1
|
Mandal A, Prasad Biswas J, Maiti D. Rhodium-Catalyzed Meta-C-H Arylation of Arenes with Varied Linker Lengths: Bridging Catalytic Selectivity with Structural Diversity. Angew Chem Int Ed Engl 2024:e202419954. [PMID: 39563025 DOI: 10.1002/anie.202419954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 11/21/2024]
Abstract
The directing group (DG)-assisted approach has so far been the major route to achieve selective C-H activation at both proximal and distal positions. While rhodium catalysts are highly effective in DG-assisted ortho-C-H arylation, meta-C-H arylation with rhodium has not yet been reported. In this study, we present the first example of Rh-catalyzed meta-C-H arylation of arenes. We found that the 2-cyanophenyl-based directing group, in conjunction with arylboronic acids, selectively promotes meta-arylation with complete mono-selectivity. Despite significant advancements in meta-C-H activation for substrates with shorter linkers, such as hydrocinnamic acids, benzyl alcohols/amines, etc., meta-C-H activation of substrates with longer alkyl chains remains challenging with limited literature examples. We demonstrated that arenes with varying chain lengths, including conformationally flexible and less rigid ones such as 4-phenylbutanoic acid, 5-phenylvaleric acid, 6-phenylcaproic acid, 3-phenylpropanol, and 4-phenylbutanol underwent meta-arylation with high levels of regiocontrol. From a synthetic perspective, this approach could be valuable as it allows to produce biaryl derivatives of flexible arenes with native functional groups at the meta-position. The synthetic utility of this strategy is demonstrated through the total synthesis of CNBCA, a bioactive compound possessing promising potency against the SHP2 enzyme activity in vitro.
Collapse
Affiliation(s)
- Astam Mandal
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| | - Jyoti Prasad Biswas
- Department of Chemistry, G. L. Choudhury College, Barpeta Road, Assam, 781315
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai, 400076, India
| |
Collapse
|
2
|
Mandal T, Kishor Paul B, Islam M, De Sarkar S. Demonstrating Synergistic Activity of Magnetic Iron Oxide Nano Photocatalyst for C-H Activation in Heterogeneous Phase. Chemistry 2024:e202403284. [PMID: 39394726 DOI: 10.1002/chem.202403284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/14/2024]
Abstract
This report describes a dual catalytic approach for the versatile C-H arylation of arenes under photo-excitation at room temperature. The cooperative catalysis utilizes iron oxide magnetic nanoparticles (which mostly contain Fe3O4 along with some γ-Fe2O3) as the potential photocatalyst, which merges with the Pd-catalyzed C-H activation cycle for the reductive generation of aryl radical from aryl diazonium salt, revealing its photocatalytic activities. The method is applicable to a wide range of aryl coupling partners and different directing groups, demonstrating excellent productivity, nice co-operativity and recyclability. Adequate control experiments and mechanistic studies assisted in establishing the radical-based reaction mechanism for the C-H arylation occurring in the heterogeneous phase.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Braja Kishor Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Malekul Islam
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
3
|
Crisanti F, Montag M, Milstein D, Bonin J, von Wolff N. Unlocking metal-ligand cooperative catalytic photochemical benzene carbonylation: a mechanistic approach. Chem Sci 2024:d4sc05683c. [PMID: 39416291 PMCID: PMC11474400 DOI: 10.1039/d4sc05683c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
A key challenge in green synthesis is the catalytic transformation of renewable substrates at high atom and energy efficiency, with minimal energy input (ΔG ≈ 0). Non-thermal pathways, i.e., electrochemical and photochemical, can be used to leverage renewable energy resources to drive chemical processes at well-defined energy input and efficiency. Within this context, photochemical benzene carbonylation to produce benzaldehyde is a particularly interesting, albeit challenging, process that combines unfavorable thermodynamics (ΔG° = 1.7 kcal mol-1) and the breaking of strong C-H bonds (113.5 kcal mol-1) with full atom efficiency and the use of renewable starting materials. Herein, we present a mechanistic study of photochemical benzene carbonylation catalyzed by a rhodium-based pincer complex that is capable of metal-ligand cooperation. The catalytic cycle, comprising both thermal and non-thermal steps, was probed by NMR spectroscopy, UV-visible spectroscopy and spectrophotochemistry, and density functional theory calculations. This investigation provided us with a detailed understanding of the reaction mechanism, allowing us to unlock the catalytic reactivity of the Rh-pincer complex, which represents the first example of a metal-ligand cooperative system for benzene carbonylation, exhibiting excellent selectivity.
