1
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
2
|
Mahmud M, Vasireddy S, Gowin K, Amaraneni A. Myeloproliferative Neoplasms: Contemporary Review and Molecular Landscape. Int J Mol Sci 2023; 24:17383. [PMID: 38139212 PMCID: PMC10744078 DOI: 10.3390/ijms242417383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Myelofibrosis (MF), Myeloproliferative neoplasms (MPNs), and MDS/MPN overlap syndromes have a broad range of clinical presentations and molecular abnormalities, making their diagnosis and classification complex. This paper reviews molecular aberration, epigenetic modifications, chromosomal anomalies, and their interactions with cellular and other immune mechanisms in the manifestations of these disease spectra, clinical features, classification, and treatment modalities. The advent of new-generation sequencing has broadened the understanding of the genetic factors involved. However, while great strides have been made in the pharmacological treatment of these diseases, treatment of advanced disease remains hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Muftah Mahmud
- Department of Medicine, Midwestern University Internal Medicine Residency Consortium, Cottonwood, AZ 86326, USA
| | - Swati Vasireddy
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85701, USA
| | - Krisstina Gowin
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| | - Akshay Amaraneni
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| |
Collapse
|
3
|
Vainchenker W, Yahmi N, Havelange V, Marty C, Plo I, Constantinescu SN. Recent advances in therapies for primary myelofibrosis. Fac Rev 2023; 12:23. [PMID: 37771602 PMCID: PMC10523375 DOI: 10.12703/r/12-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
Primary myelofibrosis (PMF), polycythemia vera (PV) and essential thrombocythemia (ET) form the classical BCR-ABL1-negative myeloproliferative neoplasms (MPNs) that are driven by a constitutive activation of JAK2 signaling. PMF as well as secondary MF (post-ET and post-PV MF) are the most aggressive MPNs. Presently, there is no curative treatment, except allogenic hematopoietic stem cell transplantation. JAK inhibitors, essentially ruxolitinib, are the therapy of reference for intermediate and high-risk MF. However, presently the current JAK inhibitors behave mainly as anti-inflammatory drugs, improving general symptoms and spleen size without major impact on disease progression. A better understanding of the genetics of MF, the biology of its leukemic stem cells (LSCs), the mechanisms of fibrosis and of cytopenia and the role of inflammatory cytokines has led to new approaches with the development of numerous therapeutic agents that target epigenetic regulation, telomerase, apoptosis, cell cycle, cytokines and signaling. Furthermore, the use of a new less toxic form of interferon-α has been revived, as it is presently one of the only molecules that targets the mutated clone. These new approaches have different aims: (a) to provide alternative therapy to JAK inhibition; (b) to correct cytopenia; and (c) to inhibit fibrosis development. However, the main important goal is to find new disease modifier treatments, which will profoundly modify the progression of the disease without major toxicity. Presently the most promising approaches consist of the inhibition of telomerase and the combination of JAK2 inhibitors (ruxolitinib) with either a BCL2/BCL-xL or BET inhibitor. Yet, the most straightforward future approaches can be considered to be the development of and/or selective inhibition of JAK2V617F and the targeting MPL and calreticulin mutants by immunotherapy. It can be expected that the therapy of MF will be significantly improved in the coming years.
