1
|
Xu Q, Fan G, Shao S. Role of TNFRSF12A in cell proliferation, apoptosis, and proinflammatory cytokine expression by regulating the MAPK and NF-κB pathways in thyroid cancer cells. Cytokine 2025; 186:156841. [PMID: 39719791 DOI: 10.1016/j.cyto.2024.156841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Tumor necrosis factor receptor superfamily member 12A (TNFRSF12A) has been reported to be upregulated in thyroid cancer (THCA). However, the role and mechanism of TNFRSF12A in THCA remain largely unknown. TNFRSF12A expression in THCA samples was analyzed using bioinformatics analysis. CCK-8, EdU incorporation assay, TUNEL, and caspase-3 activity assay was used to detect cell proliferation and apoptosis in THCA cells. Correlated genes of TNFRSF12A were identified using LinkedOmics database and subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Western blot analysis was performed to determine proliferating cell nuclear antigen (PCNA), cyclin D1 (CCND1), Bax, and Bcl-2 expression and to analyze the effect of TNFRSF12A on mitogen-activated protein kinase (MAPK) and nuclear factor-kappaB (NF-κB) pathways. Results showed that TNFRSF12A was increased in THCA tissue samples and cells. KEGG analysis showed that correlated genes of TNFRSF12A were significantly enriched in MAPK and NF-κB signaling pathways. Moreover, TNFRSF12A knockdown inactivated the MAPK and NF-κB signaling pathways in THCA cells. TNFRSF12A silencing alone or combined with inhibitor of ERK (PD98059), JNK (SP600125), p38 (SB203580), or NF-κB (Bay 11-7082) impeded cell proliferation and reduced PCNA and CCND1 expression in THCA cells. Meanwhile, TNFRSF12A knockdown alone or combined with PD98059, SP600125, SB203580, or Bay 11-7082 facilitated cell apoptosis, increased caspase-3 activity, downregulated Bcl-2 expression, and upregulated Bax expression in THCA cells. TNFRSF12A knockdown alone or combined with PD98059, SP600125, SB203580, or Bay 11-7082 also decreased the expression levels of proinflammatory cytokines IL-1β, IL-6, and IL-8 in THCA cells. On the contrary, TNFRSF12A overexpression showed an opposite effect. Treatment with PD98059, SP600125, SB203580, or Bay 11-7082 reversed the effects of TNFRSF12A overexpression on cell proliferation, apoptosis, and proinflammatory cytokine expression. In conclusion, the effects of TNFRSF12A on proliferation, apoptosis, and proinflammatory cytokine expression in THCA cells were regulated by the MAPK and NF-κB pathways.
Collapse
Affiliation(s)
- Qiu Xu
- Department of Thyroid and Breast Surgery, Nanyang First People's Hospital, Nanyang, China; Key Laboratory of Thyroid Tumor Prevention and Treatment, Nanyang First People's Hospital, Nanyang, China
| | - Gai Fan
- Department of Otolaryngology, Nanyang First People's Hospital, Nanyang, China
| | - Su Shao
- Department of General Surgery, Chun'an First People's Hosptial, Hangzhou, China.
| |
Collapse
|
2
|
Coperchini F, Greco A, Petrosino E, Croce L, Teliti M, Marchesi N, Pascale A, Calì B, Pignatti P, Magri F, Uddin M, Rotondi M. Selective anti-CXCR2 receptor blockade by AZD5069 inhibits CXCL8-mediated pro-tumorigenic activity in human thyroid cancer cells in vitro. J Endocrinol Invest 2025; 48:53-65. [PMID: 38900374 PMCID: PMC11729135 DOI: 10.1007/s40618-024-02410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Thyroid cancer is the most common endocrine malignancy. Current therapies are successful, however some patients progress to therapeutically refractive disease. The immunotherapeutic potential of the CXCL8-chemokine/CXCR2-chemokine-receptor system is currently being explored in numerous human cancers. This study aimed to evaluate if the targeting of CXCR2 by its selective antagonist, AZD5069, could modulate CXCL8-mediated pro-tumorigenic effects in thyroid-cancer (TC) cells in vitro. METHODS Normal human primary thyroid cells (NHT) and TC cell lines TPC-1 (RET/PTC), BCPAP, 8505C and 8305C (BRAFV600e) were treated with AZD5069 (100 pM-10 µM) over a time-course. Viability and proliferation were assessed by WST-1 and crystal violet assays. CXCL8 and CXCR2 mRNA were evaluated by RT-PCR. CXCL8-protein concentrations were measured in cell culture supernatants by ELISA. CXCR2 on cell surface was evaluated by flow-cytometry. Cell-migration was assessed by trans-well-migration chamber-system. RESULTS AZD5069 exerted negligible effects on cell proliferation or viability. AZD5069 significantly reduced CXCR2, (but not CXCL8) mRNAs in all cell types. CXCR2 was reduced on the membrane of some TC cell lines. A significant reduction of the CXCL8 secretion was found in TPC-1 cells (basal-secretion) and NHT (TNFα-induced secretion). AZD5069 significantly reduced basal and CXCL8-induced migration in NHT and different TC cells. CONCLUSIONS Our findings confirm the involvement of the CXCL8/CXCR2-axis in promoting pro-tumorigenic effects in TC cells, further demonstrating its immunotherapeutic significance in human cancer.
Collapse
Affiliation(s)
- F Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - A Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - E Petrosino
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
| | - L Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - M Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - N Marchesi
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - A Pascale
- Unit of Pharmacology, Department of Drug Sciences, University of Pavia, 27100, Pavia, Italy
| | - B Calì
- Department of General and Minimally Invasive Surgery, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia (PV), Italy
| | - P Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - F Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - M Uddin
- AstraZeneca Gothenburg, Biopharmaceuticals R&D, Mӧlndal, Sweden
| | - M Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, Via S. Maugeri 4, 27100, Pavia, Italy.
- Unit of Endocrinology and Metabolism, Laboratory for Endocrine Disruptors, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| |
Collapse
|
3
|
Liu M, Liu Q, Hu K, Dong Y, Sun X, Zou Z, Ji D, Liu T, Yu Y. Colorectal cancer with BRAF V600E mutation: Trends in immune checkpoint inhibitor treatment. Crit Rev Oncol Hematol 2024; 204:104497. [PMID: 39245296 DOI: 10.1016/j.critrevonc.2024.104497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024] Open
Abstract
Colorectal cancer (CRC) with BRAF V600E mutation presents a formidable scientific and clinical challenge due to its aggressive nature and poor response to standard therapeutic approaches. BRAF V600E mutation-induced conspicuous activation of the MAPK pathway contributes to the relentless tumor progression. Nevertheless, the efficacy of multi-targeted MAPK pathway inhibition remains suboptimal in clinical practice. Patients with high microsatellite instability (MSI-H) have shown favorable results with immune checkpoint inhibitors (ICIs). The combination of the MAPK pathway inhibition with ICIs has recently emerged as a promising regimen to improve clinical outcomes in the microsatellite stable (MSS) subgroup of BRAF V600E-mutant metastatic CRC patients. In this review, we elucidate the unique tumor biology of BRAF V600E-mutant CRC, with a particular focus on the immune features underlying the rationale for ICI treatments in the MSI-H and MSS subpopulations, then highlight the trends in clinical trials of the ICI therapy for BRAF V600E-mutant metastatic CRC.
Collapse
Affiliation(s)
- Mengling Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qing Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Keshu Hu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yu Dong
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xun Sun
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiguo Zou
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dingkun Ji
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yiyi Yu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
4
|
Ounadjela JR, Zhang K, Kobayashi-Kirschvink KJ, Jin K, J C Russell A, Lackner AI, Callahan C, Viggiani F, Dey KK, Jagadeesh K, Maxian T, Prandstetter AM, Nadaf N, Gong Q, Raichur R, Zvezdov ML, Hui M, Simpson M, Liu X, Min W, Knöfler M, Chen F, Haider S, Shu J. Spatial multiomic landscape of the human placenta at molecular resolution. Nat Med 2024; 30:3495-3508. [PMID: 39567716 DOI: 10.1038/s41591-024-03073-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/17/2024] [Indexed: 11/22/2024]
Abstract
Successful pregnancy relies directly on the placenta's complex, dynamic, gene-regulatory networks. Disruption of this vast collection of intercellular and intracellular programs leads to pregnancy complications and developmental defects. In the present study, we generated a comprehensive, spatially resolved, multimodal cell census elucidating the molecular architecture of the first trimester human placenta. We utilized paired single-nucleus (sn)ATAC (assay for transposase accessible chromatin) sequencing and RNA sequencing (RNA-seq), spatial snATAC-seq and RNA-seq, and in situ sequencing and hybridization mapping of transcriptomes at molecular resolution to spatially reconstruct the joint epigenomic and transcriptomic regulatory landscape. Paired analyses unraveled intricate tumor-like gene expression and transcription factor motif programs potentially sustaining the placenta in a hostile uterine environment; further investigation of gene-linked cis-regulatory elements revealed heightened regulatory complexity that may govern trophoblast differentiation and placental disease risk. Complementary spatial mapping techniques decoded these programs within the placental villous core and extravillous trophoblast cell column architecture while simultaneously revealing niche-establishing transcriptional elements and cell-cell communication. Finally, we computationally imputed genome-wide, multiomic single-cell profiles and spatially characterized the placental chromatin accessibility landscape. This spatially resolved, single-cell multiomic framework of the first trimester human placenta serves as a blueprint for future studies on early placental development and pregnancy.
