1
|
Ghosh R, Hopping GM, Lu JW, Hollyfield DW, Flaherty DW. Alkene Epoxidation and Oxygen Evolution Reactions Compete for Reactive Surface Oxygen Atoms on Gold Anodes. J Am Chem Soc 2025; 147:1482-1496. [PMID: 39661713 PMCID: PMC11744761 DOI: 10.1021/jacs.4c08948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024]
Abstract
Rates and selectivities for the partial oxidation of organic molecules on reactive electrodes depend on the identity and prevalence of reactive and spectator species. Here, we investigate the mechanism for the epoxidation of 1-hexene (C6H12) with reactive oxygen species formed by electrochemical oxidation of water (H2O) on gold (Au) in an aqueous acetonitrile (CH3CN) electrolyte. Cyclic voltammetry measurements demonstrate that oxygen (O2) evolution competes with C6H12 epoxidation, and the Au surface must oxidize before either reaction occurs. In situ Raman spectroscopy reveals reactive oxygen species and spectators (CH3CN) on the active anode as well as species within the electrochemical double layer. The Faradaic efficiencies toward epoxidation and the ratios of epoxide formation to O2 evolution rates increase linearly with the concentration of C6H12 and depend inversely on the concentration of H2O, which agree with analytical expressions that describe rates for reaction between C6H12 and chemisorbed oxygen atoms (O*) and exclude proposals for other forms of reactive oxygen (e.g., O2*, OOH*, OH*). These findings show that the epoxidation and O2 evolution reactions share a set of common steps that form O* through electrochemical H2O activation but then diverge. Subsequently, epoxides form when O* reacts with C6H12 through a non-Faradaic process, whereas O2 evolves when O* reacts with H2O through a Faradaic process to form OOH*, which then deprotonates. These differences lead to distinct changes in rates in response to electrode potential, and hence, disparate Tafel slopes. Collectively, these results provide a self-consistent mechanism for C6H12 epoxidation that involves reactive O*.
Collapse
Affiliation(s)
- Richa Ghosh
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Geoffrey M. Hopping
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jordan W. Lu
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Drew W. Hollyfield
- Department
of Chemical and Biomolecular Engineering, University of Illinois Urbana−Champaign, Urbana, Illinois 61801 United States
| | - David W. Flaherty
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Saito M, Kojima Y, Iguchi S, Yamanaka I. Electro-Epoxidation of Propylene in the Gas Phase with Solid-Polymer-Electrolyte Water Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:67545-67552. [PMID: 39587874 DOI: 10.1021/acsami.4c10085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The development of a reaction system for direct epoxidation of propylene is an essential topic. Gas-phase electro-epoxidation of propylene to propylene oxide (PO) with water as the oxidant was successfully accomplished by using solid-polymer-electrolyte (SPE) electrolysis without solvents. The oxidized surface of the PtOx anode was essential for propylene epoxidation and oxidation. It was revealed that PO was sequentially oxidized and accumulated on the anode by the interval electrolysis experiment. The formation rate and Faraday efficiency (FE) to PO were improved by applying mild hot-press conditions for the SPE unit because the active phase of the oxide surface of PtOx was maintained and diffusibility of water in the SPE (Nafion) membrane was improved. The FEs to PO are low in this work, but this system is halogen-free.
Collapse
Affiliation(s)
- Minori Saito
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Japan
| | - Yuta Kojima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Japan
| | - Shoji Iguchi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Japan
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ichiro Yamanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro 152-8552, Japan
| |
Collapse
|
3
|
Cheng M, Lan J, Sun X, Wang F, Tuerdi A, Jia F, Guo Y, Liu X. Cascading Water Activation and Interfacial Lattice Oxygen over Nanocluster CuO x-Modified MnO 2 for Electrocatalytic Propylene Oxidation. Angew Chem Int Ed Engl 2024:e202420780. [PMID: 39643851 DOI: 10.1002/anie.202420780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
Direct electrooxidation of propylene using water-oxidation intermediates represents a promising route for propylene glycol production. Unfortunately, this economic and environmentally friendly process suffers from low yield and poor Faradaic efficiency resulting from the mismatched oxidative capacity of reactive oxygen species and pronounced side reactions. Herein, we developed an earth-abundant metal-based nanocluster CuOx-modified MnO2 catalyst for the efficient electrooxidation of propylene into propylene glycol, achieving a remarkable production rate of 63.0 g/m2/h and 95 % Faradaic efficiency at 1.3 V vs. Ag/AgCl. Mechanistic studies revealed that the oxygen vacancy-mediated water activation on CuOx-MnO2 in synergy with the activated interfacial lattice oxygen drove the propylene oxidation to a novel *OOH pathway rather than the traditional *OH route. Additionally, the interfacial interactions intensified the propylene adsorption and polarization for its activation. This work offers new insights into the mechanism of electrocatalytic propylene oxidation and presents great opportunities for the synthesis of commercial chemicals based on earth-abundant metal catalysts and renewable electricity-driven route.
Collapse
Affiliation(s)
- Ming Cheng
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Jintong Lan
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiaoxian Sun
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Fanyu Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Ailijiang Tuerdi
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Falong Jia
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Yanbing Guo
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| | - Xiao Liu
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P. R. China
| |
Collapse
|
4
|
Cheng Y, Wang Y, Chen B, Han X, He F, He C, Hu W, Zhou G, Zhao N. Routes to Bidirectional Cathodes for Reversible Aprotic Alkali Metal-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410704. [PMID: 39308193 DOI: 10.1002/adma.202410704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/30/2024] [Indexed: 11/16/2024]
Abstract
Aprotic alkali metal-CO2 batteries (AAMCBs) have garnered significant interest owing to fixing CO2 and providing large energy storage capacity. The practical implementation of AAMCBs is constrained by the sluggish kinetics of the CO2 reduction reaction (CO2RR) and the CO2 evolution reaction (CO2ER). Because the CO2ER and CO2RR take place on the cathode, which connects the internal catalyst with the external environment. Building a bidirectional cathode with excellent CO2ER and CO2RR kinetics by optimizing the cathode's internal catalyst and environment has attracted most of the attention to improving the electrochemical performance of AAMCBs. However, there remains a lack of comprehensive understanding. This review aims to give a route to bidirectional cathodes for reversible AAMCBs, by systematically discussing engineering strategies of both the internal catalyst (atomic, nanoscopic, and macroscopic levels) and the external environment (photo, photo-thermal, and force field). The CO2ER and CO2RR mechanisms and the "engineering strategies from internal catalyst to the external environment-cathode properties-CO2RR and CO2ER kinetics and mechanisms-batteries performance" relationship are elucidated by combining computational and experimental approaches. This review establishes a fundamental understanding for designing bidirectional cathodes and gives a route for developing reversible AAMCBs and similar metal-gas battery systems.
