °C under 1 Sun, indicating an excellent photothermal conversion performance. Furthermore, the application of nanofluids in photosensitive inks has been preliminarily explored, which is expected to play a role in the fields of injectable biomedical materials and photo/electric double-generation thermal and hydrophobic anti ice coatings.
Collapse
Affiliation(s)
- Fangfang Su
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jinliang Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Xiaoqian Li
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Zhongjie He
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Hongni Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yangyang Xin
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Aibo Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Dongdong Yao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| | - Yaping Zheng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, P. R. China
| |
Collapse
|
23
|
Ni W, Zeng M, Wang K, Lin Y, Zhang Z, Dai W, Fu X. Photo-thermal catalytic reverse water gas shift reaction over Pd/MaZrOx (M=Sr, SrMn) catalysts driven by "Cycle-double sites". J CO2 UTIL 2023. [DOI: 10.1016/j.jcou.2023.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
24
|
Lv C, Bai X, Ning S, Song C, Guan Q, Liu B, Li Y, Ye J. Nanostructured Materials for Photothermal Carbon Dioxide Hydrogenation: Regulating Solar Utilization and Catalytic Performance. ACS NANO 2023; 17:1725-1738. [PMID: 36734978 DOI: 10.1021/acsnano.2c09025] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Converting carbon dioxide (CO2) into value-added fuels or chemicals through photothermal catalytic CO2 hydrogenation is a promising approach to alleviate the energy shortage and global warming. Understanding the nanostructured material strategies in the photothermal catalytic CO2 hydrogenation process is vital for designing photothermal devices and catalysts and maximizing the photothermal CO2 hydrogenation performance. In this Perspective, we first describe several essential nanomaterial design concepts to enhance sunlight absorption and utilization in photothermal CO2 hydrogenation. Subsequently, we review the latest progress in photothermal CO2 hydrogenation into C1 (e.g., CO, CH4, and CH3OH) and multicarbon hydrocarbon (C2+) products. Finally, the relevant challenges and opportunities in this exciting research realm are discussed. This perspective provides a comprehensive understanding for the light-heat synergy over nanomaterials and instruction for rational photothermal catalyst design for CO2 utilization.
Collapse
Affiliation(s)
- Cuncai Lv
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Xianhua Bai
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Shangbo Ning
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Chenxi Song
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Qingqing Guan
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Bang Liu
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Yaguang Li
- Research Center for Solar Driven Carbon Neutrality, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, 071002 Baoding, People's Republic of China
| | - Jinhua Ye
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0814, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|
25
|
Tan M, Huang C, Yu C, Li C, Yin R, Liu C, Dong W, Meng H, Su Y, Qiao L, Gao L, Lu Q, Bai Y. Unexpected High-Performance Photocatalytic Hydrogen Evolution in Co@NCNT@ZnIn 2 S 4 Triggered by Directional Charge Separation and Transfer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205266. [PMID: 36300917 DOI: 10.1002/smll.202205266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The structural design of photocatalysts is highly related to the separation and transfer of photogenerated carriers, which is essential for the improvement of photocatalytic hydrogen evolution performance. Here, the hybrid photocatalyst M@NCNT@ZIS (M: Fe, Co, Ni; NCNT: nitrogen-doped carbon nanotube; ZIS: ZnIn2 S4 ) with a hierarchical structure is rationally designed and precisely synthesized. The unique hollow structure with a large specific surface area offers abundant reactive sites, thus increasing the adsorption of reactants. Importantly, the properly positioned metal nanoparticles realize the directional charge migration from ZIS to M@NCNT, which significantly improves the efficiency of charge separation. Furthermore, the intimate interface between M@NCNT and ZIS effectively facilitates charge migration by shortening the transfer distance and providing numerous transport channels. As a result, the optimized Co@NCNT@ZIS exhibits a remarkable photocatalytic hydrogen evolution efficiency (43.73 mmol g-1 h-1 ) without Pt as cocatalyst. Experimental characterizations and density functional theory calculations demonstrate that the synergistic effect between hydrogen adsorption and interfacial charge transport is of great significance for improving photocatalytic hydrogen production performance.