Collapse
Affiliation(s)
- Johain R Ounadjela
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- New York University Grossman School of Medicine, New York, NY, USA
| | - Ke Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Koseki J Kobayashi-Kirschvink
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kang Jin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J C Russell
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Andreas I Lackner
- Maternal-Fetal Immunology Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Claire Callahan
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Francesca Viggiani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kushal K Dey
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Gerstner Sloan Kettering Graduate School of Biomedical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Karthik Jagadeesh
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Theresa Maxian
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Anna-Maria Prandstetter
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Naeem Nadaf
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Qiyu Gong
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ruth Raichur
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Morgan L Zvezdov
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
| | - Mingyang Hui
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mattew Simpson
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xinwen Liu
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Wei Min
- Department of Chemistry, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| | - Martin Knöfler
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Fei Chen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Sandra Haider
- Placental Development Group, Reproductive Biology Unit, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria.
| | - Jian Shu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
5
|
Tan G, Jin B, Qian X, Wang Y, Zhang G, Agyekum EA, Wang F, Shi L, Zhang Y, Mao Z, Shi C, Xu Y, Li X, Zhang L, Li S. TERT promoter mutations contribute to adverse clinical outcomes and poor prognosis in radioiodine refractory differentiated thyroid cancer. Sci Rep 2024; 14:23719. [PMID: 39390090 PMCID: PMC11467215 DOI: 10.1038/s41598-024-75087-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
Telomerase reverse transcriptase promoter (TERTp) mutations are associated with non-radioiodine avidity. However, the role of these mutations in the clinical outcomes of patients with radioiodine-refractory differentiated thyroid cancer (RAIR-DTC) remains unknown. Herein, we aim to analyze gene mutations and clinical manifestations to verify TERTp's role in driving disease progression to RAIR-DTC and clinical outcomes. Next-generation sequencing data and clinical data were obtained from 243 patients with DTC. Of the 25 patients with TERTp mutations, 80% (20/25) had RAIR-DTC. RAIR-DTC was significantly less prevalent in patients with BRAFV600E (9/143, 6.3%) than those with both BRAFV600E and TERTp mutations (14/17, 82.4%). Patients with RAIR-DTC harboring both BRAFV600E and TERTp mutations were more likely to have > 3 distant metastatic sites (85.7%, 12/14) than those with BRAFV600E alone (33.3%, 3/9). Only one patient with both BRAFV600E and TERTp mutations had non-RAIR-DTC. The time from initial radioactive iodine therapy to RAIR-DTC diagnosis was significantly shorter in patients with TERTp mutations than in those without. Patients with BRAFV600E and TERTp mutations progressed faster to RAIR-DTC than those with BRAFV600E alone (p < 0.01). Our findings suggest that molecular testing for TERTp and other mutations like BRAFV600E may inform early diagnosis, prognosis, and treatment strategies before progression to RAIR-DTC.
Collapse
Affiliation(s)
- Gongxun Tan
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bingquan Jin
- Department of Nuclear Medicine, Shuyang Hospital of Chinese Traditional Medicine, Shuyang, Jiangsu, China
| | - Xiaoqin Qian
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital Affiliated with Yangzhou University, Yangzhou, Jiangsu, China
- Department of Ultrasound Medicine, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
| | - Yuguo Wang
- Department of Ultrasound, Traditional Chinese Medicine Hospital of Nanjing Lishui District, Nanjing, Jiangsu, China
| | - Guoliang Zhang
- Department of Thyroid Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Enock Adjei Agyekum
- Department of Ultrasound, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Shi
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Zhang
- Department of Nuclear Medicine, Shuyang Hospital of Chinese Traditional Medicine, Shuyang, Jiangsu, China
| | - Zhenwei Mao
- Laboratory Center, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chunhe Shi
- Department of Ophthalmology, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Xu
- Nanjing D.A. Medical Laboratory, Nanjing, Jiangsu, China
| | - Xiuying Li
- Nanjing D.A. Medical Laboratory, Nanjing, Jiangsu, China
| | - Lele Zhang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shaohua Li
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
6
|
Zheng X, Sun R, Wei T. Immune microenvironment in papillary thyroid carcinoma: roles of immune cells and checkpoints in disease progression and therapeutic implications. Front Immunol 2024; 15:1438235. [PMID: 39290709 PMCID: PMC11405226 DOI: 10.3389/fimmu.2024.1438235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
Papillary thyroid cancer (PTC) is the most common type of primary thyroid cancer. Despite the low malignancy and relatively good prognosis, some PTC cases are highly aggressive and even develop refractory cancer in the thyroid. Growing evidence suggested that microenvironment in tumor affected PTC biological behavior due to different immune states. Different interconnected components in the immune system influence and participate in tumor invasion, and are closely related to PTC metastasis. Immune cells and molecules are widely distributed in PTC tissues. Their quantity and proportion vary with the host's immune status, which suggests that immunotherapy may be a very promising therapeutic modality for PTC. In this paper, we review the role of immune cells and immune checkpoints in PTC immune microenvironment based on the characteristics of the PTC tumor microenvironment.
Collapse
Affiliation(s)
- Xun Zheng
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ruonan Sun
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Tao Wei
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Yin L, Luo X, Zhang X, Cheng B. The evolving process of ferroptosis in thyroid cancer: Novel mechanisms and opportunities. J Cell Mol Med 2024; 28:e18587. [PMID: 39163517 PMCID: PMC11335058 DOI: 10.1111/jcmm.18587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Thyroid cancer (TC) is a prevalent endocrine malignancy, with a significant increase in incidence worldwide. Ferroptosis is a novel form of programmed cell death, primarily caused by iron overload and reactive oxygen species (ROS)-dependent accumulation of lipid peroxides. The main manifestations of cellular ferroptosis are rupture of the outer membrane, crumpling of the mitochondria and shrinkage or disappearance of the mitochondrial cristae, thus leading to cell death. Ferroptosis is an important phenomenon in tumour progression, with crosstalk with tumour-associated signalling pathways profoundly affecting tumour progression, immune effects and treatment outcomes. The functions and mechanisms of ferroptosis in TC have also attracted increasing attention, mainly in terms of influencing tumour proliferation, invasion, migration, immune response, therapeutic susceptibility and genetic susceptibility. However, at present, the tumour biology of the morphological, biological and mechanism pathways of ferroptosis is much less deep in TC than in other malignancies. Hence, in this review, we highlighted the emerging role of ferroptosis in TC progression, including the novel mechanisms and potential opportunities for diagnosis and treatment, as well as discussed the limitations and prospects. Ferroptosis-based diagnostic and therapeutic strategies can potentially provide complementary management of TCs.
Collapse
Affiliation(s)
- Lin Yin
- Thyroid Gland Breast SurgeryShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Xiaodan Luo
- Department of HemodialysisHuangshi Central HospitalHuangshiChina
| | - Xian Zhang
- Department of Neurology, Affiliated Zhongda HospitalResearch Institution of Neuropsychiatry, School of Medicine, Southeast UniversityNanjingJiangsuChina
| | - Bomin Cheng
- Chinese Medicine Health Management CenterShenzhen Traditional Chinese Medicine HospitalShenzhenChina
| |
Collapse
|
8
|
Li Y, Wu D. Identification of signature genes and immune infiltration analysis in thyroid cancer based on PANoptosis related genes. Front Endocrinol (Lausanne) 2024; 15:1397794. [PMID: 39104814 PMCID: PMC11298382 DOI: 10.3389/fendo.2024.1397794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Background Thyroid cancer is the most common malignancy of the endocrine system. PANoptosis is a specific form of inflammatory cell death. It mainly includes pyroptosis, apoptosis and necrotic apoptosis. There is increasing evidence that PANoptosis plays a crucial role in tumour development. However, no pathogenic mechanism associated with PANoptosis in thyroid cancer has been identified. Methods Based on the currently identified PANoptosis genes, a dataset of thyroid cancer patients from the GEO database was analysed. To screen the common differentially expressed genes of thyroid cancer and PANoptosis. To analyse the functional characteristics of PANoptosis-related genes (PRGs) and screen key expression pathways. The prognostic model was established by LASSO regression and key genes were identified. The association between hub genes and immune cells was evaluated based on the CIBERSORT algorithm. Predictive models were validated by validation datasets, immunohistochemistry as well as drug-gene interactions were explored. Results The results showed that eight key genes (NUAK2, TNFRSF10B, TNFRSF10C, TNFRSF12A, UNC5B, and PMAIP1) exhibited good diagnostic performance in differentiating between thyroid cancer patients and controls. These key genes were associated with macrophages, CD4+ T cells and neutrophils. In addition, PRGs were mainly enriched in the immunomodulatory pathway and TNF signalling pathway. The predictive performance of the model was confirmed in the validation dataset. The DGIdb database reveals 36 potential therapeutic target drugs for thyroid cancer. Conclusion Our study suggests that PANoptosis may be involved in immune dysregulation in thyroid cancer by regulating macrophages, CD4+ T cells and activated T and B cells and TNF signalling pathways. This study suggests potential targets and mechanisms for thyroid cancer development.