Collapse
Affiliation(s)
- Yihao Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Yuxuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Biao Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Fang He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
| | - Chunnian He
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| | - Guangmin Zhou
- Tsinghua-Berkeley Shenzhen Institute & Tsinghua, Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, P. R. China
- National Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin, 300350, P. R. China
| |
Collapse
|
5
|
Wang J, Dong X, Feng G, Lu X, Wu G, Li G, Li S, Mao J, Chen A, Song Y, Zeng J, Wei W, Chen W. Spatial-coupled Ampere-level Electrochemical Propylene Epoxidation over RuO 2/Ti Hollow-fiber Penetration Electrodes. Angew Chem Int Ed Engl 2024; 63:e202411173. [PMID: 39109442 DOI: 10.1002/anie.202411173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/06/2024] [Indexed: 09/26/2024]
Abstract
The electrochemical propylene epoxidation reaction (PER) provides a promising route for ecofriendly propylene oxide (PO) production, instantly generating active halogen/oxygen species to alleviate chloride contamination inherent in traditional PER. However, the complex processes and unsatisfactory PO yield for current electrochemical PER falls short of meeting industrial application requirements. Herein, a spatial-coupling strategy over RuO2/Ti hollow-fiber penetration electrode (HPE) is adopted to facilitate efficient PO production, significantly improving PER performance to ampere level (achieving over 80 % PO faradaic efficiency and a maximum PO current density of 859 mA cm-2). The synergetic combination of the penetration effect of HPE and the spatial-coupled reaction sequence, enables the realization of ampere-level PO production with high specificity, exhibiting significant potentials for economically viable PER applications.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Guanghui Feng
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Xiaocheng Lu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Gangfeng Wu
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Guihua Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Shoujie Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Jianing Mao
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Aohui Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P.R. China
| |
Collapse
|
6
|
Cao J, Zhao F, Li C, Zhao Q, Gao L, Ma T, Xu H, Ren X, Liu A. Electrocatalytic Synthesis of Urea: An In-depth Investigation from Material Modification to Mechanism Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403412. [PMID: 38934550 DOI: 10.1002/smll.202403412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Industrial urea synthesis production uses NH3 from the Haber-Bosch method, followed by the reaction of NH3 with CO2, which is an energy-consuming technique. More thorough evaluations of the electrocatalytic C-N coupling reaction are needed for the urea synthesis development process, catalyst design, and the underlying reaction mechanisms. However, challenges of adsorption and activation of reactant and suppression of side reactions still hinder its development, making the systematic review necessary. This review meticulously outlines the progress in electrochemical urea synthesis by utilizing different nitrogen (NO3 -, N2, NO2 -, and N2O) and carbon (CO2 and CO) sources. Additionally, it delves into advanced methods in materials design, such as doping, facet engineering, alloying, and vacancy introduction. Furthermore, the existing classes of urea synthesis catalysts are clearly defined, which include 2D nanomaterials, materials with Mott-Schottky structure, materials with artificially frustrated Lewis pairs, single-atom catalysts (SACs), and heteronuclear dual-atom catalysts (HDACs). A comprehensive analysis of the benefits, drawbacks, and latest developments in modern urea detection techniques is discussed. It is aspired that this review will serve as a valuable reference for subsequent designs of highly efficient electrocatalysts and the development of strategies to enhance the performance of electrochemical urea synthesis.
Collapse
Affiliation(s)
- Jianghui Cao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Chengjie Li
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Weifang, 262700, China
| | - Qidong Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Tingli Ma
- Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China
| | - Hao Xu
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Leicester International Institute, Dalian University of Technology, Panjin, 124221, China
| |
Collapse
|
7
|
Yan H, Lei H, Qin X, Liu JC, Cai L, Hu S, Xiao Z, Peng F, Wang WW, Jin Z, Yi X, Zheng A, Ma C, Jia CJ, Zeng J. Facet-Dependent Diversity of Pt-O Coordination for Pt 1/CeO 2 Catalysts Achieved by Oriented Atomic Deposition. Angew Chem Int Ed Engl 2024:e202411264. [PMID: 39136438 DOI: 10.1002/anie.202411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Indexed: 10/17/2024]
Abstract
The surface chemistry of CeO2 is dictated by the well-defined facets, which exert great influence on the supported metal species and the catalytic performance. Here we report Pt1/CeO2 catalysts exhibiting specific structures of Pt-O coordination on different facets by using adequate preparation methods. The simple impregnation method results in Pt-O3 coordination on the predominantly exposed {111} facets, while the photo-deposition method achieves oriented atomic deposition for Pt-O4 coordination into the "nano-pocket" structure of {100} facets at the top. Compared to the impregnated Pt1/CeO2 catalyst showing normal redox properties and low-temperature activity for CO oxidation, the photo-deposited Pt1/CeO2 exhibits uncustomary strong metal-support interaction and extraordinary high-temperature stability. The preparation methods dictate the facet-dependent diversity of Pt-O coordination, resulting in the further activity-selectivity trade-off. By applying specific preparation routes, our work provides an example of disentangling the effects of support facets and coordination environments for nano-catalysts.