Collapse
Affiliation(s)
- Francesco Crisanti
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS F-75013 Paris France
| | - Michael Montag
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science Rehovot 7610001 Israel
| | - Julien Bonin
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS F-75013 Paris France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire F-75005 Paris France
| | - Niklas von Wolff
- Université Paris Cité, Laboratoire d'Electrochimie Moléculaire, CNRS F-75013 Paris France
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire F-75005 Paris France
| |
Collapse
|
4
|
Ghosh K, Ghosh NN, Choudhury P, Bhattacharjee S, Saha R, Deb M, Biswas K. A benzimidazole-based Cu(II) complex catalyzed site-selective C-H sulfenylation of imidazo-[1,2- a]pyridines using CS 2 as a sulfur source. Org Biomol Chem 2024; 22:7791-7800. [PMID: 39240159 DOI: 10.1039/d4ob00868e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A new benzimidazole-based Cu(II) complex catalyzed site-selective sulfenylation of imidazo[1,2-a]pyridines with benzyl/alkyl/allyl bromides and CS2 at 100 °C in DMF : H2O is reported. The present methodology has been developed for the synthesis of 3-sulfenyl imidazo[1,2-a]pyridines in good yields with a broad substrate scope. In this protocol, CS2, commonly known as a non-polar small molecule bioregulator (SMB), is converted to valuable sulfenylated imidazo[1,2-a]pyridine derivatives. In addition, theoretical investigations along with experimental evidence unfold the insights into the probable mechanistic pathway of site-selective sulfenylation from S,S-dibenzyltrithiocarbonate, which is particularly formed as an intermediate during the reaction.
Collapse
Affiliation(s)
- Kingkar Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | | | - Prasun Choudhury
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | | | - Rajat Saha
- Department of Chemistry, Kazi Nazrul University, Asansol, 713340, India
| | - Mayukh Deb
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| | - Kinkar Biswas
- Department of Chemistry, University of North Bengal, Darjeeling 734013, India.
| |
Collapse
|
5
|
Eliwa EM, Bedair AH, Djukic JP. Transition metal-catalyzed C(sp 2/sp 3)-H α-fluoroalkenylation from gem-(bromo/di)fluoroalkenes to monofluoroalkenes: scope, mechanisms, and synthetic applications. Org Biomol Chem 2024; 22:6860-6904. [PMID: 39136141 DOI: 10.1039/d4ob01044b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Organofluorines have a broad range of industrial applications, such as pharmaceuticals, liquid crystal displays (LCDs), solar cells, textiles, and construction coatings, and are used in peptidomimetics, surfactants, refrigerants, anesthetics, and agrochemicals. Among them are versatile monofluoroalkenes that play a crucial role in medicinal and synthetic chemistry. The synthetic strategies for this class of molecules are limited, and prior efforts frequently suffered from poor atom- and step-economies. As a surrogate pathway for traditional cross-coupling transformations, transition metal (TM)-catalyzed C-H direct α-fluoroalkenylation overcomes these obstacles and provides straightforward techniques to access monofluoroalkenes. Nevertheless, substrate scope is still a challenge for catalysis, where gem-bromofluoroalkene synthons are applicable with electronically biased substrates such as azoles, while gem-difluoroalkene-based strategies are limited to substrates containing N-based directing groups. Herein, we review the cutting-edge fluoroalkenylation research for direct synthesis of monofluoroalkenes achieved during the last decade (2013-2023). This review is divided into two main parts: the first part discusses TM-catalyzed direct α-fluoroalkenylation via the merging of C-H activation and C(sp2)-Br cleavage strategies using gem-bromofluoroalkenes, and the second part describes the same reaction, albeit with C(sp2)-F cleavage of highly explored gem-difluoroolefins. Our review surveys all previously reported monofluoroalkenes in this research area, including their preparation techniques, stereoselectivity, and yield percentages. Furthermore, optimal conditions, reactant scope, mechanistic investigations, synthetic applications, benefits, and drawbacks of each presented methodology are critically discussed.
Collapse
Affiliation(s)
- Essam M Eliwa
- Laboratoire de Chimie et Systémique Organométallique - Institut de Chimie de Strasbourg UMR7177, CNRS- Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France.
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Ahmed H Bedair
- Chemistry Department, Faculty of Science (Boys), Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Jean-Pierre Djukic
- Laboratoire de Chimie et Systémique Organométallique - Institut de Chimie de Strasbourg UMR7177, CNRS- Université de Strasbourg, 4, rue Blaise Pascal, 67000 Strasbourg, France.
| |
Collapse
|
6
|
Mandal T, Chaturvedi A, Azim A, Maji R, De Sarkar S. Earth-Abundant Recyclable Magnetic Iron Oxide Nanoparticles for Green-light Mediated C-H Arylation in Heterogeneous Phase. Chemistry 2024; 30:e202401617. [PMID: 38788130 DOI: 10.1002/chem.202401617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
A magnetically isolable iron oxide nanoparticles is introduced as an efficient heterogeneous photocatalyst for non-directed C-H arylation employing aryl diazonium salts as the aryl precursors. This first-row transition metal-based photocatalyst revealed versatile activities and is applicable to a wide range of substrates, demonstrating brilliant efficacy and superior recyclability. Detailed catalytic characterization describes the physical properties and redox behavior of the Fe-catalyst. Adequate control experiments helped to establish the radical-based mechanism for the C-H arylation.
