1
|
Hu N, Shi JX, Chen C, Xu HH, Chang ZH, Hu PF, Guo D, Zhang XW, Shao WW, Fan X, Zuo JC, Ming D, Li XH. Constructing organoid-brain-computer interfaces for neurofunctional repair after brain injury. Nat Commun 2024; 15:9580. [PMID: 39505863 PMCID: PMC11541701 DOI: 10.1038/s41467-024-53858-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
The reconstruction of damaged neural circuits is critical for neurological repair after brain injury. Classical brain-computer interfaces (BCIs) allow direct communication between the brain and external controllers to compensate for lost functions. Importantly, there is increasing potential for generalized BCIs to input information into the brains to restore damage, but their effectiveness is limited when a large injured cavity is caused. Notably, it might be overcome by transplantation of brain organoids into the damaged region. Here, we construct innovative BCIs mediated by implantable organoids, coined as organoid-brain-computer interfaces (OBCIs). We assess the prolonged safety and feasibility of the OBCIs, and explore neuroregulatory strategies. OBCI stimulation promotes progressive differentiation of grafts and enhances structural-functional connections within organoids and the host brain, promising to repair the damaged brain via regenerating and regulating, potentially directing neurons to preselected targets and recovering functional neural networks in the future.
Collapse
Affiliation(s)
- Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Hai-Huan Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
- Tianjin Key Laboratory of Neurotrauma Repair, Characteristic Medical Center of People's Armed Police Forces, Tianjin, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Peng-Fei Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Di Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Wen-Wei Shao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China
| | - Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, China.
| |
Collapse
|
2
|
Li XH, Hu N, Chang ZH, Shi JX, Fan X, Chen MM, Bao SQ, Chen C, Zuo JC, Zhang XW, Wang JJ, Ming D. Brain organoid maturation and implantation integration based on electrical signals input. J Adv Res 2024:S2090-1232(24)00378-3. [PMID: 39243942 DOI: 10.1016/j.jare.2024.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/23/2024] [Accepted: 08/27/2024] [Indexed: 09/09/2024] Open
Abstract
INTRODUCTION Brain organoids are believed to be able to regenerate impaired neural circuits and reinstate brain functionality. The neuronal activity of organoids is considered a crucial factor for restoring host function after implantation. However, the optimal stage of brain organoid post-transplantation has not yet been established. External electrical signal plays a crucial role in the physiology and development of a majority of human tissues. However, whether electrical input modulates the development of brain organoids, making them ideal transplant donors, is elusive. METHODS Bioelectricity was input into cortical organoids by electrical stimulation (ES) with a multi-electrode array (MEA) to obtain a better-transplanted candidate with better viability and maturity, realizing structural-functional integration with the host brain. RESULTS We found that electrical stimulation facilitated the differentiation and maturation of organoids, displaying well-defined cortical plates and robust functional electrophysiology, which was probably mediated via the pathway of calcium-calmodulin (CaM) dependent protein kinase II (CAMK II)-protein kinase A (PKA)-cyclic-AMP response binding protein (pCREB). The ES-pretreated D40 organoids displayed superior cell viability and higher cell maturity, and were selected to transplant into the damaged primary sensory cortex (S1) of host. The enhanced maturation was exhibited within grafts after transplantation, including synapses and complex functional activities. Moreover, structural-functional integration between grafts and host was observed, conducive to strengthening functional connectivity and restoring the function of the host injury. CONCLUSION Our findings supported that electrical stimulation could promote the development of cortical organoids. ES-pretreated organoids were better-transplanted donors for strengthening connectivity between grafts and host. Our work presented a new physical approach to regulating organoids, potentially providing a novel translational strategy for functional recovery after brain injury. In the future, the development of 3D flexible electrodes is anticipated to overcome the drawbacks of 2D planar MEA, promisingly achieving multimodal stimulation and long-term recordings of brain organoids.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Nan Hu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhe-Han Chang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jian-Xin Shi
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiu Fan