Collapse
Affiliation(s)
- William Vainchenker
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Nasrine Yahmi
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Violaine Havelange
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Cliniques universitaires Saint Luc, Department of Hematology, Université Catholique de Louvain, Brussels, Belgium
| | - Caroline Marty
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Isabelle Plo
- INSERM, UMR1287, Gustave Roussy, Villejuif, France
- Université Paris-Saclay, UMR1287, Gustave Roussy, Villejuif, France
- Gustave Roussy, UMR1287, Villejuif, France
| | - Stefan N Constantinescu
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
- Ludwig Institute for Cancer Research, Brussels, Belgium
- WEL Research Institute, WELBIO Department, Wavre, Belgium
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|
4
|
罗 冬, 罗 洁, 梁 瀚, 何 哲, 陈 红, 温 紫, 王 蔷, 周 璇, 刘 晓, 许 娜. [Efficacy and safety of peginterferon-α2b for treatment of myeloproliterative neoplasms]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:1029-1034. [PMID: 37439177 PMCID: PMC10339308 DOI: 10.12122/j.issn.1673-4254.2023.06.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 07/14/2023]
Abstract
OBJECTIVE To evaluate the clinical efficacy and adverse reactions of peginterferon-α2b for treatment of chronic myeloproliferative neoplasms (MPN). METHODS We retrospectively analyzed the data of 107 patients with MPN, including 95 with essential thrombocythemia (ET) and 12 with polycythemia vera (PV), who all received peginterferon-α2b treatment for at least 12 months. The clnical and follow-up data of the patients were analyzed to evaluate the efficacy and adverse reactions of the treatment. RESULTS After receiving peginterferon- α2b treatment, both ET and PV patients achieved high hematological remission rates, and the total remission rates did not differ significantly between the two groups (86% vs 78%, P>0.05). In the overall patients, the spleen index decreased by 13.5% (95%CI: 8.5%-18.5%) after the treatment. The patients with hematological remission showed a significantly greater reduction of the total symptom score than those without hematological remission (P < 0.01). The median percentage of JAK2V617F allele load of PV patients decreased from 67.23% (49.6%-84.86%) at baseline to 19.7% (0.57%-74.6%) after the treatment, and that of JAK2V617F-positive ET patients decreased from 48.97% (0.45%-74.24%) at baseline to 22.1% (0.33%-65.42%) after the treatment. Mild adverse reactions (grade 1-2) were observed in both ET and PV groups without significant differences between them. The overall incidence of thrombotic events during the treatment was 2.8% in these patients, and no serious adverse reactions were observed. CONCLUSION For patients with chronic myelodysplasia, peginterferon-α2b treatment can achieve a high peripheral blood cell remission rate and maintain a long-term stable state with good effect in relieving symptoms such as splenomegaly. Peginterferon- α2b treatment caused only mild adverse reactions, which can be tolerated by most of the patients.
Collapse
Affiliation(s)
- 冬梅 罗
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 洁 罗
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 瀚尹 梁
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 哲柔 何
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 红 陈
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 紫玉 温
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 蔷 王
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 璇 周
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 晓力 刘
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 娜 许
- />南方医科大学南方医院血液科,广东 广州 510515Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
5
|
Zhao HG, Deininger M. Always stressed but never exhausted: how stem cells in myeloid neoplasms avoid extinction in inflammatory conditions. Blood 2023; 141:2797-2812. [PMID: 36947811 PMCID: PMC10315634 DOI: 10.1182/blood.2022017152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/27/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
Chronic or recurrent episodes of acute inflammation cause attrition of normal hematopoietic stem cells (HSCs) that can lead to hematopoietic failure but they drive progression in myeloid malignancies and their precursor clonal hematopoiesis. Mechanistic parallels exist between hematopoiesis in chronic inflammation and the continuously increased proliferation of myeloid malignancies, particularly myeloproliferative neoplasms (MPNs). The ability to enter dormancy, a state of deep quiescence characterized by low oxidative phosphorylation, low glycolysis, reduced protein synthesis, and increased autophagy is central to the preservation of long-term HSCs and likely MPN SCs. The metabolic features of dormancy resemble those of diapause, a state of arrested embryonic development triggered by adverse environmental conditions. To outcompete their normal counterparts in the inflammatory MPN environment, MPN SCs co-opt mechanisms used by HSCs to avoid exhaustion, including signal attenuation by negative regulators, insulation from activating cytokine signals, anti-inflammatory signaling, and epigenetic reprogramming. We propose that new therapeutic strategies may be derived from conceptualizing myeloid malignancies as an ecosystem out of balance, in which residual normal and malignant hematopoietic cells interact in multiple ways, only few of which have been characterized in detail. Disrupting MPN SC insulation to overcome dormancy, interfering with aberrant cytokine circuits that favor MPN cells, and directly boosting residual normal HSCs are potential strategies to tip the balance in favor of normal hematopoiesis. Although eradicating the malignant cell clones remains the goal of therapy, rebalancing the ecosystem may be a more attainable objective in the short term.