Collapse
Affiliation(s)
- Tanumoy Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Ashwin Chaturvedi
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Aznur Azim
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Rohan Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
7
|
Yu D, Yang W, Chen S, Zhou CY, Guo Z. Photocatalyst-Free Visible Light-Induced C(sp 2)-H Arylation of Quinoxalin-2(1H)-ones and Coumarins. Chemistry 2024; 30:e202401371. [PMID: 38825569 DOI: 10.1002/chem.202401371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 06/04/2024]
Abstract
Herein, we describe a visible light-induced C(sp2)-H arylation method for quinoxalin-2(1H)-ones and coumarins using iodonium ylides without the need for external photocatalysts. The protocol demonstrates a broad substrate scope, enabling the arylation of diverse heterocycles through a simple and mild procedure. Furthermore, the photochemical reaction showcases its applicability in the efficient synthesis of biologically active molecules. Computational investigations at the CASPT2//CASSCF/PCM level of theory revealed that the excited state of quinoxalin-2(1H)-one facilitates electron transfer from its π bond to the antibonding orbital of the C-I bond in the iodonium ylide, ultimately leading to the formation of an aryl radical, which subsequently participates in the C-H arylation process. In addition, our calculations reveal that during the single-electron transfer (SET) process, the C-I bond cleavage in iodonium ylide and new C-C bond formation between resultant aryl radical and cationic quinoxaline species take place in a concerned manner. This enables the arylation reaction to efficiently proceed along an energy-efficient route.
Collapse
Affiliation(s)
- Dingzhe Yu
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Wenjing Yang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| | - Shuicai Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
| |
Collapse
|
8
|
Jacob C, Annibaletto J, Peng J, Bai R, Maes BUW, Lan Y, Evano G. Rhodium-Catalyzed Direct ortho-Arylation of Anilines. Angew Chem Int Ed Engl 2024; 63:e202403553. [PMID: 38683292 DOI: 10.1002/anie.202403553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/01/2024]
Abstract
An efficient and broadly applicable rhodium-catalyzed direct ortho-arylation of anilines with aryl iodides relying on readily available aminophosphines as traceless directing groups is reported. Its scope and functional group compatibility were both found to be quite broad as a large variety of both aminophosphines and (hetero)aryl iodides, including complex ones, could be utilized. The ortho-arylated anilines could be obtained in high average yields, without any competing diarylation and with full regioselectivity, which constitutes a major step forward compared to other processes. The reaction is moreover not limited to aryl iodides, as an aryl bromide and a triflate could be successfully used, and could be extended to diarylation. Mechanistic studies revealed the key and unique role of the aminophosphine, acting not only as a substrate but also as a ligand for the rhodium catalyst.
Collapse
Affiliation(s)
- Clément Jacob
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/06, 1050, Brussels, Belgium
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Julien Annibaletto
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/06, 1050, Brussels, Belgium
| | - Ju Peng
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Bert U W Maes
- Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Yu Lan
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP 160/06, 1050, Brussels, Belgium
- WEL Research Institute, Avenue Pasteur 6, 1300, Wavre, Belgium
| |
Collapse
|
9
|
Mondal S, Jana R. Green light-mediated dual eosin Y/Pd II-catalyzed C(sp 2)-H arylation of N-H unprotected 2-arylquinazolinones. Org Biomol Chem 2024; 22:5540-5545. [PMID: 38916115 DOI: 10.1039/d4ob00779d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
We report herein an eosin Y/Pd(II) dual catalytic approach for regio- and chemoselective C(sp2)-H monoarylation of N-H unprotected 2-phenyl quinazolinone derivatives under green light irradiation with no necessity for any base/additive/external oxidant. The free N-H moiety was post-modified for quinazolinone scaffold diversification and C-H annulation.
Collapse
Affiliation(s)
- Shuvam Mondal
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India.
| |
Collapse
|
10
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
11
|
Michiyuki T, Maksso I, Ackermann L. Photo-Induced Ruthenium-Catalyzed C-H Arylation Polymerization at Ambient Temperature. Angew Chem Int Ed Engl 2024; 63:e202400845. [PMID: 38634987 DOI: 10.1002/anie.202400845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/19/2024]
Abstract
Transition metal-catalyzed C-H arylation polymerization (CHAP) is an attractive tool for constructing π-conjugated polymers in a sustainable manner. However, the existing methods primarily rely on palladium catalysis, which usually entails harsh reaction conditions and branching/cross-linking. Here we report the first example of an ambient-temperature ruthenium-catalyzed C-H arylation polymerization induced by visible light irradiation. The present polymerization can produce various meta- and para-linked polymers in excellent yields with high molecular weights. The remarkable feature of our mild reaction platform is represented by high chemoselectivity, leading to polymers that are otherwise inaccessible under conventional reaction conditions at high temperatures.