Collapse
Affiliation(s)
- Yujie Li
- Department of Clinical Laboratory, The Affiliated LiHuiLi Hospital of Ningbo University, Ningbo, China
| | - Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No. 6 Hospital, Ningbo, China
| |
Collapse
|
9
|
Gupta PK, Orlovskiy S, Arias-Mendoza F, Nelson DS, Nath K. 1H and 31P Magnetic Resonance Spectroscopic Metabolomic Imaging: Assessing Mitogen-Activated Protein Kinase Inhibition in Melanoma. Cells 2024; 13:1220. [PMID: 39056801 PMCID: PMC11274771 DOI: 10.3390/cells13141220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The MAPK signaling pathway with BRAF mutations has been shown to drive the pathogenesis of 40-60% of melanomas. Inhibitors of this pathway's BRAF and MEK components are currently used to treat these malignancies. However, responses to these treatments are not always successful. Therefore, identifying noninvasive biomarkers to predict treatment responses is essential for personalized medicine in melanoma. Using noninvasive 1H magnetic resonance spectroscopy (1H MRS), we previously showed that BRAF inhibition reduces lactate and alanine tumor levels in the early stages of effective therapy and could be considered as metabolic imaging biomarkers for drug response. The present work demonstrates that these metabolic changes observed by 1H MRS and those assessed by 31P MRS are also found in preclinical human melanoma models treated with MEK inhibitors. Apart from 1H and 31P MRS, additional supporting in vitro biochemical analyses are described. Our results indicate significant early metabolic correlations with response levels to MEK inhibition in the melanoma models and are consistent with our previous study of BRAF inhibition. Given these results, our study supports the potential clinical utility of noninvasive MRS to objectively image metabolic biomarkers for the early prediction of melanoma's response to MEK inhibition.
Collapse
Affiliation(s)
- Pradeep Kumar Gupta
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Stepan Orlovskiy
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Fernando Arias-Mendoza
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
- Advanced Imaging Research, Inc., Cleveland, OH 44114, USA
| | - David S. Nelson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| | - Kavindra Nath
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (S.O.); (F.A.-M.); (D.S.N.)
| |
Collapse
|
10
|
Yu Y, Ouyang W, Huang Y, Huang H, Wang Z, Jia X, Huang Z, Lin R, Zhu Y, yalikun Y, Tan L, Li X, Zhao F, Chen Z, Li W, Liao J, Yao H, Long M. AI-Based multimodal Multi-tasks analysis reveals tumor molecular heterogeneity, predicts preoperative lymph node metastasis and prognosis in papillary thyroid carcinoma: A retrospective study. Int J Surg 2024; 111:01279778-990000000-01786. [PMID: 38990290 PMCID: PMC11745641 DOI: 10.1097/js9.0000000000001875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) is the predominant form of thyroid cancer globally, especially when lymph node metastasis (LNM) occurs. Molecular heterogeneity, driven by genetic alterations and tumor microenvironment components, contributes to the complexity of PTC. Understanding these complexities is essential for precise risk stratification and therapeutic decisions. METHODS This study involved a comprehensive analysis of 521 patients with PTC from our hospital and 499 patients from The Cancer Genome Atlas (TCGA). The real-world cohort 1 comprised 256 patients with stage I-III PTC. Tissues from 252 patients were analyzed by DNA-based next-generation sequencing, and tissues from four patients were analyzed by single-cell RNA sequencing (scRNA-seq). Additionally, 586 PTC pathological sections were collected from TCGA, and 275 PTC pathological sections were collected from the real-world cohort 2. A deep learning multimodal model was developed using matched histopathology images, genomic, transcriptomic, and immune cell data to predict LNM and disease-free survival (DFS). RESULTS This study included a total of 1,011 PTC patients, comprising 256 patients from cohort 1, 275 patients from cohort 2, and 499 patients from TCGA. In cohort 1, we categorized PTC into four molecular subtypes based on BRAF, RAS, RET, and other mutations. BRAF mutations were significantly associated with LNM and impacted DFS. ScRNA-seq identified distinct T cell subtypes and reduced B cell diversity in BRAF-mutated PTC with LNM. The study also explored cancer-associated fibroblasts and macrophages, highlighting their associations with LNM. The deep learning model was trained using 405 pathology slides and RNA sequences from 328 PTC patients and validated with 181 slides and RNA sequences from 140 PTC patients in the TCGA cohort. It achieved high accuracy, with an AUC of 0.86 in the training cohort, 0.84 in the validation cohort, and 0.83 in the real-world cohort 2. High-risk patients in the training cohort had significantly lower DFS rates (P<0.001). Model AUCs were 0.91 at 1 year, 0.93 at 3 years, and 0.87 at 5 years. In the validation cohort, high-risk patients also had lower DFS (P<0.001); the AUCs were 0.89, 0.87, and 0.80 at 1, 3, and 5 years. We utilized the GradCAM algorithm to generate heatmaps from pathology-based deep learning models, which visually highlighted high-risk tumor areas in PTC patients. This enhanced clinicians' understanding of the model's predictions and improved diagnostic accuracy, especially in cases with lymph node metastasis. CONCLUSION The AI-based analysis uncovered vital insights into PTC molecular heterogeneity, emphasizing BRAF mutations' impact. The integrated deep learning model shows promise in predicting metastasis, offering valuable contributions to improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Yunfang Yu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Wenhao Ouyang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunxi Huang
- Department of Experimental Research, The Affiliated Tumor Hospital of Guangxi Medical University, Xi Guang, China
| | - Hong Huang
- Guilin Medical University, Xi Guang, China
| | - Zehua Wang
- Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China
| | - Xueyuan Jia
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Zhenjun Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruichong Lin
- Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China
- School of Computer Engineering, Guangzhou Huali College, Guangzhou, China
| | - Yue Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yisitandaer yalikun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Langping Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Li
- Burning Rock Biotech, Guangzhou, China
| | - Fei Zhao
- Burning Rock Biotech, Guangzhou, China
| | - Zhange Chen
- Faculty of Innovation Engineering, Macau University of Science and Technology, Taipa, Macao, China
| | - Wenting Li
- Singleron Biotechnologies, Guangzhou, China
| | - Jianwei Liao
- Cellular and Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Herui Yao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Miaoyun Long
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Thyroid Surgery, Department of Medical Oncology, Breast Tumor Centre, Phase I Clinical Trial Centre, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Wang Z, Dong S, Zhou W. Pancreatic stellate cells: Key players in pancreatic health and diseases (Review). Mol Med Rep 2024; 30:109. [PMID: 38695254 PMCID: PMC11082724 DOI: 10.3892/mmr.2024.13233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
As a pluripotent cell, activated pancreatic stellate cells (PSCs) can differentiate into various pancreatic parenchymal cells and participate in the secretion of extracellular matrix and the repair of pancreatic damage. Additionally, PSCs characteristics allow them to contribute to pancreatic inflammation and carcinogenesis. Moreover, a detailed study of the pathogenesis of activated PSCs in pancreatic disease can offer promise for the development of innovative therapeutic strategies and improved patient prognoses. Therefore, the present study review aimed to examine the involvement of activated PSCs in pancreatic diseases and elucidate the underlying mechanisms to provide a viable therapeutic strategy for the management of pancreas‑related diseases.
Collapse
Affiliation(s)
- Zhengfeng Wang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Shi Dong
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wence Zhou
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
12
|
Li Z, Xia Q, He Y, Li L, Yin P. MDSCs in bone metastasis: Mechanisms and therapeutic potential. Cancer Lett 2024; 592:216906. [PMID: 38649108 DOI: 10.1016/j.canlet.2024.216906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Bone metastasis (BM) is a frequent complication associated with advanced cancer that significantly increases patient mortality. Myeloid-derived suppressor cells (MDSCs) play a pivotal role in BM progression by promoting angiogenesis, inhibiting immune responses, and inducing osteoclastogenesis. MDSCs induce immunosuppression through diverse mechanisms, including the generation of reactive oxygen species, nitric oxide, and immunosuppressive cytokines. Within the bone metastasis niche (BMN), MDSCs engage in intricate interactions with tumor, stromal, and bone cells, thereby establishing a complex regulatory network. The biological activities and functions of MDSCs are regulated by the microenvironment within BMN. Conversely, MDSCs actively contribute to microenvironmental regulation, thereby promoting BM development. A comprehensive understanding of the indispensable role played by MDSCs in BM is imperative for the development of novel therapeutic strategies. This review highlights the involvement of MDSCs in BM development, their regulatory mechanisms, and their potential as viable therapeutic targets.
Collapse
Affiliation(s)
- Zhi Li
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China; Department of General Surgery, Hubei Provincial Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Qi Xia
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Yujie He
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Peihao Yin
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200062, China.