Collapse
Affiliation(s)
- Mengxi Tan
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chao Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengye Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Cui Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ruowei Yin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chuanbao Liu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjun Dong
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Huimin Meng
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yanjing Su
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lijie Qiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yang Bai
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
26
|
Liu X, Zhao P, He CY, Wang WM, Liu BH, Lu ZW, Wang YF, Guo HX, Liu G, Gao XH. Enabling Highly Enhanced Solar Thermoelectric Generator Efficiency by a CuCrMnCoAlN-Based Spectrally Selective Absorber. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50180-50189. [PMID: 36288261 DOI: 10.1021/acsami.2c15215] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Harvesting solar energy to enhance thermoelectric generator efficiency is a highly effective strategy. However, it is a grand challenge but essential to increase solar-thermal conversion efficiency. A spectrally selective absorber, which is capable of boosting solar absorptance (α) while suppressing thermal emittance (ε), shows great potential to elevate the solar-thermal conversion efficiency. Herein, we fabricate a multilayer spectrally selective absorber with the assistance of high-entropy nitrides, which shows outstanding spectral selectivity (α/ε = 95.2/10.9%). Benefitting from the high-entropy nitrides, it is experimentally demonstrated that the as-deposited absorber exhibits superior thermal stability, which is crucial to ensure service life. Under 1000 W·m-2 simulated solar illumination, it achieves a very high surface temperature of 109.6 °C, making it suitable to enhance the efficiency of solar thermoelectric generators. Impressively, the integration of the proposed absorber with a commercial thermoelectric generator efficiently reinforces thermoelectric performance, offering a high output power of 1.99 mW. More importantly, by taking advantage of a thermal concentration strategy, it enables a further increase of the output power by 2.98 mW. This work provides a promising solar-thermal material to boost high thermoelectric performance and extends the application category of high-entropy nitrides.
Collapse
Affiliation(s)
- Xi Liu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
| | - Peng Zhao
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
| | - Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Wei-Ming Wang
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Bao-Hua Liu
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Zhong-Wei Lu
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
| | - Yun-Feng Wang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
| | - Hui-Xia Guo
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province, College of Chemistry & Chemical Engineering, Northwest Normal University, Lanzhou730070, China
| | - Gang Liu
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing100049, China
| | - Xiang-Hu Gao
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou730000, China
- Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
27
|
Yuan HL, Wang K, Hu H, Yang L, Chen J, Zheng K. Atomic-Scale Observation of Grain Boundary Dominated Unsynchronized Phase Transition in Polycrystalline Cu 2 Se. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205715. [PMID: 35981531 DOI: 10.1002/adma.202205715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Phase transition is a physical phenomenon that attracts great interest of researchers. Although the theory of second-order phase transitions is well-established, their atomic-scale dynamics in polycrystalline materials remains elusive. In this work, second-order phase transitions in polycrystalline Cu2 Se at the transition temperature are directly observed by in situ aberration-corrected transmission electron microscopy. Phase transitions in microcrystalline Cu2 Se start at the grain boundaries and extend inside the grains. This phenomenon is more pronounced in nanosized grains. Analysis of phase transitions in nanocrystalline Cu2 Se with different grain boundaries demonstrates that grain boundary energy dominates unsynchronized phase transition behavior. This suggests that the energy of grain boundaries is the key factor influencing the energetic barrier for initiation of phase transition. The findings advance atomic-scale understanding of second-order phase transitions, which is crucial for the control of this process in polycrystalline materials.
Collapse
Affiliation(s)
- Hua-Lei Yuan
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Kaiwen Wang
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Hanwen Hu
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| | - Lei Yang
- School of Materials Science and Engineering, Sichuan University, Chengdu, 610064, China
| | - Jie Chen
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621999, China
| | - Kun Zheng
- Beijing Key Laboratory of Microstructure and Property of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
28
|
|
29
|
Kang X, Yuan D, Yi Z, Yu C, Yuan X, Liang B, San X, Gao L, Wang S, Li Y. Bismuth single atom supported CeO 2 nanosheets for oxidation resistant photothermal reverse water gas shift reaction. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bi single atoms supported on CeO2 nanosheets combined with a Ti2O3 based photothermal device showed oxidation resistance and outperforming weak solar driven RWGS with a CO production rate of 31.00 mmol g−1 h−1 under 3 sun units of irradiation.
Collapse
Affiliation(s)
- Xiaoxiao Kang
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Dachao Yuan
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Zhiqi Yi
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Chenyang Yu
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xiaoxian Yuan
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Baolai Liang
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Xingyuan San
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Linjie Gao
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Shufang Wang
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Yaguang Li
- Hebei Key Lab of Optic-electronic Information and Materials, The College of Physics Science and Technology, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| |
Collapse
|