Collapse
Grants
- 2021YFA1500500, 2019YFA0405600, 2021YFA1501103 National Key Research and Development Program of China
- YSBR-051 CAS Project for Young Scientists in Basic Research
- 22221003, 22250007, 22361162655, 21771117, 22075166, 22302185 National Natural Science Foundation of China
- 21925204, 22225110 National Science Fund for Distinguished Young Scholars
- XDB0450000 Fundamental Research Funds for the Central Universities, Strategic Priority Research Program of the Chinese Academy of Sciences
- 2022HSC-CIP004 Collaborative Innovation Program of Hefei Science Center, CAS
- YLU-DNL Fund 2022012 the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy
- 123GJHZ2022101GC International Partnership Program of Chinese Academy of Sciences
- 2308085QB53 the Young Scholars Program of Shandong University, Anhui Natural Science Foundation for Young Scholars
- 2022QNRC001 Young Elite Scientists Sponsorship Program by CAST
- 2021M691753 China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Han Yan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Haofan Lei
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xuetao Qin
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jin-Cheng Liu
- Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China
| | - Lihua Cai
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Sunpei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Zizhen Xiao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Fenglin Peng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Zhao Jin
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Xianfeng Yi
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
| | - Anmin Zheng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, P. R. China
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, Hubei Province for Coal Conversion and New Carbon Materials, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China
| |
Collapse
|
8
|
Chu YJ, Zhu CY, Liu CG, Geng Y, Su ZM, Zhang M. Carbon-metal versus metal-metal synergistic mechanism of ethylene electro-oxidation via electrolysis of water on TM 2N 6 sites in graphene. Chem Sci 2024:d4sc03944k. [PMID: 39144461 PMCID: PMC11320337 DOI: 10.1039/d4sc03944k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Acetaldehyde (AA) and ethylene oxide (EO) are important fine chemicals, and are also substrates with wide applications for high-value chemical products. Direct electrocatalytic oxidation of ethylene to AA and EO can avoid the untoward effects from harmful byproducts and high energy emissions. The most central intermediate state is the co-adsorption and coupling of ethylene and active oxygen intermediates (*O) at the active site(s), which is restricted by two factors: the stability of the *O intermediate generated during the electrolysis of water on the active site at a certain applied potential and pH range; and the lower kinetic energy barriers of the oxidation process based on the thermo-migration barrier from the *O intermediate to produce AA/EO. The benefit of two adjacent active atoms is more promising, since diverse adsorption and flexible catalytic sites may be provided for elementary reaction steps. Motivated by this strategy, we explored the feasibility of various homonuclear TM2N6@graphenes with dual-atomic-site catalysts (DASCs) for ethylene electro-oxidation through first-principles calculations via thermodynamic evaluation, analysis of the surface Pourbaix diagram, and kinetic evaluation. Two reaction mechanisms through C-TM versus TM-TM synergism were determined. Between them, a TM-TM mechanism on 4 TM2N6@graphenes and a C-TM mechanism on 5 TM2N6@graphenes are built. All 5 TM2N6@graphenes through the C-TM mechanism exhibit lower kinetic energy barriers for AA and EO generation than the 4 TM2N6@graphenes through the TM-TM mechanism. In particular, Pd2N6@graphene exhibits the most excellent catalytic activity, with energy barriers for generating AA and EO of only 0.02 and 0.65 eV at an applied potential of 1.77 V vs. RHE for the generation of an active oxygen intermediate. Electronic structure analysis indicates that the intrinsic C-TM mechanism is more advantageous than the TM-TM mechanism for ethylene electro-oxidation, and this study also provides valuable clues for further experimental exploration.
Collapse
Affiliation(s)
- Yun-Jie Chu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Chang-Yan Zhu
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Chun-Guang Liu
- Department of Chemistry, Faculty of Science, Beihua University Jilin City 132013 P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| | - Zhong-Min Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University Changchun 130021 P. R. China
| | - Min Zhang
- Institute of Functional Material Chemistry, Faculty of Chemistry, National & Local United Engineering Laboratory for Power Batteries, Northeast Normal University Changchun 130024 China
| |
Collapse
|
9
|
Xiao Y, Li H, Yao B, Xiao K, Wang Y. Hollow g-C 3N 4@Ag 3PO 4 Core-Shell Nanoreactor Loaded with Au Nanoparticles: Boosting Photothermal Catalysis in Confined Space. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308032. [PMID: 38801010 DOI: 10.1002/smll.202308032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Indexed: 05/29/2024]
Abstract
Low solar energy utilization efficiency and serious charge recombination remain major challenges for photocatalytic systems. Herein, a hollow core-shell Au/g-C3N4@Ag3PO4 photothermal nanoreactor is successfully prepared by a two-step deposition method. Benefit from efficient spectral utilization and fast charge separation induced by the unique hollow core-shell heterostructure, the H2 evolution rate of Au/g-C3N4@Ag3PO4 is 16.9 times that of the pristine g-C3N4, and the degradation efficiency of tetracycline is increased by 88.1%. The enhanced catalytic performance can be attributed to the ordered charge movement on the hollow core-shell structure and a local high-temperature environment, which effectively accelerates the carrier separation and chemical reaction kinetics. This work highlights the important role of the space confinement effect in photothermal catalysis and provides a promising strategy for the development of the next generation of highly efficient photothermal catalysts.
Collapse
Affiliation(s)
- Yawei Xiao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Haoyu Li
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Bo Yao
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
| | - Kai Xiao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yude Wang
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 6500504, P. R. China
- Yunnan Key Laboratory of Carbon Neutrality and Green Low-carbon Technologies, Yunnan University, Kunming, 650504, P. R. China
| |
Collapse
|
10
|
Li X, Yang C, Tang Z. Electrifying oxidation of ethylene and propylene. Chem Commun (Camb) 2024; 60:6703-6716. [PMID: 38863326 DOI: 10.1039/d4cc02025a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Ethylene and propylene, as essential precursors in the chemical industry, have been playing a pivotal role in the production of various value-added chemicals that find wide applications in diverse sectors, such as polymer synthesis, lithium-ion battery electrolytes, antifreeze agents and pharmaceuticals. Nevertheless, traditional methods for olefin functionalization including chlorohydrination and epoxidation involve energy-intensive steps and environment-detrimental by-products. In contrast, electrocatalysis is emerging as a promising and sustainable approach for olefin oxidation via utilizing renewable electricity. Recent advancements in energy storage and conversion technologies have intensified the research efforts toward designing efficient electrocatalysts for the selective oxidation of ethylene and propylene, highlighting the shift towards more sustainable production methods. Herein, we summarize recent progress in the electrocatalytic oxidation of ethylene and propylene, focusing on achievement in catalyst design, reaction system selection and mechanism exploration. We figure out the advantages of different oxidation methods for improved performance and discuss the various types of catalysts like noble metals, non-noble metals, metal oxides and carbon-based materials, in facilitating the electrochemical oxidation of ethylene and propylene. Finally, we also provide an overview of current challenges and problems requiring further works.