| |
Collapse
|
13
|
Song S, Zhou J, Zhang L, Sun Y, Zhang Q, Tan Y, Zhou X, Yu J. Identification of disulfidptosis-associated genes and characterization of immune cell infiltration in thyroid carcinoma. Aging (Albany NY) 2024; 16:9753-9783. [PMID: 38836761 PMCID: PMC11210228 DOI: 10.18632/aging.205897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 05/03/2024] [Indexed: 06/06/2024]
Abstract
OBJECTIVE The primary objective of this study is to conduct a comprehensive screening and analysis of differentially expressed genes related to disulfidoptosis (DEDRGs) in thyroid carcinoma (THCA). This entails delving into the intricate characterization of immune cell infiltration within the THCA context and subsequently formulating and validating a novel prognostic model. METHOD To achieve our objectives, we first delineated two distinct subtypes of disulfidoptosis-related genes (DRGs) via consensus clustering methodology. Subsequently, employing the limma R package, we identified the DEDRGs critical for our investigation. These DEDRGs underwent meticulous validation across various databases, alongside an in-depth analysis of gene regulation. Employing functional enrichment techniques, we explored the potential molecular mechanisms underlying disulfidoptosis in THCA. Furthermore, we scrutinized the immune landscape within the two identified subtypes utilizing CIBERSORT and ESTIMATE algorithms. The construction of the prognostic model for THCA entailed intricate methodologies including univariate, multivariate Cox regression, and LASSO regression algorithms. The validity and efficacy of our prognostic model were corroborated through Kaplan-Meier survival curves and ROC curves. Additionally, a nomogram was meticulously formulated to facilitate the prediction of patient prognosis. To fortify our findings, we conducted a comprehensive Bayesian co-localization analysis coupled with rigorous in vitro experimentation, aimed at unequivocally establishing the validity of the identified DEDRGs. RESULT Our analyses unveiled Cluster C1, characterized by elevated expression levels of DEDRGs, as harboring a favorable prognosis accompanied by abundant immune cell infiltration. Correlation analyses underscored predominantly positive associations among the DEDRGs, further affirming their significance in THCA. Differential expression patterns of DEDRGs between tumor samples and normal tissues were evident across the GEPIA and HPA databases. Insights from the TIMER database underscored a robust correlation between DEDRGs and immune cell infiltration. KEGG analysis elucidated the enrichment of DEDRGs primarily in pivotal pathways including MAPK, PPAR signaling pathway, and Proteoglycans in cancer. Furthermore, analyses using CIBERSORT and ESTIMATE algorithms shed light on the crucial role played by DEDRGs in shaping the immune microenvironment. The prognostic model, anchored by five genes intricately associated with THCA prognosis, exhibited commendable predictive accuracy and was intricately linked to the tumor immune microenvironment. Notably, patients categorized with low-risk scores stood to potentially benefit more from immunotherapy. The validation of DEDRGs unequivocally underscores the protective role of INF2 in THCA. CONCLUSION In summary, our study delineates two discernible subtypes intricately associated with DRGs, revealing profound disparities in immune infiltration and survival prognosis within the THCA milieu. The implications of our findings extend to potential treatment strategies for THCA patients, which could entail targeted interventions directed towards DEDRGs and prognostic genes, thereby influencing disulfidptosis and the immune microenvironment. Moreover, the robust predictive capability demonstrated by our prognostic model, based on the five genes (ANGPTL7, FIRRE, ODAPH, PROKR1, SFRP5), underscores its potential clinical utility in guiding personalized therapeutic approaches for THCA patients.
Collapse
Affiliation(s)
- Siyuan Song
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Zhou
- Department of Endocrinology, Huaian Hospital of Huaian City, Huaian, China
- Department of Endocrinology, Huaian Cancer Hospital, Huaian, China
| | - Li Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuqing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qiling Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Tan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiangyi Yu
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
14
|
Wang Z, Ji X, Zhang Y, Yang F, Su H, Zhang H, Li Z, Zhang W, Sun W. Interactions between LAMP3+ dendritic cells and T-cell subpopulations promote immune evasion in papillary thyroid carcinoma. J Immunother Cancer 2024; 12:e008983. [PMID: 38816233 PMCID: PMC11141193 DOI: 10.1136/jitc-2024-008983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND The incidence of papillary thyroid cancer (PTC) continues to rise all over the world, 10-15% of the patients have a poor prognosis. Although immunotherapy has been applied in clinical practice, its therapeutic efficacy remains far from satisfactory, necessitating further investigation of the mechanism of PTC immune remodeling and exploration of novel treatment targets. METHODS This study conducted a single-cell RNA sequencing (scRNA-seq) analysis using 18 surgical tissue specimens procured from 14 patients diagnosed with adjacent tissues, non-progressive PTC or progressive PTC. Key findings were authenticated through spatial transcriptomics RNA sequencing, immunohistochemistry, multiplex immunohistochemistry, and an independent bulk RNA-seq data set containing 502 samples. RESULTS A total of 151,238 individual cells derived from 18 adjacent tissues, non-progressive PTC and progressive PTC specimens underwent scRNA-seq analysis. We found that progressive PTC exhibits the following characteristics: a significant decrease in overall immune cells, enhanced immune evasion of tumor cells, and disrupted antigen presentation function. Moreover, we identified a subpopulation of lysosomal associated membrane protein 3 (LAMP3+) dendritic cells (DCs) exhibiting heightened infiltration in progressive PTC and associated with advanced T stage and poor prognosis of PTC. LAMP3+ DCs promote CD8+ T cells exhaustion (mediated by NECTIN2-TIGIT) and increase infiltration abundance of regulatory T cells (mediated by chemokine (C-C motif) ligand 17 (CCL17)-chemokine (C-C motif) receptor 4 (CCR4)) establishing an immune-suppressive microenvironment. Ultimately, we unveiled that progressive PTC tumor cells facilitate the retention of LAMP3+ DCs within the tumor microenvironment through NECTIN3-NECTIN2 interactions, thereby rendering tumor cells more susceptible to immune evasion. CONCLUSION Our findings expound valuable insights into the role of the interaction between LAMP3+ DCs and T-cell subpopulations and offer new and effective ideas and strategies for immunotherapy in patients with progressive PTC.
Collapse
Affiliation(s)
- Zhiyuan Wang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Xiaoyu Ji
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Ye Zhang
- The First Laboratory of Cancer Institute, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Fan Yang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hongyue Su
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Hao Zhang
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Zhendong Li
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wenqian Zhang
- Department of Head and Neck Surgery, Cancer Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Wei Sun
- Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
15
|
Zhang Z, Wu Y, Fu J, Yu X, Su Y, Jia S, Cheng H, Shen Y, He X, Ren K, Zheng X, Guan H, Rao F, Zhao L. Proteostatic reactivation of the developmental transcription factor TBX3 drives BRAF/MAPK-mediated tumorigenesis. Nat Commun 2024; 15:4108. [PMID: 38750011 PMCID: PMC11096176 DOI: 10.1038/s41467-024-48173-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
MAPK pathway-driven tumorigenesis, often induced by BRAFV600E, relies on epithelial dedifferentiation. However, how lineage differentiation events are reprogrammed remains unexplored. Here, we demonstrate that proteostatic reactivation of developmental factor, TBX3, accounts for BRAF/MAPK-mediated dedifferentiation and tumorigenesis. During embryonic development, BRAF/MAPK upregulates USP15 to stabilize TBX3, which orchestrates organogenesis by restraining differentiation. The USP15-TBX3 axis is reactivated during tumorigenesis, and Usp15 knockout prohibits BRAFV600E-driven tumor development in a Tbx3-dependent manner. Deleting Tbx3 or Usp15 leads to tumor redifferentiation, which parallels their overdifferentiation tendency during development, exemplified by disrupted thyroid folliculogenesis and elevated differentiation factors such as Tpo, Nis, Tg. The clinical relevance is highlighted in that both USP15 and TBX3 highly correlates with BRAFV600E signature and poor tumor prognosis. Thus, USP15 stabilized TBX3 represents a critical proteostatic mechanism downstream of BRAF/MAPK-directed developmental homeostasis and pathological transformation, supporting that tumorigenesis largely relies on epithelial dedifferentiation achieved via embryonic regulatory program reinitiation.
Collapse
Affiliation(s)
- Zhenlei Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yufan Wu
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Jinrong Fu
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China
| | - Xiujie Yu
- Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Yang Su
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Shikai Jia
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Huili Cheng
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yan Shen
- Department of Pathology, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China
| | - Xianghui He
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Kai Ren
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Tumor, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Haixia Guan
- Department of Endocrinology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, China.
| | - Feng Rao
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Li Zhao
- Department of Thyroid and Neck Tumor, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
16
|
Zhang P, Guan L, Sun W, Zhang Y, Du Y, Yuan S, Cao X, Yu Z, Jia Q, Zheng X, Meng Z, Li X, Zhao L. Targeting miR-31 represses tumourigenesis and dedifferentiation of BRAF V600E-associated thyroid carcinoma. Clin Transl Med 2024; 14:e1694. [PMID: 38797942 PMCID: PMC11128713 DOI: 10.1002/ctm2.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND BRAFV600E is the most common genetic mutation in differentiated thyroid cancer (DTC) occurring in 60% of patients and drives malignant tumour cell phenotypes including proliferation, metastasis and immune-escape. BRAFV600E-mutated papillary thyroid cancer (PTC) also displays greatly reduced expression of thyroid differentiation markers, thus tendency to radioactive iodine (RAI) refractory and poor prognosis. Therefore, understanding the molecular mechanisms and main oncogenic events underlying BRAFV600E will guide future therapy development. METHODS Bioinformatics and clinical specimen analyses, genetic manipulation of BRAFV600E-induced PTC model, functional and mechanism exploration guided with transcriptomic screening, as well as systematic rescue experiments were applied to investigate miR-31 function within BRAFV600E-induced thyroid cancer development. Besides, nanoparticles carrying miR-31 antagomirs were testified to alleviate 131I iodide therapy on PTC models. RESULTS We identify miR-31 as a significantly increased onco-miR in BRAFV600E-associated PTC that promotes tumour progression, metastasis and RAI refractoriness via sustained Wnt/β-catenin signalling. Mechanistically, highly activated BRAF/MAPK pathway induces miR-31 expression via c-Jun-mediated transcriptional regulation across in vitro and transgenic mouse models. MiR-31 in turn facilitates β-catenin stabilisation via directly repressing tumour suppressors CEBPA and DACH1, which direct the expression of multiple essential Wnt/β-catenin pathway inhibitors. Genetic functional assays showed that thyroid-specific knockout of miR-31 inhibited BRAFV600E-induced PTC progression, and strikingly, enhanced expression of sodium-iodide symporter and other thyroid differentiation markers, thus promoted 131I uptake. Nanoparticle-mediated application of anti-miR-31 antagomirs markedly elevated radio-sensitivity of BRAFV600E-induced PTC tumours to 131I therapy, and efficiently suppressed tumour progression in the pre-clinical mouse model. CONCLUSIONS Our findings elucidate a novel BRAF/MAPK-miR-31-Wnt/β-catenin regulatory mechanism underlying clinically BRAFV600E-associated DTC tumourigenesis and dedifferentiation, also highlight a potential adjuvant therapeutic strategy for advanced DTC.