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Meng-Meng Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang-Qing Bao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Chong Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jia-Chen Zuo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Wang Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jing-Jing Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
3
|
Zhang S, Pu Y, Liu J, Li L, An C, Wu Y, Zhang W, Zhang W, Qu S, Yan W. Exploring the multifaceted potential of (R)-ketamine beyond antidepressant applications. Front Pharmacol 2024; 15:1337749. [PMID: 38666026 PMCID: PMC11043571 DOI: 10.3389/fphar.2024.1337749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
(R, S)- and (S)-ketamine have made significant progress in the treatment of treatment-resistant depression (TRD) and have become a research focus in recent years. However, they both have risks of psychomimetic effects, dissociative effects, and abuse liability, which limit their clinical use. Recent preclinical and clinical studies have shown that (R)-ketamine has a more efficient and lasting antidepressant effect with fewer side effects compared to (R, S)- and (S)-ketamine. However, a recent small-sample randomized controlled trial found that although (R)-ketamine has a lower incidence of adverse reactions in adult TRD treatment, its antidepressant efficacy is not superior to the placebo group, indicating its antidepressant advantage still needs further verification and clarification. Moreover, an increasing body of research suggests that (R)-ketamine might also have significant applications in the prevention and treatment of medical fields or diseases such as cognitive disorders, perioperative anesthesia, ischemic stroke, Parkinson's disease, multiple sclerosis, osteoporosis, substance use disorders, inflammatory diseases, COVID-19, and organophosphate poisoning. This article briefly reviews the mechanism of action and research on antidepressants related to (R)-ketamine, fully revealing its application potential and development prospects, and providing some references and assistance for subsequent expanded research.
Collapse
Affiliation(s)
- Senbing Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yanzhu Pu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jianning Liu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lewen Li
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Chibing An
- Department of Anesthesiology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning, Hubei, China
| | - Yumin Wu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjie Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenxia Zhang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Song Qu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Wenjun Yan
- Department of Anesthesiology, Gansu Provincial Hospital, Lanzhou, Gansu, China
| |
Collapse
|
4
|
Song S, McConnell KW, Shan D, Chen C, Oh B, Sun J, Poon ASY, George PM. Conductive gradient hydrogels allow spatial control of adult stem cell fate. J Mater Chem B 2024; 12:1854-1863. [PMID: 38291979 PMCID: PMC10922832 DOI: 10.1039/d3tb02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Electrical gradients are fundamental to physiological processes including cell migration, tissue formation, organ development, and response to injury and regeneration. Current electrical modulation of cells is primarily studied under a uniform electrical field. Here we demonstrate the fabrication of conductive gradient hydrogels (CGGs) that display mechanical properties and varying local electrical gradients mimicking physiological conditions. The electrically-stimulated CGGs enhanced human mesenchymal stem cell (hMSC) viability and attachment. Cells on CGGs under electrical stimulation showed a high expression of neural progenitor markers such as Nestin, GFAP, and Sox2. More importantly, CGGs showed cell differentiation toward oligodendrocyte lineage (Oligo2) in the center of the scaffold where the electric field was uniform with a greater intensity, while cells preferred neuronal lineage (NeuN) on the edge of the scaffold on a varying electric field at lower magnitude. Our data suggest that CGGs can serve as a useful platform to study the effects of electrical gradients on stem cells and potentially provide insights on developing new neural engineering applications.
Collapse
Affiliation(s)
- Shang Song
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA
| | - Kelly W McConnell
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Dingying Shan
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
| | - Jindi Sun
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Ada S Y Poon
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Paul M George
- Department of Neurology and Neurological Sciences, Stanford University, School of Medicine, 300 Pasteur Dr, MC5778 Stanford Stroke Center, Stanford, CA 94305-5778, USA.