Collapse
Affiliation(s)
- Takuya Michiyuki
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Isaac Maksso
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
12
|
Wang X, Zhong J, Luo M, Zeng X. Cr-Catalyzed Intramolecular Arylative Cross-Coupling of Unactivated C-H Bonds with C-Halide Bonds. Org Lett 2024; 26:4093-4097. [PMID: 38717255 DOI: 10.1021/acs.orglett.4c01145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
We report here a chromium-catalyzed intramolecular arylation of unactivated C-H bonds with C-halide bonds under mild conditions. This reaction was enabled by using a low-cost CrCl2 salt as the precatalyst in combination with allylmagnesium bromide and E/Z-mixed 1-halo-2-styrylarenes as substates, providing a strategy for the construction of functionalized phenanthrene compounds without using external ligands.
Collapse
Affiliation(s)
- Xuelan Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jiaoyue Zhong
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Meiming Luo
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaoming Zeng
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
13
|
Su Y, Wang M, Xu J, Chen W, Zhou G. C-H arylation of thiopyran derivatives with aryl halides. Chem Commun (Camb) 2024; 60:5193-5196. [PMID: 38650584 DOI: 10.1039/d4cc00719k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
A C-H arylation of thiopyran derivatives with aryl halides has been developed. Under the catalysis of Pd(OAc)2/Ag2CO3, the C-H arylation takes place at the α-position of the thiopyran ring. When dibromo-substituted compounds are used as reactants, double C-H arylations may occur on the same thiopyran ring at its α- and β-positions.
Collapse
Affiliation(s)
- Yangzhe Su
- Lab of Advanced Materials & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China.
| | - Min Wang
- Lab of Advanced Materials & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China.
| | - Jianping Xu
- Lab of Advanced Materials & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China.
| | - Weinan Chen
- Lab of Advanced Materials & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China.
| | - Gang Zhou
- Lab of Advanced Materials & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, P. R. China.
| |
Collapse
|
14
|
Deng KZ, Sukowski V, Fernández-Ibáñez MÁ. Non-Directed C-H Arylation of Anisole Derivatives via Pd/S,O-Ligand Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400689. [PMID: 38401127 DOI: 10.1002/anie.202400689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Non-directed C-H arylation is one of the most efficient methods to synthesize biaryl compounds without the need of the prefuctionalization of starting materials, or the installment and removal of directing groups on the substrate. A direct C-H arylation of simple arenes as limiting reactants remains a challenge. Here we disclose a non-directed C-H arylation of anisole derivatives as limiting reagents with aryl iodides under mild reaction conditions. The arylated products are obtained in synthetically useful yields and the arylation of bioactive molecules is also demonstrated. Key to the success of this methodology is the use of a one-step synthesized S,O-ligand.
Collapse
Affiliation(s)
- Ke-Zuan Deng
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Verena Sukowski
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - M Ángeles Fernández-Ibáñez
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Kwon Y, Kong Y, Lee M, Lim E, Kwak J, Kim W. Regioselective Arylation of Amidoaryne Precursors via Ag-Mediated Intramolecular Oxy-Argentation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308829. [PMID: 38403474 PMCID: PMC11077674 DOI: 10.1002/advs.202308829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/28/2024] [Indexed: 02/27/2024]
Abstract
An unprecedented silver-mediated intramolecular oxy-argentation of 3-amidoaryne precursors that quickly generates a heteroarylsilver species is developed. AgF acts as both a stoichiometric fluoride source and a reagent for the formation of a benzoxazolylsilver intermediate via aryne generation. Pd-catalyzed coupling reactions of (hetero)aryl iodides with a silver species, generated in situ, allow for the synthesis of various C7-arylated benzoxazoles. As a result, an aryl group is selectively introduced into the meta-position of 3-amidobenzyne precursors. Mechanistic studies have indicated the presence of a benzoxazolylsilver intermediate and revealed that the reaction proceeds via an intramolecular oxy-argentation process, which is initiated by a direct fluoride attack on the silyl group.