Collapse
Affiliation(s)
- Peitao Zhang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Lizhao Guan
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Wei Sun
- Laboratory of molecular genetics, School of Medicine, Nankai University, Tianjin, China
| | - Yu Zhang
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Yaying Du
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Shukai Yuan
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaolong Cao
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zhengquan Yu
- State Key Laboratories for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qiang Jia
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangqian Zheng
- Department of Thyroid and Neck Oncology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhaowei Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, China
| | - Xingrui Li
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Li Zhao
- Department of Thyroid and Neck Oncology, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
17
|
Li P, Liu Y, Wei T, Wang X, Zhu J, Yang R, Gong Y, Zhao W. Effect and Interactions of BRAF on Lymph Node Metastasis in Papillary Thyroid Carcinoma With Hashimoto Thyroiditis. J Clin Endocrinol Metab 2024; 109:944-954. [PMID: 37967234 DOI: 10.1210/clinem/dgad667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
CONTEXT The role of B-Raf proto-oncogene (BRAF) in papillary thyroid carcinoma (PTC) with Hashimoto thyroiditis (HT) is unknown. OBJECTIVE We aimed to explore risk factors affecting lymph node (LN) metastasis and interaction effect of BRAF in PTC patients with HT. METHODS We retrospectively collected the data of 994 PTC patients with HT who underwent surgery at the West China Hospital. We analyzed the correlations between preoperative characteristics and LN metastasis in overall, and different BRAFV600E-mutation patients. Logistic regression was applied to analyze the risk factors for LN metastasis. Finally, we performed an interaction effect analysis to identify the interaction effect of BRAF. RESULTS The overall LN metastasis rate was 52.71% (524/994); the overall BRAF mutation rate was 26.9% (268/994). BRAF mutation rates were significantly different in LN metastasis and nonmetastasis patients (31.7% vs 21.5%; P < .001). In all 994 patients, age, body mass index (BMI), hypertension, tumor maximum diameter, BRAF mutation, tumor location, aspect ratio, calcification, and extrathyroidal invasion were risk factors for LN metastasis (P < .05). In BRAF-mutant patients, smoking, hypertension, maximum diameter, calcification, and multifocality were risk factors for LN metastasis (P < .05). In BRAF wild-type patients, age, BMI, maximum diameter, tumor location, aspect ratio, tumor shape, calcification, and extrathyroidal invasion were risk factors (P < .05). Additionally, we found statistically significant interactions between BRAF and BMI, hypertension, maximum diameter, and calcification (P < .05), suggesting the potential interaction effect of BRAF. CONCLUSION BRAF is a risk factor for LN metastasis in PTC with HT. Meanwhile, BRAF can interact with age, BMI, hypertension, and calcification, which together influence LN metastasis.
Collapse
Affiliation(s)
- Pengyu Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
- Center for Frontier Medicine in Molecular Networks, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Yang Liu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Tao Wei
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
- Center for Frontier Medicine in Molecular Networks, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Xiaofei Wang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Jingqiang Zhu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
- Center for Frontier Medicine in Molecular Networks, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Rui Yang
- Center for Frontier Medicine in Molecular Networks, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Yanping Gong
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| | - Wanjun Zhao
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Wuhou District, Chengdu 610044, China
| |
Collapse
|
18
|
Landa I, Cabanillas ME. Genomic alterations in thyroid cancer: biological and clinical insights. Nat Rev Endocrinol 2024; 20:93-110. [PMID: 38049644 DOI: 10.1038/s41574-023-00920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 12/06/2023]
Abstract
Tumours can arise from thyroid follicular cells if they acquire driver mutations that constitutively activate the MAPK signalling pathway. In addition, a limited set of additional mutations in key genes drive tumour progression towards more aggressive and less differentiated disease. Unprecedented insights into thyroid tumour biology have come from the breadth of thyroid tumour sequencing data from patients and the wide range of mutation-specific mechanisms identified in experimental models, in combination with the genomic simplicity of thyroid cancers. This knowledge is gradually being translated into refined strategies to stratify, manage and treat patients with thyroid cancer. This Review summarizes the biological underpinnings of the genetic alterations involved in thyroid cancer initiation and progression. We also provide a rationale for and discuss specific examples of how to implement genomic information to inform both recommended and investigational approaches to improve thyroid cancer prognosis, redifferentiation strategies and targeted therapies.
Collapse
Affiliation(s)
- Iñigo Landa
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| | - Maria E Cabanillas
- Department of Endocrine Neoplasia & Hormonal Disorders, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Gupta PK, Orlovskiy S, Arias-Mendoza F, Nelson DS, Osborne A, Pickup S, Glickson JD, Nath K. Metabolic Imaging Biomarkers of Response to Signaling Inhibition Therapy in Melanoma. Cancers (Basel) 2024; 16:365. [PMID: 38254853 PMCID: PMC10814512 DOI: 10.3390/cancers16020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Dabrafenib therapy for metastatic melanoma focuses on blocking growth-promoting signals produced by a hyperactive BRAF protein. We report the metabolic differences of four human melanoma cell lines with diverse responses to dabrafenib therapy (30 mg/kg; oral): WM3918 < WM9838BR < WM983B < DB-1. Our goal was to determine if metabolic changes produced by the altered signaling pathway due to BRAF mutations differ in the melanoma models and whether these differences correlate with response to treatment. We assessed metabolic changes in isolated cells using high-resolution proton magnetic resonance spectroscopy (1H MRS) and supplementary biochemical assays. We also noninvasively studied mouse xenografts using proton and phosphorus (1H/31P) MRS. We found consistent changes in lactate and alanine, either in isolated cells or mouse xenografts, correlating with their relative dabrafenib responsiveness. In xenografts, we also observed that a more significant response to dabrafenib correlated with higher bioenergetics (i.e., increased βNTP/Pi). Notably, our noninvasive assessment of the metabolic status of the human melanoma xenografts by 1H/31P MRS demonstrated early metabolite changes preceding therapy response (i.e., tumor shrinkage). Therefore, this noninvasive methodology could be translated to assess in vivo predictive metabolic biomarkers of response in melanoma patients under dabrafenib and probably other signaling inhibition therapies.
Collapse
Affiliation(s)
- Pradeep Kumar Gupta
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Stepan Orlovskiy
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Fernando Arias-Mendoza
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
- Advanced Imaging Research, Inc., Cleveland, OH 44114, USA
| | - David S. Nelson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Aria Osborne
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Stephen Pickup
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Jerry D. Glickson
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| | - Kavindra Nath
- Molecular Imaging Laboratory, Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; (P.K.G.); (S.O.); (F.A.-M.); (D.S.N.); (A.O.); (S.P.); (J.D.G.)
| |
Collapse
|
20
|
Shi A, Liu L, Li S, Qi B. Natural products targeting the MAPK-signaling pathway in cancer: overview. J Cancer Res Clin Oncol 2024; 150:6. [PMID: 38193944 PMCID: PMC10776710 DOI: 10.1007/s00432-023-05572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This article summarizes natural products that target the MAPK-signaling pathway in cancer therapy. The classification, chemical structures, and anti-cancer mechanisms of these natural products are elucidated, and comprehensive information is provided on their potential use in cancer therapy. METHODS Using the PubMed database, we searched for keywords, including "tumor", "cancer", "natural product", "phytochemistry", "plant chemical components", and "MAPK-signaling pathway". We also screened for compounds with well-defined structures that targeting the MAPK-signaling pathway and have anti-cancer effects. We used Kingdraw software and Adobe Photoshop software to draw the chemical compound structural diagrams. RESULTS A total of 131 papers were searched, from which 85 compounds with well-defined structures were selected. These compounds have clear mechanisms for targeting cancer treatment and are mainly related to the MAPK-signaling pathway. Examples include eupatilin, carvacrol, oridonin, sophoridine, diosgenin, and juglone. These chemical components are classified as flavonoids, phenols, terpenoids, alkaloids, steroidal saponins, and quinones. CONCLUSIONS Certain MAPK pathway inhibitors have been used for clinical treatment. However, the clinical feedback has not been promising because of genomic instability, drug resistance, and side effects. Natural products have few side effects, good medicinal efficacy, a wide range of sources, individual heterogeneity of biological activity, and are capable of treating disease from multiple targets. These characteristics make natural products promising drugs for cancer treatment.
Collapse
Affiliation(s)
- Aiwen Shi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Li Liu
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| | - Shuang Li
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China
| | - Bin Qi
- Changchun University of Chinese Medicine, School of Phharmacy, 1035 Boshuo Road, Jingyue Street, Nanguan District, Changchun City, Jilin Province, China.
| |
Collapse
|
21
|
Lazennec G, Rajarathnam K, Richmond A. CXCR2 chemokine receptor - a master regulator in cancer and physiology. Trends Mol Med 2024; 30:37-55. [PMID: 37872025 PMCID: PMC10841707 DOI: 10.1016/j.molmed.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/25/2023]
Abstract
Recent findings have modified our understanding of the roles of chemokine receptor CXCR2 and its ligands in cancer, inflammation, and immunity. Studies in Cxcr2 tissue-specific knockout mice show that this receptor is involved in, among other things, cancer, central nervous system (CNS) function, metabolism, reproduction, COVID-19, and the response to circadian cycles. Moreover, CXCR2 involvement in neutrophil function has been revisited not only in physiology but also for its major contribution to cancers. The recent unfolding of the role of CXCR2 in numerous cancers has led to extensive evaluation of multiple CXCR2 antagonists in preclinical and clinical studies. In this review we discuss the potential of targeting CXCR2 for cancer treatment.