- Stanford Stroke Center and Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
5
|
Marques-Almeida T, Lanceros-Mendez S, Ribeiro C. State of the Art and Current Challenges on Electroactive Biomaterials and Strategies for Neural Tissue Regeneration. Adv Healthc Mater 2024; 13:e2301494. [PMID: 37843074 DOI: 10.1002/adhm.202301494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/22/2023] [Indexed: 10/17/2023]
Abstract
The loss or failure of an organ/tissue stands as one of the healthcare system's most prevalent, devastating, and costly challenges. Strategies for neural tissue repair and regeneration have received significant attention due to their particularly strong impact on patients' well-being. Many research efforts are dedicated not only to control the disease symptoms but also to find solutions to repair the damaged tissues. Neural tissue engineering (TE) plays a key role in addressing this problem and significant efforts are being carried out to develop strategies for neural repair treatment. In the last years, active materials allowing to tune cell-materials interaction are being increasingly used, representing a recent paradigm in TE applications. Among the most important stimuli influencing cell behavior are the electrical and mechanical ones. In this way, materials with the ability to provide this kind of stimuli to the neural cells seem to be appropriate to support neural TE. In this scope, this review summarizes the different biomaterials types used for neural TE, highlighting the relevance of using active biomaterials and electrical stimulation. Furthermore, this review provides not only a compilation of the most relevant studies and results but also strategies for novel and more biomimetic approaches for neural TE.
Collapse
Affiliation(s)
- Teresa Marques-Almeida
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Clarisse Ribeiro
- Physics Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga, 4710-057, Portugal
- LaPMET - Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, 4710-057, Portugal
| |
Collapse
|
6
|
Chen T, Lau KSK, Hong SH, Shi HTH, Iwasa SN, Chen JXM, Li T, Morrison T, Kalia SK, Popovic MR, Morshead CM, Naguib HE. Cryogel-based neurostimulation electrodes to activate endogenous neural precursor cells. Acta Biomater 2023; 171:392-405. [PMID: 37683963 DOI: 10.1016/j.actbio.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The delivery of electrical pulses to the brain via penetrating electrodes, known as brain stimulation, has been recognized as an effective clinical approach for treating neurological disorders. Resident brain neural precursor cells (NPCs) are electrosensitive cells that respond to electrical stimulation by expanding in number, migrating and differentiating which are important characteristics that support neural repair. Here, we report the design of a conductive cryogel brain stimulation electrode specifically developed for NPC activation. The cryogel electrode has a modulus switching mechanism permitting facile penetration and reducing the mechanical mismatch between brain tissue and the penetrating electrode. The cryogel demonstrated good in vivo biocompatibility and reduced the interfacial impedance to deliver the stimulating electric field with lower voltage under charge-balanced current controlled stimulation. An ex vivo assay reveals that electrical stimulation using the cryogel electrodes results in significant expansion in the size of NPC pool. Hence, the cryogel electrodes have the potential to be used for NPC activation to support endogenous neural repair. STATEMENT OF SIGNIFICANCE: The objective of this study is to develop a cryogel-based stimulation electrode as an alternative to traditional electrode materials to be used in regenerative medicine applications for enhancing neural regeneration in brain. The electrode offers benefits such as adaptive modulus for implantation, high charge storage and injection capacities, and modulus matching with brain tissue, allowing for stable delivery of electric field for long-term neuromodulation. The electrochemical properties of cryogel electrodes were characterized in living tissue with an ex vivo set-up, providing a deeper understanding of stimulation capacity in brain environments. The cryogel electrode is biocompatible and enables low voltage, current-controlled stimulation for effective activation of endogenous neural precursor cells, revealing their potential utility in neural stem cell-mediated brain repair.