Collapse
Affiliation(s)
- Yong‐Ju Kwon
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Ye‐Jin Kong
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Min‐Jung Lee
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Eun‐Hye Lim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| | - Jaesung Kwak
- Infectious Diseases Therapeutic Research CenterKorea Research Institute of Chemical Technology (KRICT)Daejeon34114Republic of Korea
- Division of Medicinal Chemistry and PharmacologyKRICT SchoolUniversity of Science and TechnologyDaejeon34114Republic of Korea
| | - Won‐Suk Kim
- Department of Chemistry and NanoscienceEwha Womans UniversitySeoul03760Republic of Korea
| |
Collapse
|
16
|
Sanz-Marco A, Saavedra B, Erbing E, Malmberg J, Johansson MJ, Martín-Matute B. Selective C-H Iodination of Weinreb Amides and Benzamides through Iridium Catalysis in Solution and under Mechanochemical Conditions. Org Lett 2024; 26:2800-2805. [PMID: 37931032 PMCID: PMC11019638 DOI: 10.1021/acs.orglett.3c03190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
The acid mediated ortho-iodination of Weinreb amides using a readily available catalyst is described. The selective ortho-iodination of Weinreb amides, challenging substrates in directed C-H activations, and also of benzamides is achieved. The process works under mild conditions and tolerates air and moisture, having a great potential for industrial applications. The methodology can be applied under mechanochemical conditions maintaining the reaction outcome and selectivity.
Collapse
Affiliation(s)
- Amparo Sanz-Marco
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Beatriz Saavedra
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Elis Erbing
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| | - Jesper Malmberg
- Medicinal
Chemistry, Research and Early Development, Respiratory and Immunology
(R&I), Biopharmaceuticals R&D, AstraZeneca, Gothenburg 43183, Sweden
| | - Magnus J. Johansson
- Medicinal
Chemistry, Research and Early Development; Cardiovascular, Renal and
Metabolism, Biopharmaceuticals R&D, AstraZeneca, Pepparedsleden
1, Mölndal, 43150 Gothenburg, Sweden
| | - Belén Martín-Matute
- Department
of Organic Chemistry, Stockholm University, Stockholm 10691, Sweden
| |
Collapse
|
17
|
Cai X, Ding D, Zhao S, Wen S, Zhang G, Bai P, Zhang W, Song H, Xu C. Zwitterionic Aqua Palladacycles with Noncovalent Interactions for meta-Selective Suzuki Coupling of 3,4-Dichlorophenol and 3,4-Dichlorobenzyl Alcohol in Water. Inorg Chem 2024; 63:2313-2321. [PMID: 38112695 DOI: 10.1021/acs.inorgchem.3c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The site-selective reaction of substrates with multiple reactive sites has been a focus of the current synthetic chemistry. The use of attractive noncovalent interactions between the catalyst and substrate is emerging as a versatile approach to address site-selectivity challenges. Herein, we designed and synthesized a series of palladacycles, to control meta-selective Suzuki coupling of 3,4-dichlorophenol and 3,4-dichlorobenzyl alcohol. Noncovalent interactions directed zwitterionic aqua palladacycles catalyzed meta-selective Suzuki couplings of 3,4-dichloroarenes bearing hydroxyl in water have been developed. Experiments and density functional theory (DFT) calculations demonstrated that the electrostatic interactions play a critical role in meta-selective coupling of 3,4-dichlorophenol, while meta-selective coupling of 3,4-dichlorobenzyl alcohol arises due to the hydrogen-bonding interactions.
Collapse
Affiliation(s)
- Xingwei Cai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Danli Ding
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shangxun Zhao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Shuo Wen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Guihong Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Pengtao Bai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Wenjing Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001 Henan, China
| | - Heng Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| | - Chen Xu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology. Zhenjiang 212003 Jiangsu, China
| |
Collapse
|
18
|
Li B, Ju CW, Wang W, Gu Y, Chen S, Luo Y, Zhang H, Yang J, Liang HW, Bonn M, Müllen K, Goddard WA, Zhou Y. Heck Migratory Insertion Catalyzed by a Single Pt Atom Site. J Am Chem Soc 2023; 145:24126-24135. [PMID: 37867298 DOI: 10.1021/jacs.3c07851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Single-atom catalysts (SACs) have generated excitement for their potential to downsize metal particles to the atomic limit with engineerable local environments and improved catalytic reactivities and selectivities. However, successes have been limited to small-molecule transformations with little progress toward targeting complex-building reactions, such as metal-catalyzed cross-coupling. Using a supercritical carbon-dioxide-assisted protocol, we report a heterogeneous single-atom Pt-catalyzed Heck reaction, which provides the first C-C bond-forming migratory insertion on SACs. Our quantum mechanical computations establish the reaction mechanism to involve a novel C-rich coordination site (i.e., PtC4) that demonstrates an unexpected base effect. Notably, the base was found to transiently modulate the coordination environment to allow migratory insertion into an M-C species, a process with a high steric impediment with no previous example on SACs. The studies showcase how SACs can introduce coordination structures that have remained underexplored in catalyst design. These findings offer immense potential for transferring the vast and highly versatile reaction manifold of migratory-insertion-based bond-forming protocols to heterogeneous SACs.