Collapse
Affiliation(s)
- Xinwei Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Caoyu Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiyong Tang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Wang H, Wang S, Song Y, Zhao Y, Li Z, Shen Y, Peng Z, Gao D, Wang G, Bao X. Boosting Electrocatalytic Ethylene Epoxidation by Single Atom Modulation. Angew Chem Int Ed Engl 2024; 63:e202402950. [PMID: 38512110 DOI: 10.1002/anie.202402950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/11/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The electrochemical synthesis of ethylene oxide (EO) using ethylene and water under ambient conditions presents a low-carbon alternative to existing industrial production process. Yet, the electrocatalytic ethylene epoxidation route is currently hindered by largely insufficient activity, EO selectivity, and long-term stability. Here we report a single atom Ru-doped hollandite structure KIr4O8 (KIrRuO) nanowire catalyst for efficient EO production via a chloride-mediated ethylene epoxidation process. The KIrRuO catalyst exhibits an EO partial current density up to 0.7 A cm-2 and an EO yield as high as 92.0 %. The impressive electrocatalytic performance towards ethylene epoxidation is ascribed to the modulation of electronic structures of adjacent Ir sites by single Ru atoms, which stabilizes the *CH2CH2OH intermediate and facilitates the formation of active Cl2 species during the generation of 2-chloroethanol, the precursor of EO. This work provides a single atom modulation strategy for improving the reactivity of adjacent metal sites in heterogeneous electrocatalysts.
Collapse
Affiliation(s)
- Hanyu Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yanpeng Song
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yang Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhenyu Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yuxiang Shen
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangquan Peng
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dunfeng Gao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Guoxiong Wang
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xinhe Bao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
12
|
Si D, Teng X, Xiong B, Chen L, Shi J. Electrocatalytic functional group conversion-based carbon resource upgrading. Chem Sci 2024; 15:6269-6284. [PMID: 38699249 PMCID: PMC11062096 DOI: 10.1039/d4sc00175c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/23/2024] [Indexed: 05/05/2024] Open
Abstract
The conversions of carbon resources, such as alcohols, aldehydes/ketones, and ethers, have been being one of the hottest topics most recently for the goal of carbon neutralization. The emerging electrocatalytic upgrading has been regarded as a promising strategy aiming to convert carbon resources into value-added chemicals. Although exciting progress has been made and reviewed recently in this area by mostly focusing on the explorations of valuable anodic oxidation or cathodic reduction reactions individually, however, the reaction rules of these reactions are still missing, and how to purposely find or rationally design novel but efficient reactions in batches is still challenging. The properties and transformations of key functional groups in substrate molecules play critically important roles in carbon resources conversion reactions, which have been paid more attention to and may offer hidden keys to achieve the above goal. In this review, the properties of functional groups are addressed and discussed in detail, and the reported electrocatalytic upgrading reactions are summarized in four categories based on the types of functional groups of carbon resources. Possible reaction pathways closely related to functional groups will be summarized from the aspects of activation, cleavage and formation of chemical bonds. The current challenges and future opportunities of electrocatalytic upgrading of carbon resources are discussed at the end of this review.
Collapse
Affiliation(s)
- Di Si
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Xue Teng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| | - Bingyan Xiong
- Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University Shanghai 200072 P. R. China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular and Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
- Institute of Eco-Chongming Shanghai 202162 China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| |
Collapse
|
13
|
An N, Chen T, Zhang J, Wang G, Yan M, Yang S. Rational Electrochemical Design of Cuprous Oxide Hierarchical Microarchitectures and Their Derivatives for SERS Sensing Applications. SMALL METHODS 2024; 8:e2300910. [PMID: 38415973 DOI: 10.1002/smtd.202300910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/02/2024] [Indexed: 02/29/2024]
Abstract
Rational morphology control of inorganic microarchitectures is important in diverse fields, requiring precise regulation of nucleation and growth processes. While wet chemical methods have achieved success regarding the shape-controlled synthesis of micro/nanostructures, accurately controlling the growth behavior in real time remains challenging. Comparatively, the electrodeposition technique can immediately control the growth behavior by tuning the overpotential, whereas it is rarely used to design complex microarchitectures. Here, the electrochemical design of complex Cu2O microarchitectures step-by-step by precisely controlling the growth behavior is demonstrated. The growth modes can be switched between the thermodynamic and kinetic modes by varying the overpotential. Cl- ions preferably adhered to {100} facets to modulate growth rates of these facets is proved. The discovered growth modes to prepare Cu2O microarchitectures composed of multiple building units inaccessible with existing methods are employed. Polyvinyl alcohol (PVA) additives can guarantee all pre-electrodeposits simultaneously evolve into uniform microarchitectures, instead of forming undesired microstructures on bare electrode surfaces in following electrodeposition processes is discovered. The designed Cu2O microarchitectures can be converted into noble metal microstructures with shapes unchanged, which can be used as surface-enhanced Raman scattering substrates. An electrochemical avenue toward rational design of complex inorganic microarchitectures is opened up.
Collapse
Affiliation(s)
- Ning An
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tiantian Chen
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Junfeng Zhang
- School of Physics and Information, Shanxi Normal University, Taiyuan, 030031, China
| | - Guanghui Wang
- School of Automotive Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Mi Yan
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou, 014030, China
| | - Shikuan Yang
- Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institution of Rare Earths, Baotou, 014030, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| |
Collapse
|
14
|
Chi M, Ke J, Liu Y, Wei M, Li H, Zhao J, Zhou Y, Gu Z, Geng Z, Zeng J. Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis. Nat Commun 2024; 15:3646. [PMID: 38684683 PMCID: PMC11059342 DOI: 10.1038/s41467-024-48070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 04/19/2024] [Indexed: 05/02/2024] Open
Abstract
The electrochemical synthesis of propylene oxide is far from practical application due to the limited performance (including activity, stability, and selectivity). In this work, we spatially decouple the bromide-mediated process to avoid direct contact between the anode and propylene, where bromine is generated at the anode and then transferred into an independent reactor to react with propylene. This strategy effectively prevents the side reactions and eliminates the interference to stability caused by massive alkene input and vigorously stirred electrolytes. As expected, the selectivity for propylene oxide reaches above 99.9% with a remarkable Faradaic efficiency of 91% and stability of 750-h (>30 days). When the electrode area is scaled up to 25 cm2, 262 g of pure propylene oxide is obtained after 50-h continuous electrolysis at 6.25 A. These findings demonstrate that the electrochemical bromohydrin route represents a viable alternative for the manufacture of epoxides.