Collapse
Affiliation(s)
- Tianhao Chen
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Kylie Sin Ki Lau
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Sung Hwa Hong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hao Tian Harvey Shi
- Department of Mechanical and Materials Engineering, Western University, London, Ontario, Canada
| | - Stephanie N Iwasa
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jia Xi Mary Chen
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Terek Li
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Taylor Morrison
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Suneil K Kalia
- The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Neurosurgery, University Health Network, University of Toronto, Toronto, Ontario, Canada; Krembil Research Institute, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Milos R Popovic
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Cindi M Morshead
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; The KITE Research Institute, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada; CRANIA, University Health Network and University of Toronto, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| | - Hani E Naguib
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada; Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada; Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Santhanam S, Chen C, Oh B, McConnell KW, Azadian MM, Patel JJ, Gardner EE, Tanabe Y, Poon ASY, George PM. Wirelessly Powered-Electrically Conductive Polymer System for Stem Cell Enhanced Stroke Recovery. ADVANCED ELECTRONIC MATERIALS 2023; 9:2300369. [PMID: 38045756 PMCID: PMC10691593 DOI: 10.1002/aelm.202300369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Indexed: 12/05/2023]
Abstract
Effective stroke recovery therapeutics remain limited. Stem cell therapies have yielded promising results, but the harsh ischemic environment of the post-stroke brain reduces their therapeutic potential. Previously, we developed a conductive polymer scaffold system that enabled stem cell delivery with simultaneous electrical modulation of the cells and surrounding neural environment. This wired polymer scaffold proved efficacious in optimizing ideal conditions for stem cell mediated motor improvements in a rodent model of stroke. To further enable preclinical studies and enhance translational potential, we identified a method to improve this system by eliminating its dependence upon a tethered power source. We have herein developed a wirelessly powered, electrically conductive polymer system that eases therapeutic application and enables full mobility. As a proof of concept, we demonstrate that the wirelessly powered scaffold is able to stimulate neural stem cells in vitro, as well as in vivo in a rodent model of stroke. This system modulates the stroke microenvironment and increases the production of endogenous stem cells. In summation, this novel, wirelessly powered conductive scaffold can serve as a mobile platform for a wide variety of therapeutics involving electrical stimulation.
Collapse
Affiliation(s)
- Sruthi Santhanam
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Cheng Chen
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Byeongtaek Oh
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Kelly W. McConnell
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Matine M. Azadian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Jainith J. Patel
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Emily E. Gardner
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| | - Yuji Tanabe
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Ada S. Y. Poon
- Department of Electrical Engineering, Stanford University, 350 Jane Stanford Way, Stanford, CA 94305, USA
| | - Paul M. George
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Dr., MC5778, Stanford, CA 94305, USA
| |
Collapse
|
8
|
Omer SA, McKnight KH, Young LI, Song S. Stimulation strategies for electrical and magnetic modulation of cells and tissues. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:21. [PMID: 37391680 DOI: 10.1186/s13619-023-00165-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 05/01/2023] [Indexed: 07/02/2023]
Abstract
Electrical phenomena play an important role in numerous biological processes including cellular signaling, early embryogenesis, tissue repair and remodeling, and growth of organisms. Electrical and magnetic effects have been studied on a variety of stimulation strategies and cell types regarding cellular functions and disease treatments. In this review, we discuss recent advances in using three different stimulation strategies, namely electrical stimulation via conductive and piezoelectric materials as well as magnetic stimulation via magnetic materials, to modulate cell and tissue properties. These three strategies offer distinct stimulation routes given specific material characteristics. This review will evaluate material properties and biological response for these stimulation strategies with respect to their potential applications in neural and musculoskeletal research.
Collapse
Affiliation(s)
- Suleyman A Omer
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Kaitlyn H McKnight
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Lucas I Young
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA
| | - Shang Song
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, USA.