Collapse
Affiliation(s)
- Bo Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Cheng-Wei Ju
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Wenlong Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yanwei Gu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuai Chen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yongrui Luo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Haozhe Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, United States
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Wei Liang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - William A Goddard
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Yazhou Zhou
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
19
|
Dutta U, Prakash G, Devi K, Borah K, Zhang X, Maiti D. Directing group assisted para-selective C-H alkynylation of unbiased arenes enabled by rhodium catalysis. Chem Sci 2023; 14:11381-11388. [PMID: 37886091 PMCID: PMC10599460 DOI: 10.1039/d3sc03528j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/18/2023] [Indexed: 10/28/2023] Open
Abstract
Regioselective C-H alkynylation of arenes via C-H activation is challenging yet a highly desirable transformation. In this regard, directing group assisted C(sp2)-H alkynylation of arenes offers a unique opportunity to ensure precise regioselectivity. While the existing methods are mainly centered around ortho-C-H alkynylation and a few for meta-C-H alkynylation, the DG-assisted para-selective C-H alkynylation is yet to be reported. Herein we disclose the first report on Rh-catalyzed para-C-H alkynylation of sterically and electronically unbiased arenes. The para-selectivity is achieved with the assistance of a cyano-based directing template and the selectivity remained unaltered irrespective of the steric and electronic influence of the substituents. The post-synthetic modification of synthesized para-alkynylated arenes is also demonstrated. The mechanistic intricacies of the developed protocol are elucidated through experimental and computational studies.
Collapse
Affiliation(s)
- Uttam Dutta
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Gaurav Prakash
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kirti Devi
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Kongkona Borah
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| | - Xinglong Zhang
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR) Singapore Singapore
| | - Debabrata Maiti
- IIT Bombay, Department of Chemistry Powai Mumbai 400076 India
| |
Collapse
|
20
|
Arche PDE, Chatterjee S, Talukder MM, Miller JT, Cue JMO, Udamulle Gedara CM, Lord RL, Biewer MC, Cisneros GA, Stefan MC. Regioselective Direct C-H Bond Heteroarylation of Thiazoles Enabled by an Iminopyridine-Based α-Diimine Nickel(II) Complex Evaluated by DFT Studies. J Org Chem 2023; 88:12319-12328. [PMID: 37603582 DOI: 10.1021/acs.joc.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Direct C-H bond arylation is a highly effective method for synthesizing arylated heteroaromatics. This method reduces the number of synthetic steps and minimizes the formation of impurities. We report an air- and moisture-stable iminopyridine-based α-diimine nickel(II) complex for direct C5-H bond arylation of thiazole derivatives. Under a low catalyst loading and performing the reactions at lower temperatures (80 °C) under aerobic conditions, we produced mono- and diarylated thiazole units. Competition experiments and density functional theory calculations revealed that the mechanism of C-H activation in 4-methylthiazole involves an electrophilic aromatic substitution.
Collapse
Affiliation(s)
- Phillip Damien E Arche
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shubham Chatterjee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Md Muktadir Talukder
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Justin T Miller
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - John Michael O Cue
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chinthaka M Udamulle Gedara
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University, Allendale, Michigan 49401, United States
| | - Michael C Biewer
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Mihaela C Stefan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
21
|
Findlay MT, Hogg AS, Douglas JJ, Larrosa I. Improving the sustainability of the ruthenium-catalysed N-directed C-H arylation of arenes with aryl halides. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2023; 25:2394-2400. [PMID: 36960441 PMCID: PMC10026369 DOI: 10.1039/d2gc03860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Direct C-H functionalisation methodologies represent an opportunity to improve the overall 'green' credentials of organic coupling reactions, improving atom economy and reducing overall step count. Despite this, these reactions frequently run under reaction conditions that leave room for improved sustainability. Herein, we describe a recent advance in our ruthenium-catalysed C-H arylation methodology that aims to address some of the environmental impacts associated with this procedure, including solvent choice, reaction temperature, reaction time, and loading of the ruthenium catalyst. We believe that our findings demonstrate a reaction with improved environmental credentials and showcase it on a multi-gram scale within an industrial setting.