Collapse
Affiliation(s)
- Gwendal Lazennec
- Centre National de la Recherche Scientifique (CNRS), Sys2Diag-ALCEDIAG, Cap Delta, Montpellier, France; CNRS Groupement de Recherche (GDR) 3697 'Microenvironment of Tumor Niches', Micronit, France.
| | - Krishna Rajarathnam
- Department of Biochemistry and Molecular Biology, Department of Microbiology and Immunology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Ann Richmond
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA; Vanderbilt University School of Medicine, Department of Pharmacology, Nashville, TN, USA; Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
22
|
Tan G, Zheng S, Zhou B, Mo Z, Zhang Q, Zhang D, Li A, Liu X. Spleen tyrosine kinase facilitates the progression of papillary thyroid cancer regulated by the hsa_circ_0006417/miR-377-3p axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:421-434. [PMID: 37792549 DOI: 10.1002/tox.23982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/20/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Papillary thyroid cancer (PTC) is a prevalent malignancy worldwide. Spleen tyrosine kinase (SYK) is a crucial enzyme that participates in various biological processes, including cancer progression. This study aims to uncover the biological function of SYK in PTC. SYK expression patterns in PTC were evaluated using quantitative real time polymerase chain reaction (qRT-PCR), immunohistochemistry (IHC), and western blot. Cell function assays were performed to assess the effects of SYK on PTC. Bioinformatics analysis was conducted to identify intriguing microRNA (miRNA) and circular RNA (circRNA). Dual-Luciferase Reporter or RNA immunoprecipitation assays were used to investigate the correlation among SYK, miR-377-3p, and hsa_circ_0006417. SYK was upregulated in PTC. Overexpression of SYK exhibited a positive correlation with tumor size, lymph node metastasis, and unfavorable disease-free survival. Functional assays revealed that SYK exerted tumorigenic effect on PTC cells through mTOR/4E-BP1 pathway. Mechanistically, hsa_circ_0006417 and miR-377-3p regulated SYK expression, offering modulating its tumor-promoting effects. Collectively, SYK acts as an oncogene in PTC through mTOR/4E-BP1 pathway, which is regulated by the hsa_circ_0006417/miR-377-3p axis, thereby providing a potential alternative for PTC treatment.
Collapse
Affiliation(s)
- Guangmou Tan
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, Southern Medical University, Guangzhou, China
- Department of Head and Neck Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shiyang Zheng
- Department of Head and Neck Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Boxuan Zhou
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhaohong Mo
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qiong Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Donghui Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Aimin Li
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, Southern Medical University, Guangzhou, China
| | - Xinhui Liu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Cancer Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Yang J, Cheng Y, Nie Y, Tian B, Huang J, Gong R, Li Z, Zhu J, Gong Y. TRPC5 expression promotes the proliferation and invasion of papillary thyroid carcinoma through the HIF-1α/Twist pathway. Transl Oncol 2024; 39:101809. [PMID: 37918167 PMCID: PMC10638037 DOI: 10.1016/j.tranon.2023.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/15/2023] [Indexed: 11/04/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the effect of TRPC5 on PTC (papillary thyroid carcinoma) proliferation and invasion. METHODS Immunofluorescence and western blot were used to evaluate the expression of TRPC5 in paraffin sections and clinical tissues. Overexpression and silencing of TRPC5 to generate the cells for in vitro experiments. Wound-healing assay, transwell invasion assay, MTT assay, and in vivo tumorigenicity assay were used to determine cell proliferation and cell migration in vitro and in vivo. Real-time PCR was used to test the expression of TRPC5. Western blot was used to test the expression of downstream factors: E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, ZEB, Snail, and Twist. RESULTS The level of TRPC5 protein expression was higher in PTC than in adjacent normal thyroid tissue. TPC-1 cells overexpressing TRPC5 were more proliferative, had longer migration distances, and increased the number of invading cells. TPC-1 cells silenced with TRPC5 had a weaker proliferation capacity, shorter migration distances, and a reduced number of invading cells. Overexpression and silencing of TRPC5 modulated E-cadherin, Vimentin, MMP-9, MMP-2, TRPC5, and Twist, but did not affect ZEB and Snail. The results of tumor formation experiments in nude mice showed that inhibition of TRPC5 expression suppressed the volume and weight of transplanted tumors. CONCLUSION TRPC5 induced papillary thyroid cancer metastasis and progression via up-regulated HIF-1α signaling in vivo and in vitro. High TRPC5 expression is a biomarker for lymph node metastasis at its early stages.
Collapse
Affiliation(s)
- Jing Yang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yue Cheng
- Department of Otorhinolaryngology-Head and Neck Surgery, Sichuan Electric Power Hospital, China
| | - Yan Nie
- West China School of Medicine, Sichuan University, China
| | - Bole Tian
- Department of pancreatic Surgery, West China Hospital, Sichuan University, China
| | - Jing Huang
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Rixiang Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhihui Li
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jingqiang Zhu
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanping Gong
- Department of Thyroid Surgery, West China Hospital, Sichuan University, China; Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
24
|
Li Z, Jia LI, Zhou HR, Zhang LU, Zhang M, Lv J, Deng ZY, Liu C. Development and Validation of Potential Molecular Subtypes and Signatures of Thyroid Carcinoma Based on Aging-related Gene Analysis. Cancer Genomics Proteomics 2024; 21:102-117. [PMID: 38151291 PMCID: PMC10756346 DOI: 10.21873/cgp.20433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND/AIM Thyroid carcinoma (THCA) is a cancer of the endocrine system that most commonly affects women. Aging-associated genes play a critical role in various cancers. Therefore, we aimed to gain insight into the molecular subtypes of thyroid cancer and whether senescence-related genes can predict the overall prognosis of THCA patients. MATERIALS AND METHODS Thyroid carcinoma (THCA) transcriptome-related expression profiles were obtained from The Cancer Genome Atlas (TCGA) database. These profiles were randomly divided into training and validation subsets at a ratio of 1:1. Unsupervised clustering algorithms were used to compare differences between the two subtypes; prognosis-related senescence genes were used to further construct our prognostic models by univariate and multivariate Cox analyses and construct a nomogram to predict the 1-, 3-, and 5-year overall survival probability of THCA patients. In addition, we performed gene set enrichment analysis (GSEA) to predict the immune microenvironment and somatic mutations between the different risk groups. Finally, real-time PCR was used to verify the expression levels of key model genes. RESULTS The 'ConsensusClusterPlus' R package was used to cluster thyroid cancer into two categories (Cluster1 and Cluster2) on the basis of 46 differentially expressed aging-related genes (DE-ARGs); patients in Cluster1 demonstrated a better prognosis than those in Cluster2. Cox analysis was used to screen six prognosis-related DE-ARGs. Finally, our real-time PCR results confirmed our hypothesis. CONCLUSION Differences exist between the two subtypes of thyroid cancer that help guide treatment decisions. The six DE-ARG genes have a high predictive value for risk stratifying THCA patients.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - L I Jia
- Department of Nuclear Medicine, Affiliated Hospital of Yunnan University, Kunming, P.R. China
| | - Huang-Ren Zhou
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - L U Zhang
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Meng Zhang
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Juan Lv
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Zhi-Yong Deng
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Kunming, P.R. China;
| |
Collapse
|
25
|
Komatsuda H, Kono M, Wakisaka R, Sato R, Inoue T, Kumai T, Takahara M. Harnessing Immunity to Treat Advanced Thyroid Cancer. Vaccines (Basel) 2023; 12:45. [PMID: 38250858 PMCID: PMC10820966 DOI: 10.3390/vaccines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
The incidence of thyroid cancer (TC) has increased over the past 30 years. Although differentiated thyroid cancer (DTC) has a good prognosis in most patients undergoing total thyroidectomy followed by radioiodine therapy (RAI), 5-10% of patients develop metastasis. Anaplastic thyroid cancer (ATC) has a low survival rate and few effective treatments have been available to date. Recently, tyrosine kinase inhibitors (TKIs) have been successfully applied to RAI-resistant or non-responsive TC to suppress the disease. However, TC eventually develops resistance to TKIs. Immunotherapy is a promising treatment for TC, the majority of which is considered an immune-hot malignancy. Immune suppression by TC cells and immune-suppressing cells, including tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, is complex and dynamic. Negative immune checkpoints, cytokines, vascular endothelial growth factors (VEGF), and indoleamine 2,3-dioxygenase 1 (IDO1) suppress antitumor T cells. Basic and translational advances in immune checkpoint inhibitors (ICIs), molecule-targeted therapy, tumor-specific immunotherapy, and their combinations have enabled us to overcome immune suppression and activate antitumor immune cells. This review summarizes current findings regarding the immune microenvironment, immunosuppression, immunological targets, and immunotherapy for TC and highlights the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Hiroki Komatsuda
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Michihisa Kono
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Risa Wakisaka
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Ryosuke Sato
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takahiro Inoue
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
| | - Takumi Kumai
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Miki Takahara
- Department of Otolaryngology-Head and Neck Surgery, Asahikawa Medical University, Asahikawa 078-8510, Japan; (H.K.); (M.K.); (R.W.); (R.S.); (T.I.); (M.T.)