- Departments of Neuroscience GIDP, Materials Science and Engineering, BIO5 Institute, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
9
|
Damle EB, Morrison VE, Cioma J, Volic M, Bix GJ. Co-administration of extracellular matrix-based biomaterials with neural stem cell transplantation for treatment of central nervous system injury. Front Neurosci 2023; 17:1177040. [PMID: 37255752 PMCID: PMC10225608 DOI: 10.3389/fnins.2023.1177040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/28/2023] [Indexed: 06/01/2023] Open
Abstract
Injuries and disorders of the central nervous system (CNS) present a particularly difficult challenge for modern medicine to address, given the complex nature of the tissues, obstacles in researching and implementing therapies, and barriers to translating efficacious treatments into human patients. Recent advancements in neural stem cell (NSC) transplantation, endogenous neurogenesis, and in vivo reprogramming of non-neural cells into the neuronal lineage represent multiple approaches to resolving CNS injury. However, we propose that one practice that must be incorporated universally in neuroregeneration studies is the use of extracellular matrix (ECM)-mimicking biomaterials to supply the architectural support and cellular microenvironment necessary for partial or complete restoration of function. Through consideration of developmental processes including neurogenesis, cellular migration, and establishment of functional connectivity, as well as evaluation of process-specific interactions between cells and ECM components, insights can be gained to harness and modulate native and induced neurobiological processes to promote CNS tissue repair. Further, evaluation of the current landscape of regenerative medicine and tissue engineering techniques external to the neurosciences provides key perspectives into the role of the ECM in the use of stem cell-based therapies, and the potential directions future neuroregenerative approaches may take. If the most successful of these approaches achieve wide-spread adoption, innovative paired NSC-ECM strategies for neuroregeneration may become prominent in the near future, and with the rapid advances these techniques are poised to herald, a new era of treatment for CNS injury may dawn.
Collapse
Affiliation(s)
- Eshan B. Damle
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
- Tulane Brain Institute, Tulane University, New Orleans, LA, United States
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, United States
| | - Vivianne E. Morrison
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| | - Jozef Cioma
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Milla Volic
- Faculty of Biology, Medicine, and Health, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Gregory J. Bix
- Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
10
|
Duan R, Sun K, Fang F, Wang N, He R, Gao Y, Jing L, Li Y, Gong Z, Yao Y, Luan T, Zhang C, Zhang J, Zhao Y, Xie H, Zhou Y, Teng J, Zhang J, Jia Y. An ischemia-homing bioengineered nano-scavenger for specifically alleviating multiple pathogeneses in ischemic stroke. J Nanobiotechnology 2022; 20:397. [PMID: 36045405 PMCID: PMC9429703 DOI: 10.1186/s12951-022-01602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Ischemic stroke is one of the most serious global public health problems. However, the performance of current therapeutic regimens is limited due to their poor target specificity, narrow therapeutic time window, and compromised therapeutic effect. To overcome these barriers, we designed an ischemia-homing bioengineered nano-scavenger by camouflaging a catalase (CAT)-loaded self-assembled tannic acid (TA) nanoparticle with a M2-type microglia membrane (TPC@M2 NPs) for ischemic stroke treatment. RESULTS The TPC@M2 NPs can on-demand release TA molecules to chelate excessive Fe2+, while acid-responsively liberating CAT to synergistically scavenge multiple ROS (·OH, ·O2-, and H2O2). Besides, the M2 microglia membrane not only can be served as bioinspired therapeutic agents to repolarize M1 microglia into M2 phenotype but also endows the nano-scavenger with ischemia-homing and BBB-crossing capabilities. CONCLUSIONS The nano-scavenger for specific clearance of multiple pathogenic elements to alleviate inflammation and protect neurons holds great promise for combating ischemic stroke and other inflammation-related diseases.
Collapse
Affiliation(s)
- Ranran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ke Sun
- Department of Urinary Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Fang Fang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100811, China
| | - Ning Wang
- Department of Biochemistry, College of Life Sciences, Shaanxi Normal University, Xi'an, 710062, Shanxi, China
| | - Ruya He
- The International Medical Center, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yang Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yanfei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yaobing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tingting Luan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chaopeng Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinwei Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yi Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haojie Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yongyan Zhou
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Sciences, Beijing Institute of Technology, Beijing, 100811, China.
| | - Yanjie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|