Collapse
Grants
- This work was supported by National Key Research and Development Program of China (2021YFA1500500, 2019YFA0405600), National Science Fund for Distinguished Young Scholars (21925204), NSFC (U19A2015, 22221003, 22250007, and 22209161), Provincial Key Research and Development Program of Anhui (202004a05020074), CAS project for young scientists in basic research (YSBR-051), K. C. Wong Education (GJTD-2020-15), Collaborative Innovation Program of Hefei Science Center, CAS (2022HSC-CIP004), the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2022012), International Partnership Program of Chinese Academy of Sciences (123GJHZ2022101GC), USTC Research Funds of the Double First-Class Initiative (YD2340002002, YD9990002014), and Fundamental Research Funds for the Central Universities.
Collapse
Affiliation(s)
- Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Miaojin Wei
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Yuxuan Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- Department of Chemical Physics, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University of Technology, 243002, Ma'anshan, Anhui, P. R. China.
| |
Collapse
|
15
|
Huang JE, Chen Y, Ou P, Ding X, Yan Y, Dorakhan R, Lum Y, Li XY, Bai Y, Wu C, Fan M, Lee MG, Miao RK, Liu Y, O'Brien C, Zhang J, Tian C, Liang Y, Xu Y, Luo M, Sinton D, Sargent EH. Selective Electrified Propylene-to-Propylene Glycol Oxidation on Activated Rh-Doped Pd. J Am Chem Soc 2024; 146:8641-8649. [PMID: 38470826 DOI: 10.1021/jacs.4c00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Renewable-energy-powered electrosynthesis has the potential to contribute to decarbonizing the production of propylene glycol, a chemical that is used currently in the manufacture of polyesters and antifreeze and has a high carbon intensity. Unfortunately, to date, the electrooxidation of propylene under ambient conditions has suffered from a wide product distribution, leading to a low faradic efficiency toward the desired propylene glycol. We undertook mechanistic investigations and found that the reconstruction of Pd to PdO occurs, followed by hydroxide formation under anodic bias. The formation of this metastable hydroxide layer arrests the progressive dissolution of Pd in a locally acidic environment, increases the activity, and steers the reaction pathway toward propylene glycol. Rh-doped Pd further improves propylene glycol selectivity. Density functional theory (DFT) suggests that the Rh dopant lowers the energy associated with the production of the final intermediate in propylene glycol formation and renders the desorption step spontaneous, a concept consistent with experimental studies. We report a 75% faradic efficiency toward propylene glycol maintained over 100 h of operation.
Collapse
Affiliation(s)
- Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yiqing Chen
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Xueda Ding
- School of Material Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Yan
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yanwei Lum
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, Singapore 138634, Singapore
| | - Xiao-Yan Li
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yang Bai
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Chengqian Wu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mi Gyoung Lee
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Yanjiang Liu
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Colin O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Cong Tian
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yongxiang Liang
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| | - Yi Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Mingchuan Luo
- School of Material Science and Engineering, Peking University, Beijing 100871, China
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada
| |
Collapse
|
16
|
Chi M, Zhao J, Ke J, Liu Y, Wang R, Wang C, Hung SF, Lee TJ, Geng Z, Zeng J. Bipyridine-Confined Silver Single-Atom Catalysts Facilitate In-Plane C-O Coupling for Propylene Electrooxidation. NANO LETTERS 2024; 24:1801-1807. [PMID: 38277670 DOI: 10.1021/acs.nanolett.3c04978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
The electrooxidation of propylene presents a promising route for the production of 1,2-propylene glycol (PG) under ambient conditions. However, the C-O coupling process remains a challenge owing to the high energy barrier. In this work, we developed a highly efficient electrocatalyst of bipyridine-confined Ag single atoms on UiO-bpy substrates (Ag SAs/UiO-bpy), which exposed two in-plane coordination vacancies during reaction for the co-adsorption of key intermediates. Detailed structure and electronic property analyses demonstrate that CH3CHCH2OH* and *OH could stably co-adsorb in a square planar configuration, which then accelerates the charge transfer between them. The combination of stable co-adsorption and efficient charge transfer facilitates the C-O coupling process, thus significantly lowering its energy barrier. At 2.4 V versus a reversible hydrogen electrode, Ag SAs/UiO-bpy achieved a record-high activity of 61.9 gPG m-2 h-1. Our work not only presents a robust electrocatalyst but also advances a new perspective on catalyst design for propylene electrooxidation.
Collapse
Affiliation(s)
- Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruyang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanhao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
17
|
Guo L, Chu R, Hao X, Lei Y, Li H, Ma D, Wang G, Tung CH, Wang Y. Ag 3PO 4 enables the generation of long-lived radical cations for visible light-driven [2 + 2] and [4 + 2] pericyclic reactions. Nat Commun 2024; 15:979. [PMID: 38302484 PMCID: PMC10834519 DOI: 10.1038/s41467-024-45217-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
Photocatalytic redox reactions are important for synthesizing fine chemicals from olefins, but the limited lifetime of radical cation intermediates severely restricts semiconductor photocatalysis efficiency. Here, we report that Ag3PO4 can efficiently catalyze intramolecular and intermolecular [2 + 2] and Diels-Alder cycloadditions under visible-light irradiation. The approach is additive-free, catalyst-recyclable. Mechanistic studies indicate that visible-light irradiation on Ag3PO4 generates holes with high oxidation power, which oxidize aromatic alkene adsorbates into radical cations. In photoreduced Ag3PO4, the conduction band electron (eCB-) has low reduction power due to the delocalization among the Ag+-lattices, while the particle surfaces have a strong electrostatic interaction with the radical cations, which considerably stabilize the radical cations against recombination with eCB-. The radical cation on the particle's surfaces has a lifetime of more than 2 ms, 75 times longer than homogeneous systems. Our findings highlight the effectiveness of inorganic semiconductors for challenging radical cation-mediated synthesis driven by sunlight.