- Department of Innovative Head & Neck Cancer Research and Treatment, Asahikawa Medical University, Asahikawa 078-8510, Japan
| |
Collapse
|
26
|
Zhang X, Zhong Y, Liu L, Jia C, Cai H, Yang J, Wu B, Lv Z. Fasting regulates mitochondrial function through lncRNA PRKCQ-AS1-mediated IGF2BPs in papillary thyroid carcinoma. Cell Death Dis 2023; 14:827. [PMID: 38092752 PMCID: PMC10719255 DOI: 10.1038/s41419-023-06348-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 11/01/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Recurring evidence suggests that fasting has extensive antitumor effects in various cancers, including papillary thyroid carcinoma (PTC). However, the underlying mechanism of this relationship with PTC is unknown. In this study, we study the effect of fasting on glycolysis and mitochondrial function in PTC. We find that fasting impairs glycolysis and reduces mitochondrial dysfunction in vitro and in vivo and also fasting in vitro and fasting mimicking diets (FMD) in vivo significantly increase the expression of lncRNA-protein kinase C theta antisense RNA 1 (PRKCQ-AS1), during the inhibition of TPC cell glycolysis and mitochondrial function. Moreover, lncRNA PRKCQ-AS1 was significantly lower in PTC tissues and cells. In addition, PRKCQ-AS1 overexpression increased PTC cell glycolysis and mitochondrial function; PRKCQ-AS1 knockdown has the opposite effect. On further mechanistic analysis, we identified that PRKCQ-AS1 physically interacts with IGF2BPs and enhances protein arginine methyltransferases 7 (PRMT7) mRNA, which is the key player in regulating glycolysis and mitochondrial function in PTC. Hence, PRKCQ-AS1 inhibits tumor growth while regulating glycolysis and mitochondrial functions via IGF2BPs/PRMT7 signaling. These results indicate that lncRNA PRKCQ-AS1 is a key downstream target of fasting and is involved in PTC metabolic reprogramming. Further, the PRKCQ-AS1/IGF2BPs/PRMT7 axis is an ideal therapeutic target for PTC diagnosis and treatment.
Collapse
Affiliation(s)
- Xiaoping Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai hospital Affiliated with Jinan University, Jinan University, 519000, Guangdong, China.
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| | - Yong Zhong
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Lin Liu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Haidong Cai
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Jianshe Yang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China
| | - Bo Wu
- Center of Thyroid, Department of General Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 200233, Shanghai, China.
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University, 200072, Shanghai, China.
| |
Collapse
|
27
|
Chapman PB, Klang M, Postow MA, Shoushtari AN, Sullivan RJ, Wolchok JD, Merghoub T, Budhu S, Wong P, Callahan MK, Zheng B, Zippin J. Phase Ib Trial of Phenformin in Patients with V600-mutated Melanoma Receiving Dabrafenib and Trametinib. CANCER RESEARCH COMMUNICATIONS 2023; 3:2447-2454. [PMID: 37930123 PMCID: PMC10695100 DOI: 10.1158/2767-9764.crc-23-0296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/22/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE Preclinical studies show that activation of AMP kinase by phenformin can augment the cytotoxic effect and RAF inhibitors in BRAF V600-mutated melanoma. We conducted a phase Ib dose-escalation trial of phenformin with standard dose dabrafenib/trametinib in patients with metastatic BRAF V600-mutated melanoma. EXPERIMENTAL DESIGN We used a 3+3 dose-escalation design which explored phenformin doses between 50 and 200 mg twice daily. Patients also received standard dose dabrafenib/trametinib. We measured phenformin pharmacokinetics and assessed the effect of treatment on circulating myeloid-derived suppressor cells (MDSC). RESULTS A total of 18 patients were treated at dose levels ranging from 50 to 200 mg twice daily. The planned dose-escalation phase had to be cancelled because of the COVID 19 pandemic. The most common toxicities were nausea/vomiting; there were two cases of reversible lactic acidosis. Responses were seen in 10 of 18 patients overall (56%) and in 2 of 8 patients who had received prior therapy with RAF inhibitor. Pharmacokinetic data confirmed drug bioavailability. MDSCs were measured in 7 patients treated at the highest dose levels and showed MDSC levels declined on study drug in 6 of 7 patients. CONCLUSIONS We identified the recommended phase II dose of phenformin as 50 mg twice daily when administered with dabrafenib/trametinib, although some patients will require short drug holidays. We observed a decrease in MDSCs, as predicted by preclinical studies, and may enhance immune recognition of melanoma cells. SIGNIFICANCE This is the first trial using phenformin in combination with RAF/MEK inhibition in patients with BRAF V600-mutated melanoma. This is a novel strategy, based on preclinical data, to increase pAMPK while blocking the MAPK pathway in melanoma. Our data provide justification and a recommended dose for a phase II trial.
Collapse
Affiliation(s)
- Paul B. Chapman
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Mark Klang
- Research Pharmacy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Michael A. Postow
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Alexander Noor Shoushtari
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Ryan J. Sullivan
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jedd D. Wolchok
- Weill Cornell Medical College, New York, New York
- Ludwig Institute for Cancer Research, New York, New York
| | | | - Sadna Budhu
- Weill Cornell Medical College, New York, New York
| | - Phillip Wong
- Department of Medicine, Weill Cornell Medicine, New York, New York
| | - Margaret K. Callahan
- Department of Medicine, Weill Cornell Medicine, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Bin Zheng
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | | |
Collapse
|
28
|
Zhu L, Li XJ, Gangadaran P, Jing X, Ahn BC. Tumor-associated macrophages as a potential therapeutic target in thyroid cancers. Cancer Immunol Immunother 2023; 72:3895-3917. [PMID: 37796300 PMCID: PMC10992981 DOI: 10.1007/s00262-023-03549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/14/2023] [Indexed: 10/06/2023]
Abstract
Macrophages are important precursor cell types of the innate immune system and bridge adaptive immune responses through the antigen presentation system. Meanwhile, macrophages constitute substantial portion of the stromal cells in the tumor microenvironment (TME) (referred to as tumor-associated macrophages, or TAMs) and exhibit conflicting roles in the development, invasion, and metastasis of thyroid cancer (TC). Moreover, TAMs play a crucial role to the behavior of TC due to their high degree of infiltration and prognostic relevance. Generally, TAMs can be divided into two subgroups; M1-like TAMs are capable of directly kill tumor cells, and recruiting and activating other immune cells in the early stages of cancer. However, due to changes in the TME, M2-like TAMs gradually increase and promote tumor progression. This review aims to discuss the impact of TAMs on TC, including their role in tumor promotion, gene mutation, and other factors related to the polarization of TAMs. Finally, we will explore the M2-like TAM-centered therapeutic strategies, including chemotherapy, clinical trials, and combinatorial immunotherapy.
Collapse
Affiliation(s)
- Liya Zhu
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiu Juan Li
- Department of Radiology, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, Shan-Dong Province, People's Republic of China
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Xiuli Jing
- Center for Life Sciences Research, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shan-Dong Province, 271000, People's Republic of China.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
| |
Collapse
|
29
|
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy worldwide, and the incidence of TC has gradually increased in recent decades. Differentiated thyroid cancer (DTC) is the most common subtype and has a good prognosis. However, advanced DTC patients with recurrence, metastasis and iodine refractoriness, as well as more aggressive subtypes such as poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC), still pose a great challenge for clinical management. Therefore, it is necessary to continue to explore the inherent molecular heterogeneity of different TC subtypes and the global landscape of the tumor immune microenvironment (TIME) to find new potential therapeutic targets. Immunotherapy is a promising therapeutic strategy that can be used alone or in combination with drugs targeting tumor-driven genes. This article focuses on the genomic characteristics, tumor-associated immune cell infiltration and immune checkpoint expression of different subtypes of TC patients to provide guidance for immunotherapy.
Collapse
Affiliation(s)
- Yujia Tao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China
- Department of Basic Medical Sciences, The 960th Hospital of the PLA, Jinan, Shandong, China
| | - Peng Li
- Department of Basic Medical Sciences, The 960th Hospital of the PLA, Jinan, Shandong, China
| | - Chao Feng
- Department of Basic Medical Sciences, The 960th Hospital of the PLA, Jinan, Shandong, China
| | - Yuan Cao
- Department of Basic Medical Sciences, The 960th Hospital of the PLA, Jinan, Shandong, China
| |
Collapse
|
30
|
Burgermeister E. Mitogen-Activated Protein Kinase and Nuclear Hormone Receptor Crosstalk in Cancer Immunotherapy. Int J Mol Sci 2023; 24:13661. [PMID: 37686465 PMCID: PMC10488039 DOI: 10.3390/ijms241713661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
The three major MAP-kinase (MAPK) pathways, ERK1/2, p38 and JNK/SAPK, are upstream regulators of the nuclear "hormone" receptor superfamily (NHRSF), with a prime example given by the estrogen receptor in breast cancer. These ligand-activated transcription factors exert non-genomic and genomic functions, where they are either post-translationally modified by phosphorylation or directly interact with components of the MAPK pathways, events that govern their transcriptional activity towards target genes involved in cell differentiation, proliferation, metabolism and host immunity. This molecular crosstalk takes place not only in normal epithelial or tumor cells, but also in a plethora of immune cells from the adaptive and innate immune system in the tumor-stroma tissue microenvironment. Thus, the drugability of both the MAPK and the NHRSF pathways suggests potential for intervention therapies, especially for cancer immunotherapy. This review summarizes the existing literature covering the expression and function of NHRSF subclasses in human tumors, both solid and leukemias, and their effects in combination with current clinically approved therapeutics against immune checkpoint molecules (e.g., PD1).