Collapse
Affiliation(s)
- Michael T Findlay
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley S Hogg
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | - James J Douglas
- Early Chemical Development, Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield UK
| | - Igor Larrosa
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
22
|
Saikia RA, Talukdar K, Pathak D, Sarma B, Thakur AJ. Utilization of Aryl(TMP)iodonium Salts for Copper-Catalyzed N-Arylation of Isatoic Anhydrides: An Avenue to Fenamic Acid Derivatives and N,N'-Diarylindazol-3-ones. J Org Chem 2023; 88:3567-3581. [PMID: 36827541 DOI: 10.1021/acs.joc.2c02762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Herein, we report a general method for copper-catalyzed N-arylation of isatoic anhydrides with unsymmetrical iodonium salts at room temperature. The developed catalytic protocol is mild and operationally simple, and aryl(TMP)iodonium trifluoroacetate is employed as the arylating partner. The methodology offers the broad applicability of both structurally and electronically diverse aryl groups from aryl(TMP)iodonium salts to access N-arylated isatoic anhydrides in moderate to excellent yields (53-92%). Moreover, the substituted isatoic anhydrides are equally compatible with the protocol too. To demonstrate the synthetic utilities of the N-arylation process, we also report an alternative approach for biologically relevant fenamic acid derivatives and N,N'-diarylindazol-3-ones in a one-pot step economical system. In addition, the scale-up synthesis of flufenamic acid is also illustrated.
Collapse
Affiliation(s)
- Raktim Abha Saikia
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Khanindra Talukdar
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Debabrat Pathak
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| | - Ashim Jyoti Thakur
- Department of Chemical Sciences, Tezpur University, Napaam 784028, India
| |
Collapse
|
23
|
Paul S, Ghodake BM, Bhattacharya AK. Late-Stage C(sp 2 )-H Arylation of Artemisinic Acid and Arteannuin B: Effect of Olefin Migration Towards Synthesis of C-13 Arylated Artemisinin Derivatives. Chem Asian J 2023; 18:e202300162. [PMID: 36867394 DOI: 10.1002/asia.202300162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/01/2023] [Indexed: 03/04/2023]
Abstract
In recent years, C-H bond functionalization has emerged as a pivotal tool for late-stage functionalization of complex natural products for the synthesis of potent biologically active derivatives. Artemisinin and its C-12 functionalized semi-synthetic derivatives are well-known clinically used anti-malarial drugs due to the presence of the essential 1,2,4-trioxane pharmacophore. However, in the wake of parasite developing resistance against artemisinin-based drugs, we conceptualized the synthesis of C-13 functionalized artemisinin derivatives as new antimalarials. In this regard, we envisaged that artemisinic acid could be a suitable precursor for the synthesis of C-13 functionalized artemisinin derivatives. Herein, we report C-13 arylation of artemisinic acid, a sesquiterpene acid and our attempts towards synthesis of C-13 arylated artemisinin derivatives. However, all our efforts resulted in the formation of a novel ring-contracted rearranged product. Additionally, we have extended our developed protocol for C-13 arylation of arteannuin B, a sesquiterpene lactone epoxide considered to be the biogenetic precursor of artemisinic acid. Indeed, the synthesis of C-13 arylated arteannuin B renders our developed protocol to be effective in sesquiterpene lactone as well.
Collapse
Affiliation(s)
- Sayantan Paul
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| | - Balaji M Ghodake
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| | - Asish K Bhattacharya
- Division of Organic Chemistry, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune, 411 008, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Sector 19, Kamla Nehru Nagar, Ghaziabad, UP, 201 002, India
| |
Collapse
|
24
|
Kumar S, Borkar V, Mujahid M, Nunewar S, Kanchupalli V. Iodonium ylides: an emerging and alternative carbene precursor for C-H functionalizations. Org Biomol Chem 2022; 21:24-38. [PMID: 36416081 DOI: 10.1039/d2ob01644c] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The metal-catalyzed successive activation and functionalization of arene/heteroarene is one of the most fundamental transformations in organic synthesis and leads to privileged scaffolds in natural products, pharmaceuticals, agrochemicals, and fine chemicals. Particularly, transition-metal-catalyzed C-H functionalization of arenes with carbene precursors via metal carbene migratory insertion has been well studied. As a result, diverse carbene precursors have been evaluated, such as diazo compounds, sulfoxonium ylides, triazoles, etc. In addition, there have been significant developments with the use of iodonium ylides as carbene precursors in recent years, and these reactions proceed with high efficiencies and selectivities. This review provides a comprehensive overview of iodonium ylides in C-H functionalizations, including the scope, limitations, and their potential synthetic applications.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vaishnavi Borkar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Mohd Mujahid
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Saiprasad Nunewar
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| | - Vinaykumar Kanchupalli
- Department of Chemical Sciences National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500 037, Telangana, India.
| |
Collapse
|
25
|
Zayene M, Le Bideau F, Retailleau P, Jannet HB, Alami M, Romdhane A, Messaoudi S. Site-Selective Palladium(II)-Catalyzed Methylene C(sp 3)-H Diarylation of a Tropane Scaffold. J Org Chem 2022; 87:16399-16409. [PMID: 36473230 DOI: 10.1021/acs.joc.2c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A series of 2,4-di-arylated tropane derivatives was synthesized through a site-selective palladium-catalyzed β-C(sp3)-H di-arylation process. This type of structure has been scarcely reported in literature. They nevertheless represent an interesting class of biologically relevant molecules as illustrated by the observed activity at the micromolecular level of eight derivatives toward human colorectal cancer cell line HCT116.