Collapse
Affiliation(s)
- Lirong Guo
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Rongchen Chu
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Xinyu Hao
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Yu Lei
- Key Laboratory of Photochemistry, Institute of Chemistry Chinese Academy of Sciences Beijing, 100190, Beijing, China
| | - Haibin Li
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Dongge Ma
- College of Chemistry and Materials Engineering Beijing Technology and Business University Beijing, 100048, Beijing, China
| | - Guo Wang
- Department of Chemistry Capital Normal University Beijing, 100048, Beijing, China
| | - Chen-Ho Tung
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China
| | - Yifeng Wang
- Key Lab for Colloid and Interface Science of Ministry of Education, School of Chemistry and Chemical Engineering Shandong University Jinan, 250100, Jinan, China.
| |
Collapse
|
18
|
Chung M, Maalouf JH, Adams JS, Jiang C, Román-Leshkov Y, Manthiram K. Direct propylene epoxidation via water activation over Pd-Pt electrocatalysts. Science 2024; 383:49-55. [PMID: 38175873 DOI: 10.1126/science.adh4355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024]
Abstract
Direct electrochemical propylene epoxidation by means of water-oxidation intermediates presents a sustainable alternative to existing routes that involve hazardous chlorine or peroxide reagents. We report an oxidized palladium-platinum alloy catalyst (PdPtOx/C), which reaches a Faradaic efficiency of 66 ± 5% toward propylene epoxidation at 50 milliamperes per square centimeter at ambient temperature and pressure. Embedding platinum into the palladium oxide crystal structure stabilized oxidized platinum species, resulting in improved catalyst performance. The reaction kinetics suggest that epoxidation on PdPtOx/C proceeds through electrophilic attack by metal-bound peroxo intermediates. This work demonstrates an effective strategy for selective electrochemical oxygen-atom transfer from water, without mediators, for diverse oxygenation reactions.
Collapse
Affiliation(s)
- Minju Chung
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joseph H Maalouf
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason S Adams
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chenyu Jiang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Karthish Manthiram
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
19
|
Liu Y, Yang Z, Zou Y, Wang S, He J. Interfacial Micro-Environment of Electrocatalysis and Its Applications for Organic Electro-Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306488. [PMID: 37712127 DOI: 10.1002/smll.202306488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.
Collapse
Affiliation(s)
- Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junying He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
20
|
Wang J, Wu G, Feng G, Li G, Wei Y, Li S, Mao J, Liu X, Chen A, Song Y, Dong X, Wei W, Chen W. Electrochemical Epoxidation of Propylene to Propylene Oxide via Halogen-Mediated Systems. ACS OMEGA 2023; 8:46569-46576. [PMID: 38107883 PMCID: PMC10720275 DOI: 10.1021/acsomega.3c05508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/18/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023]
Abstract
As one of the most important derivatives of propylene, the production of propylene oxide (PO) is severely restricted. The traditional chlorohydrin process is being eliminated due to environmental concerns, while processes such as Halcon and hydrogen peroxide epoxidation are limited by cost and efficiency, making it difficult to meet market demand. Therefore, achieving PO production through clean and efficient technologies has received extensive attention, and halogen-mediated electrochemical epoxidation of alkene is considered to be a desirable technology for the production of alkylene oxide. In this work, we used electrochemical methods to synthesize PO in halogen-mediated systems based on a RuO2-loaded Ti (RuO2/Ti) anode and screened out two potential mediated systems of chlorine (Cl) and bromine (Br) for the electrosynthesis of PO. At a current density of 100 mA·cm-2, both Cl- and Br-mediated systems delivered PO Faradaic efficiencies of more than 80%. In particular, the Br-mediated system obtained PO Faradaic efficiencies of more than 90% at lower potentials (≤1.5 V vs RHE) with better electrode structure durability. Furthermore, detailed product distribution investigations and DFT calculations suggested hypohalous acid molecules as key reaction intermediates in both Cl- and Br-mediated systems. This work presents a green and efficient PO production route with halogen-mediated electrochemical epoxidation of propylene driven by renewable electricity, exhibiting promising potential to replace the traditional chlorohydrin process.
Collapse
Affiliation(s)
- Jiangjiang Wang
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gangfeng Wu
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guanghui Feng
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Guihua Li
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yiheng Wei
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Shoujie Li
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Jianing Mao
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaohu Liu
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Aohui Chen
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Yanfang Song
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Xiao Dong
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
| | - Wei Wei
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
- School
of Physical Science and Technology, ShanghaiTech
University, Shanghai 201203, P.R. China
| | - Wei Chen
- Low-Carbon
Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P.R. China
- University
of the Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
21
|
Xiao H, Bai M, Zhao M, Fu Z, Wang W, Zhao P, Ma J, Zhang L, Zhang J, He Y, Zhang J, Jia J. Interfacial carbon dots introduced distribution-structure modulation of Pt loading on graphene towards enhanced electrocatalytic hydrogen evolution reaction. J Colloid Interface Sci 2023; 656:214-224. [PMID: 37989054 DOI: 10.1016/j.jcis.2023.11.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
To easily load Pt on smoothy graphene synthesized by cathodic exfoliation method and achieve adjacent plane distribution of Pt, carbon dots (CDs) are used to construct anchoring points to load highly dispersed Pt species due to strong interaction between CDs and Pt species. The composite of Pt-CDs/graphene is synthesized via a continuous process of cathodic exfoliation-hydrothermal-impregnation-reduction. Characterization results indicate the distribution configuration of Pt varies from coated structure of CDs@Pt to dispersed configuration of CDs&Pt or Pt&CDs, then to wrapping configuration of Pt@CDs with increased amount of CDs. It's found that suitable introduction of CDs promotes the adjacent plane distribution of Pt species. The obtained best Pt-4CDs/G shows the low overpotential of 36 mV (10 mA⋅cm-2) and high mass activity of 3747.8 mA mg-1 at -40 mV towards electrocatalytic hydrogen evolution reaction (HER), 9.2 times more active than that of Pt/C (406.2 mA mg-1). The superior HER performance of Pt-4CDs/G is attributed to its relatively adjacent plane distribution of Pt, which supports high electrochemically active surface area and more adjacent Pt sites for H* adsorption. Benefitting from that, the HER process for Pt-4CDs/G favorably follows the Tafel pathway, resulting in low hydrogen adsorption free energy and excellent HER activity.