Collapse
Affiliation(s)
- Helong Gary Zhao
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| | - Michael Deininger
- Versiti Blood Research Institute and Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
6
|
Saleiro D, Kosciuczuk EM, Fischietti M, Perez RE, Yang GS, Eckerdt F, Beauchamp EM, Hou Y, Wang Q, Weinberg RS, Fish EN, Yue F, Hoffman R, Platanias LC. Targeting CHAF1B Enhances IFN Activity against Myeloproliferative Neoplasm Cells. CANCER RESEARCH COMMUNICATIONS 2023; 3:943-951. [PMID: 37377894 PMCID: PMC10231401 DOI: 10.1158/2767-9764.crc-23-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023]
Abstract
Interferons (IFNs) are cytokines with potent antineoplastic and antiviral properties. IFNα has significant clinical activity in the treatment of myeloproliferative neoplasms (MPN), but the precise mechanisms by which it acts are not well understood. Here, we demonstrate that chromatin assembly factor 1 subunit B (CHAF1B), an Unc-51-like kinase 1 (ULK1)-interactive protein in the nuclear compartment of malignant cells, is overexpressed in patients with MPN. Remarkably, targeted silencing of CHAF1B enhances transcription of IFNα-stimulated genes and promotes IFNα-dependent antineoplastic responses in primary MPN progenitor cells. Taken together, our findings indicate that CHAF1B is a promising newly identified therapeutic target in MPN and that CHAF1B inhibition in combination with IFNα therapy might offer a novel strategy for treating patients with MPN. Significance Our findings raise the potential for clinical development of drugs targeting CHAF1B to enhance IFN antitumor responses in the treatment of patients with MPN and should have important clinical translational implications for the treatment of MPN and possibly in other malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ewa M. Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ricardo E. Perez
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - G. Sohae Yang
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M. Beauchamp
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ye Hou
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Qixuan Wang
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Rona Singer Weinberg
- The New York Blood Center, New York, New York
- Myeloproliferative Neoplasms Research Consortium, New York, New York
| | - Eleanor N. Fish
- Toronto General Hospital Research Institute, University Health Network & Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Feng Yue
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, Illinois
| | - Ronald Hoffman
- Myeloproliferative Neoplasms Research Consortium, New York, New York
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| |
Collapse
|
7
|
How J, Garcia JS, Mullally A. Biology and therapeutic targeting of molecular mechanisms in MPNs. Blood 2023; 141:1922-1933. [PMID: 36534936 PMCID: PMC10163317 DOI: 10.1182/blood.2022017416] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are clonal hematopoietic stem cell disorders characterized by activated Janus kinase (JAK)-signal transducer and activator of transcription signaling. As a result, JAK inhibitors have been the standard therapy for treatment of patients with myelofibrosis (MF). Although currently approved JAK inhibitors successfully ameliorate MPN-related symptoms, they are not known to substantially alter the MF disease course. Similarly, in essential thrombocythemia and polycythemia vera, treatments are primarily aimed at reducing the risk of cardiovascular and thromboembolic complications, with a watchful waiting approach often used in patients who are considered to be at a lower risk for thrombosis. However, better understanding of MPN biology has led to the development of rationally designed therapies, with the goal of not only addressing disease complications but also potentially modifying disease course. We review the most recent data elucidating mechanisms of disease pathogenesis and highlight emerging therapies that target MPN on several biologic levels, including JAK2-mutant MPN stem cells, JAK and non-JAK signaling pathways, mutant calreticulin, and the inflammatory bone marrow microenvironment.
Collapse
Affiliation(s)
- Joan How
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jacqueline S. Garcia
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- Cancer Program, Broad Institute, Cambridge, MA
| |
Collapse
|
8
|
Moliterno AR, Kaizer H, Reeves BN. JAK2 V617F allele burden in polycythemia vera: burden of proof. Blood 2023; 141:1934-1942. [PMID: 36745865 PMCID: PMC10163319 DOI: 10.1182/blood.2022017697] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/09/2023] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Polycythemia vera (PV) is a hematopoietic stem cell neoplasm defined by activating somatic mutations in the JAK2 gene and characterized clinically by overproduction of red blood cells, platelets, and neutrophils; a significant burden of disease-specific symptoms; high rates of vascular events; and evolution to a myelofibrosis phase or acute leukemia. The JAK2V617F variant allele frequency (VAF) is a key determinant of outcomes in PV, including thrombosis and myelofibrotic progression. Here, we critically review the dynamic role of JAK2V617F mutation burden in the pathogenesis and natural history of PV, the suitability of JAK2V617F VAF as a diagnostic and prognostic biomarker, and the utility of JAK2V617F VAF reduction in PV treatment.