Collapse
Affiliation(s)
- Mayssa Zayene
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France.,Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Franck Le Bideau
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Universite Paris-Saclay, avenue de la terrasse, 91198 Gif-sur-Yvette, France
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Mouad Alami
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| | - Anis Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Avenue of Environment, Faculty of Science of Monastir, University of Monastir, 5019 Monastir, Tunisia
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, CNRS, 5 rue J-B Clément, 92296 Châtenay-Malabry cedex, France
| |
Collapse
|
26
|
Felten S, He CQ, Weisel M, Shevlin M, Emmert MH. Accessing Diverse Azole Carboxylic Acid Building Blocks via Mild C–H Carboxylation: Parallel, One-Pot Amide Couplings and Machine-Learning-Guided Substrate Scope Design. J Am Chem Soc 2022; 144:23115-23126. [DOI: 10.1021/jacs.2c10557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Stephanie Felten
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cyndi Qixin He
- Computational and Structural Chemistry, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Mark Weisel
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Marion H. Emmert
- Process Research & Development, MRL, Merck & Co. Inc, 126 E Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
27
|
Heterogeneous asymmetric β-C-H functionalization of aldehydes under O2 catalyzed by hydroxide-layered Fe(III) sites synergistic with confined interlayer amine. J Catal 2022. [DOI: 10.1016/j.jcat.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
29
|
Gangadhar M, Ramesh V, Prasad VS, Adiyala PR. Silver Ions Promoted Palladium-Catalyzed Inactive β-C(sp 3)-H Bond Arylation in Batch and Continuous-Flow Conditions. J Org Chem 2022; 87:9607-9618. [PMID: 35833382 DOI: 10.1021/acs.joc.2c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A palladium(II)-catalyzed protocol for inactive β-C(sp3)-H bond functionalization has been first accomplished. The reaction proceeds through five-membered carbocycles for the formation of C-C bonds via the Pd(II)/Pd(IV) cycle. This reaction was carried out with various aryl iodides and benzothiazoles/benzoxazoles/benzimidazoles, which were well-tolerated in this reaction and successfully generated β-C(sp3)-H arylated products. Further implementation of this batch protocol to continuous flow by utilizing a PTFE (polytetrafluoroethylene) capillary reactor enhanced the reaction efficiency and decreased the reaction time (18.4 min) as compared to batch conditions (8 h). Even on the gram scale, the process produced excellent yield with negligible diarylations. Functional group tolerance, a continuous-flow approach, and easy-to-handle reaction conditions make this inactive β-C(sp3)-H bond functionalization protocol very attractive.
Collapse
Affiliation(s)
- Maram Gangadhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vankudoth Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vadla Shiva Prasad
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
30
|
Abstract
C−H methylation of sp2 and sp3 carbon centers is significant in many biological processes. Methylated drug candidates show unique properties due to the change in solubility, conformation and metabolic activities. Several photo-catalyzed, electrochemical, mechanochemical and metal-free techniques that are widely utilized strategies in medicinal chemistry for methylation of arenes and heteroarenes have been covered in this review.
Collapse
|
31
|
Zhang M, Zhong Z, Liao L, Zhang AQ. Application of a transient directing strategy in cyclization reactions via C–H activation. Org Chem Front 2022. [DOI: 10.1039/d2qo00765g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review introduces seven types of cyclization reactions via C–H activation using a transient directing strategy.
Collapse
Affiliation(s)
- Ming Zhang
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China
| | - Zukang Zhong
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China
| | - Lihua Liao
- Key Laboratory of Functional Small Organic Molecules, Ministry of Education, China
- College of Chemistry and Chemical Engineering, Jiangxi Normal University (Yaohu campus), 99 Ziyangdadao Avenue, Nanchang, Jiangxi 330022, China
| | - Ai Qin Zhang
- Department of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, 330063, China
| |
Collapse
|
32
|
Liang S, Shi S, Ding S, Xiao W, Wang H, Wang S, Zeng R, Chen C, Song W. Construction of a transition-metal-free mesoporous organic phenanthroline-based polymeric catalyst for boosting direct activation of aromatic C–H bonds. Catal Sci Technol 2022. [DOI: 10.1039/d2cy01309f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel transition-metal-free mesoporous organic phenanthroline-based polymer for boosting direct activation of aromatic C–H bonds.
Collapse
Affiliation(s)
- Sanqi Liang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Weiming Xiao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Herong Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Rong Zeng
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, P. R. China
| | - Weiguo Song
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|