Collapse
Affiliation(s)
- He Xiao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Meng Bai
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| | - Zimei Fu
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Wenxiang Wang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Peipei Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Jiamin Ma
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Li Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Junming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China
| | - Yingluo He
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan
| | - Jian Zhang
- State Key Laboratory of Solidification Processing and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials Ministry of Education, The School of Chemical and Material Science, Shanxi Normal University, Taiyuan 030000, China.
| |
Collapse
|
22
|
Chen BH, Kumar G, Wei YJ, Ma HH, Kao JC, Chou PJ, Chuang YC, Chen IC, Chou JP, Lo YC, Huang MH. Experimental Revelation of Surface and Bulk Lattices in Faceted Cu 2 O Crystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303491. [PMID: 37381620 DOI: 10.1002/smll.202303491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Indexed: 06/30/2023]
Abstract
Semiconductor crystals have generally shown facet-dependent electrical, photocatalytic, and optical properties. These phenomena have been proposed to result from the presence of a surface layer with bond-level deviations. To provide experimental evidence of this structural feature, synchrotron X-ray sources are used to obtain X-ray diffraction (XRD) patterns of polyhedral cuprous oxide crystals. Cu2 O rhombic dodecahedra display two distinct cell constants from peak splitting. Peak disappearance during slow Cu2 O reduction to Cu with ammonia borane differentiates bulk and surface layer lattices. Cubes and octahedra also show two peak components, while diffraction peaks of cuboctahedra are comprised of three components. Temperature-varying lattice changes in the bulk and surface regions also show shape dependence. From transmission electron microscopy (TEM) images, slight plane spacing deviations in surface and inner crystal regions are measured. Image processing provides visualization of the surface layer with depths of about 1.5-4 nm giving dashed lattice points instead of dots from atomic position deviations. Close TEM examination reveals considerable variation in lattice spot size and shape for different particle morphologies, explaining why facet-dependent properties are emerged. Raman spectrum reflects the large bulk and surface lattice difference in rhombic dodecahedra. Surface lattice difference can change the particle bandgap.
Collapse
Affiliation(s)
- Bo-Hao Chen
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Gautam Kumar
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Jung Wei
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Hsueh-Heng Ma
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jui-Cheng Kao
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Po-Jung Chou
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - I-Chia Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Jyh-Pin Chou
- Department of Physics, National Changhua University of Education, Changhua, 50007, Taiwan
| | - Yu-Chieh Lo
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Michael H Huang
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
23
|
Ke J, Chi M, Zhao J, Liu Y, Wang R, Fan K, Zhou Y, Xi Z, Kong X, Li H, Zeng J, Geng Z. Dynamically Reversible Interconversion of Molecular Catalysts for Efficient Electrooxidation of Propylene into Propylene Glycol. J Am Chem Soc 2023; 145:9104-9111. [PMID: 36944146 DOI: 10.1021/jacs.3c00660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
For the electrooxidation of propylene into 1,2-propylene glycol (PG), the process involves two key steps of the generation of *OH and the transfer of *OH to the C═C bond in propylene. The strong *OH binding energy (EB(*OH)) favors the dissociation of H2O into *OH, whereas the transfer of *OH to propylene will be impeded. The scaling relationship of the EB(*OH) plays a key role in affecting the catalytic performance toward propylene electrooxidation. Herein, we adopt an immobilized Ag pyrazole molecular catalyst (denoted as AgPz) as the electrocatalyst. The pyrrolic N-H in AgPz could undergo deprotonation to form pyrrolic N (denoted as AgPz-Hvac), which can be protonated reversibly. During propylene electrooxidation, the strong EB(*OH) on AgPz favors the dissociation of H2O into *OH. Subsequently, the AgPz transforms into AgPz-Hvac that possesses weak EB(*OH), benefiting to the further combination of *OH and propylene. The dynamically reversible interconversion between AgPz and AgPz-Hvac accompanied by changeable EB(*OH) breaks the scaling relationship, thus greatly lowering the reaction barrier. At 2.0 V versus Ag/AgCl electrode, AgPz achieves a remarkable yield rate of 288.9 mmolPG gcat-1 h-1, which is more than one order of magnitude higher than the highest value ever reported.
Collapse
Affiliation(s)
- Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruyang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kaiyuan Fan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuxuan Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhikai Xi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
24
|
Zhang C, Yuan L, Liu C, Li Z, Zou Y, Zhang X, Zhang Y, Zhang Z, Wei G, Yu C. Crystal Engineering Enables Cobalt-Based Metal-Organic Frameworks as High-Performance Electrocatalysts for H 2O 2 Production. J Am Chem Soc 2023; 145:7791-7799. [PMID: 36896469 DOI: 10.1021/jacs.2c11446] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Metal-organic frameworks (MOFs) with highly adjustable structures are an emerging family of electrocatalysts in two-electron oxygen reduction reaction (2e-ORR) for H2O2 production. However, the development of MOF-based 2e-ORR catalysts with high H2O2 selectivity and production rate remains challenging. Herein, an elaborate design with fine control over MOFs at both atomic and nano-scale is demonstrated, enabling the well-known Zn/Co bimetallic zeolite imidazole frameworks (ZnCo-ZIFs) as excellent 2e-ORR electrocatalysts. Experimental results combined with density functional theory simulation have shown that the atomic level control can regulate the role of water molecules participating in the ORR process, and the morphology control over desired facet exposure adjusts the coordination unsaturation degree of active sites. The structural regulation at two length scales leads to synchronous control over both the kinetics and thermodynamics for ORR on bimetallic ZIF catalysts. The optimized ZnCo-ZIF with a Zn/Co molar ratio of 9/1 and predominant {001} facet exposure exhibits a high 2e- selectivity of ∼100% and a H2O2 yield of 4.35 mol gcat-1 h-1. The findings pave a new avenue toward the development of multivariate MOFs as advanced 2e-ORR electrocatalysts.