Collapse
Affiliation(s)
- Elke Burgermeister
- Department of Medicine II, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany
| |
Collapse
|
31
|
Fagin JA, Krishnamoorthy GP, Landa I. Pathogenesis of cancers derived from thyroid follicular cells. Nat Rev Cancer 2023; 23:631-650. [PMID: 37438605 PMCID: PMC10763075 DOI: 10.1038/s41568-023-00598-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The genomic simplicity of differentiated cancers derived from thyroid follicular cells offers unique insights into how oncogenic drivers impact tumour phenotype. Essentially, the main oncoproteins in thyroid cancer activate nodes in the receptor tyrosine kinase-RAS-BRAF pathway, which constitutively induces MAPK signalling to varying degrees consistent with their specific biochemical mechanisms of action. The magnitude of the flux through the MAPK signalling pathway determines key elements of thyroid cancer biology, including differentiation state, invasive properties and the cellular composition of the tumour microenvironment. Progression of disease results from genomic lesions that drive immortalization, disrupt chromatin accessibility and cause cell cycle checkpoint dysfunction, in conjunction with a tumour microenvironment characterized by progressive immunosuppression. This Review charts the genomic trajectories of these common endocrine tumours, while connecting them to the biological states that they confer.
Collapse
Affiliation(s)
- James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Gnana P Krishnamoorthy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Iñigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
Zhang L, Li Z, Zhang M, Zou H, Bai Y, Liu Y, Lv J, Lv L, Liu P, Deng Z, Liu C. Advances in the molecular mechanism and targeted therapy of radioactive-iodine refractory differentiated thyroid cancer. Med Oncol 2023; 40:258. [PMID: 37524925 DOI: 10.1007/s12032-023-02098-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/21/2023] [Indexed: 08/02/2023]
Abstract
Most patients with differentiated thyroid cancer have a good prognosis after radioactive iodine-131 treatment, but there are still a small number of patients who are not sensitive to radioiodine treatment and may subsequently show disease progression. Therefore, radioactive-iodine refractory differentiated thyroid cancer treated with radioiodine usually shows reduced radioiodine uptake. Thus, when sodium iodine symporter expression, basolateral membrane localization and recycling degradation are abnormal, radioactive-iodine refractory differentiated thyroid cancer may occur. In recent years, with the deepening of research into the pathogenesis of this disease, an increasing number of molecules have become or are expected to become therapeutic targets. The application of corresponding inhibitors or combined treatment regimens for different molecular targets may be effective for patients with advanced radioactive-iodine refractory differentiated thyroid cancer. Currently, some targeted drugs that can improve the progression-free survival of patients with radioactive-iodine refractory differentiated thyroid cancer, such as sorafenib and lenvatinib, have been approved by the FDA for the treatment of radioactive-iodine refractory differentiated thyroid cancer. However, due to the adverse reactions and drug resistance caused by some targeted drugs, their application is limited. In response to targeted drug resistance and high rates of adverse reactions, research into new treatment combinations is being carried out; in addition to kinase inhibitor therapy, gene therapy and rutin-assisted iodine-131 therapy for radioactive-iodine refractory thyroid cancer have also made some progress. Thus, this article mainly focuses on sodium iodide symporter changes leading to the main molecular mechanisms in radioactive-iodine refractory differentiated thyroid cancer, some targeted drug resistance mechanisms and promising new treatments.
Collapse
Affiliation(s)
- Lu Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhi Li
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Meng Zhang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Huangren Zou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yuke Bai
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Yanlin Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Juan Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Ling Lv
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Pengjie Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| | - Zhiyong Deng
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China.
| | - Chao Liu
- Department of Nuclear Medicine, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan Province, 519 Kunzhou Road, Xishan District, Kunming, KM, 650118, China
| |
Collapse
|
33
|
Alimu X, Zhang J, Pang N, Zhang R, Chen R, Zeng X, Tudahong S, Chen G, Muhashi M, Zhao F, Ding J, Qu J. Galectin-9 and myeloid-derived suppressor cell as prognostic indicators for chronic lymphocytic leukemia. Immun Inflamm Dis 2023; 11:e853. [PMID: 37249287 PMCID: PMC10165952 DOI: 10.1002/iid3.853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
BACKGROUND Galectin-9 and myeloid-derived suppressor cells (MDSCs) have an important role in tumors, but their clinical values in chronic lymphocytic leukemia (CLL) have not been fully elucidated. This study aimed to analyze the prognosis values of Galectin-9 and MDSCs in CLL. METHODS The concentrations of Galectin-9, argininase-1, and inducible nitric oxide synthase in serum were detected by enzyme-linked immune sorbent assay. The expression of Tim-3 protein in peripheral blood mononuclear cell was detected by Western blot. Flow cytometry was used to analyze the percentages of Tim-3 on T-cells (CD3+ T, CD4+ T, and CD8+ T cells) and MDSCs. RESULTS Our results showed that Galectin-9 and MDSCs significantly increased in CLL patients and were closely related to the disease progression. Patient's receiver operating characteristic, progression-free survival, and Cox regression analysis showed that Galectin9 and MDSCs were poor prognostic factors of CLL. CONCLUSION Galectin-9 and MDSCs were associated with clinical progression and could be important prognostic indicators for CLL.
Collapse
Affiliation(s)
- Xierenguli Alimu
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Juan Zhang
- Senior Department of HematologyThe Fifth Medical Center of PLA General HospitalBeijingChina
| | - Nannan Pang
- CAS Key Lab of Bio‐Medical Diagnostics, Suzhou Institute of Biomedical Engineering and TechnologyChinese Academy of SciencesSuzhouChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Rui Zhang
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Rong Chen
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Xuejiao Zeng
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Shabaaiti Tudahong
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
| | - Gang Chen
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Maliya Muhashi
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Fang Zhao
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical SciencesXinjiang Medical UniversityUrumqiXinjiangChina
| | - Jianhua Qu
- Center of HematologyThe First Affiliated Hospital of Xinjiang Medical UniversityUrumqiXinjiangChina
- Hematology Institute of Xinjiang Uygur Autonomous RegionUrumqiXinjiangChina
| |
Collapse
|
34
|
Branigan GP, Casado-Medrano V, O’Neill AB, Ricarte-Filho JC, Massoll N, Salwen M, Spangler Z, Scheerer M, Williamson EK, Bauer AJ, Franco AT. Development of Novel Murine BRAF V600E-Driven Papillary Thyroid Cancer Cell Lines for Modeling of Disease Progression and Preclinical Evaluation of Therapeutics. Cancers (Basel) 2023; 15:879. [PMID: 36765847 PMCID: PMC9913801 DOI: 10.3390/cancers15030879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 02/04/2023] Open
Abstract
The Cancer Genome Atlas study in thyroid cancer exposed the genomic landscape of ~500 PTCs and revealed BRAFV600E-mutant tumors as having different prognosis, contrasting indolent cases and those with more invasive disease. Here, we describe the generation and characterization of six novel BRAFV600E-driven papillary thyroid cancer (PTC) cell lines established from a BrafV600E+/-/Pten+/-/TPO-Cre mouse model that spontaneously develop thyroid tumors. The novel cell lines were obtained from animals representing a range of developmental stages and both sexes, with the goal of establishing a heterogeneous panel of PTC cell lines sharing a common driver mutation. These cell lines recapitulate the genetics and diverse histopathological features of BRAFV600E-driven PTC, exhibiting differing degrees of growth, differentiation, and invasive potential that may help define mechanisms of pathogenesis underlying the heterogeneity present in the patient population. We demonstrate that these cell lines can be used for a variety of in vitro applications and can maintain the potential for in vivo transplantation into immunocompetent hosts. We believe that these novel cell lines will provide powerful tools for investigating the molecular basis of thyroid cancer progression and will lead to the development of more personalized diagnostic and treatment strategies for BRAFV600E-driven PTC.
Collapse
Affiliation(s)
- Grace Purvis Branigan
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Victoria Casado-Medrano
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alison B. O’Neill
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Julio C. Ricarte-Filho
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nicole Massoll
- Department of Pathology, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Madeleine Salwen
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Zachary Spangler
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Michele Scheerer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Edward K. Williamson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew J. Bauer
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aime T. Franco
- Division of Endocrinology and Diabetes, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
35
|
Tang Q, Peng X, Xu B, Zhou X, Chen J, Cheng L. Current Status and Future Directions of Bacteria-Based Immunotherapy. Front Immunol 2022; 13:911783. [PMID: 35757741 PMCID: PMC9226492 DOI: 10.3389/fimmu.2022.911783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023] Open
Abstract
With the in-depth understanding of the anti-cancer immunity, immunotherapy has become a promising cancer treatment after surgery, radiotherapy, and chemotherapy. As natural immunogenicity substances, some bacteria can preferentially colonize and proliferate inside tumor tissues to interact with the host and exert anti-tumor effect. However, further research is hampered by the infection-associated toxicity and their unpredictable behaviors in vivo. Due to modern advances in genetic engineering, synthetic biology, and material science, modifying bacteria to minimize the toxicity and constructing a bacteria-based immunotherapy platform has become a hotspot in recent research. This review will cover the inherent advantages of unedited bacteria, highlight how bacteria can be engineered to provide greater tumor-targeting properties, enhanced immune-modulation effect, and improved safety. Successful applications of engineered bacteria in cancer immunotherapy or as part of the combination therapy are discussed as well as the bacteria based immunotherapy in different cancer types. In the end, we highlight the future directions and potential opportunities of this emerging field.
Collapse
Affiliation(s)
- Quan Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Xu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|