Collapse
Affiliation(s)
- Alison R. Moliterno
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Hannah Kaizer
- Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Brandi N. Reeves
- Division of Hematology, Department of Medicine, Blood Research Center, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
9
|
Fenton SE, Zannikou M, Ilut L, Fischietti M, Ji C, Oku CV, Horvath CM, Le Poole IC, Bosenberg M, Bartom ET, Kocherginsky M, Platanias LC, Saleiro D. Targeting ULK1 Decreases IFNγ-Mediated Resistance to Immune Checkpoint Inhibitors. Mol Cancer Res 2023; 21:332-344. [PMID: 36573964 PMCID: PMC10073316 DOI: 10.1158/1541-7786.mcr-22-0684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/08/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Immune checkpoint inhibitors (ICI) have transformed the treatment of melanoma. However, the majority of patients have primary or acquired resistance to ICIs, limiting durable responses and patient survival. IFNγ signaling and the expression of IFNγ-stimulated genes correlate with either response or resistance to ICIs, in a context-dependent manner. While IFNγ-inducible immunostimulatory genes are required for response to ICIs, chronic IFNγ signaling induces the expression of immunosuppressive genes, promoting resistance to these therapies. Here, we show that high levels of Unc-51 like kinase 1 (ULK1) correlate with poor survival in patients with melanoma and overexpression of ULK1 in melanoma cells enhances IFNγ-induced expression of immunosuppressive genes, with minimal effects on the expression of immunostimulatory genes. In contrast, genetic or pharmacologic inhibition of ULK1 reduces expression of IFNγ-induced immunosuppressive genes. ULK1 binds IRF1 in the nuclear compartment of melanoma cells, controlling its binding to the programmed death-ligand 1 promoter region. In addition, pharmacologic inhibition of ULK1 in combination with anti-programmed cell death protein 1 therapy further reduces melanoma tumor growth in vivo. Our data suggest that targeting ULK1 represses IFNγ-dependent immunosuppression. These findings support the combination of ULK1 drug-targeted inhibition with ICIs for the treatment of patients with melanoma to improve response rates and patient outcomes. IMPLICATIONS This study identifies ULK1, activated downstream of IFNγ signaling, as a druggable target to overcome resistance mechanisms to ICI therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Sarah E. Fenton
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Markella Zannikou
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Liliana Ilut
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Mariafausta Fischietti
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Chunni Ji
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Chidera V. Oku
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
| | - Curt M. Horvath
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - I. Caroline Le Poole
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Department of Dermatology and Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Marcus Bosenberg
- Department of Dermatology, Pathology and Immunology, Yale School of Medicine, New Haven, CT, USA
| | - Elizabeth T. Bartom
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Masha Kocherginsky
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Biostatistics, Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Leonidas C. Platanias
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL, USA
- Division of Hematology-Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
10
|
Paving the way to improve therapy for Myeloproliferative Neoplasms. Nat Commun 2022; 13:5025. [PMID: 36028499 PMCID: PMC9418146 DOI: 10.1038/s41467-022-32694-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
|
11
|
Function and regulation of ULK1: From physiology to pathology. Gene 2022; 840:146772. [PMID: 35905845 DOI: 10.1016/j.gene.2022.146772] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/03/2022] [Accepted: 07/24/2022] [Indexed: 11/21/2022]
Abstract
The expression of ULK1, a core protein of autophagy, is closely related to autophagic activity. Numerous studies have shown that pathological abnormal expression of ULK1 is associated with various human diseases such as neurological disorders, infections, cardiovascular diseases, liver diseases and cancers. In addition, new advances in the regulation of ULK1 have been identified. Furthermore, targeting ULK1 as a therapeutic strategy for diseases is gaining attention as new corresponding activators or inhibitors are being developed. In this review, we describe the structure and regulation of ULK1 as well as the current targeted activators and inhibitors. Moreover, we highlight the pathological disorders of ULK1 expression and its critical role in human diseases.
Collapse
|