Collapse
Affiliation(s)
- Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zimeng Li
- College of Chemical Engineering, Fuzhou University, Fuzhou 350002, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Xinchan Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Yue Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Zhiqiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
25
|
Xia Q, Liu B, Wang C, Shen T, Li S, Bu Y, Zhang Y, Lu Z, Gao G. Electrostatic-induced green and precise growth of model catalysts. Proc Natl Acad Sci U S A 2023; 120:e2217256120. [PMID: 36802424 PMCID: PMC9992858 DOI: 10.1073/pnas.2217256120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/31/2022] [Indexed: 02/23/2023] Open
Abstract
Crystallographic control of crystals as catalysts with precise geometrical and chemical features is significantly important to develop sustainable chemistry, yet highly challenging. Encouraged by first principles calculations, precise structure control of ionic crystals could be realized by introducing an interfacial electrostatic field. Herein, we report an efficient in situ dipole-sourced electrostatic field modulation strategy using polarized ferroelectret, for crystal facet engineering toward challenging catalysis reactions, which avoids undesired faradic reactions or insufficient field strength by conventional external electric field. Resultantly, a distinct structure evolution from tetrahedron to polyhedron with different dominated facets of Ag3PO4 model catalyst was obtained by tuning the polarization level, and similar oriented growth was also realized by ZnO system. Theoretical calculations and simulation reveal that the generated electrostatic field can effectively guide the migration and anchoring of Ag+ precursors and free Ag3PO4 nuclei, achieving oriented crystal growth by thermodynamic and kinetic balance. The faceted Ag3PO4 catalyst exhibits high performance in photocatalytic water oxidation and nitrogen fixation for valuable chemicals production, validating the effectiveness and potential of this crystal regulation strategy. Such an electrically tunable growth concept by electrostatic field provides new synthetic insights and great opportunity to effectively tailor the crystal structures for facet-dependent catalysis.
Collapse
Affiliation(s)
- Qiancheng Xia
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Bin Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou225002, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Tao Shen
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Shuang Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Yongguang Bu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
| | - Yuchen Zhang
- College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing210023, China
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing210023, China
| |
Collapse
|
26
|
Zhong W, Huang W, Ruan S, Zhang Q, Wang Y, Xie S. Electrocatalytic Reduction of CO 2 Coupled with Organic Conversion to Selectively Synthesize High-Value Chemicals. Chemistry 2022; 29:e202203228. [PMID: 36454216 DOI: 10.1002/chem.202203228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022]
Abstract
The electrochemical process of coupling electrocatalytic CO2 reduction and organic conversion reaction can effectively reduce the reaction overpotential and obtain value-added chemicals. Moreover, because of the diversity of substrates and the designability of coupling forms, more and more attention has been paid to this field. This review systematically summarizes the research progress of coupling electrolysis in recent years, (1) co-electrolysis of CO2 and organics at the cathode to obtain specific products with high selectivity, (2) replacing traditional anodic oxygen evolution reaction (OER) with other valuable oxidation reactions to improve energy utilization efficiency and economic benefits of CO2 conversion, (3) in an electrolytic cell without membrane, the cathode and anode jointly transform CO2 and organics to redox products. We hope that the examples and insights on coupling electrolysis introduced in this review can inspire researchers to further explore and innovate in this direction.
Collapse
Affiliation(s)
- Wanfu Zhong
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Wenhao Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Sunhong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Qinghong Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Ye Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, Fujian, P. R. China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces Collaborative Innovation Center of Chemistry for Energy Materials National Engineering Laboratory for Green Chemical Productions of Alcohols Ethers and Esters College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China.,Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, 361005, Fujian, P. R. China
| |
Collapse
|
27
|
Green synthesis of stable S-scheme C-ZnO nanosheet/Ag3PO4 heterostructure towards extremely efficient visible-light catalytic degradation of ciprofloxacin. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Liu XC, Wang T, Zhang ZM, Yang CH, Li LY, Wu S, Xie S, Fu G, Zhou ZY, Sun SG. Reaction Mechanism and Selectivity Tuning of Propene Oxidation at the Electrochemical Interface. J Am Chem Soc 2022; 144:20895-20902. [DOI: 10.1021/jacs.2c09105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiao-Chen Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Tao Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhi-Ming Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Cong-Hua Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Lai-Yang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shimiao Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shunji Xie
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Gang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Shi-Gang Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
29
|
Centi G, Perathoner S. Catalysis for an Electrified Chemical Production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
30
|
Lin X, Zhou Z, Li Q, Xu D, Xia S, Leng B, Zhai G, Zhang S, Sun L, Zhao G, Chen J, Li X. Direct Oxygen Transfer from H
2
O to Cyclooctene over Electron‐Rich RuO
2
Nanocrystals for Epoxidation and Hydrogen Evolution. Angew Chem Int Ed Engl 2022; 61:e202207108. [DOI: 10.1002/anie.202207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xiu Lin
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoyu Zhou
- School of Chemical Science and Engineering Shanghai Key Lab of Chemical Assessment and Sustainability Tongji University Shanghai 200092 P. R. China
| | - Qi‐Yuan Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Dong Xu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Si‐Yuan Xia
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Bing‐Liang Leng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guang‐Yao Zhai
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Shi‐Nan Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lu‐Han Sun
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guohua Zhao
- School of Chemical Science and Engineering Shanghai Key Lab of Chemical Assessment and Sustainability Tongji University Shanghai 200092 P. R. China
| | - Jie‐Sheng Chen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xin‐Hao Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
31
|
Lin X, Zhou Z, Li QY, Xu D, Xia SY, Leng BL, Zhai GY, Zhang SN, Sun LH, Zhao G, Chen JS, Li XH. Direct Oxygen Transfer from H2O to Cyclooctene over Electron‐Rich RuO2 Nanocrystals for Epoxidation and Hydrogen Evolution. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiu Lin
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 上海市闵行区上海交通大学建工楼513 200240 上海市 CHINA
| | - Zhaoyu Zhou
- Tongji University School of Chemical Science and Engineering CHINA
| | - Qi-Yuan Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Dong Xu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Si-Yuan Xia
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Bing-Liang Leng
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Guang-Yao Zhai
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Shi-Nan Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Lu-Han Sun
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Guohua Zhao
- Tongji University School of Chemical Science and Engineering CHINA
| | - Jie-Sheng Chen
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xin-Hao Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering No.800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|