1
|
Zhang G, Li Z, Sun M, Lu Y, Song J, Duan W, Huang X, Hang R, Yao X, Chu PK, Zhang X. Nanostructure-Mediated Photothermal Effect for Reinforcing Physical Killing Activity of Nanorod Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411997. [PMID: 39556665 PMCID: PMC11727397 DOI: 10.1002/advs.202411997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Indexed: 11/20/2024]
Abstract
The physical killing of bacteria based on surface topography has attracted much attention due to the sustainable and safe prevention of biofilm formation. However, the antibacterial efficiency of biomedical implants derived solely from nanostructures or microstructures is insufficient to combat bacteria against common infections, such as methicillin-resistant Staphylococcus aureus with thick cell walls. Herein, photothermal therapy is carried out in the presence of nanorod arrays to mitigate infection of biomedical implants. Different from traditional photothermal therapy relying on a photosensitizer, the photothermal effect is mediated by light traps rendered by the nanorod arrays, and consequently, the photosensitizer is not needed. Finite element simulations and experiments are performed to elucidate the light-to-thermal conversion mechanism. This photothermal platform, in conjunction with thermosensitive nitric oxide therapy, is applied to treat titanium implant infection. The nanostructure-mediated photothermal effect destroys bacterial cell walls by inhibiting peptidoglycan synthesis and increasing the membrane permeability by affecting fatty acid synthesis. Furthermore, the nanorods synergistically puncture the bacterial membrane easily as demonstrated by experiments and transcriptome analysis. The results provide insights into the development of efficient antibacterial treatment of implants by combining nanostructures and photothermal therapy.
Collapse
Affiliation(s)
- Guannan Zhang
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision ProtectionTaiyuan030006China
| | - Zehao Li
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Menlin Sun
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ying Lu
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision ProtectionTaiyuan030006China
| | - Jianbo Song
- Shanxi Bethune HospitalShanxi Academy of Medical SciencesThird Hospital of Shanxi Medical UniversityTongji Shanxi HospitalTaiyuan030032China
- Shanxi Provincial Key Laboratory for Translational Nuclear Medicine and Precision ProtectionTaiyuan030006China
| | - Wangping Duan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury RepairDepartment of OrthopedicsSecond Hospital of Shanxi Medical UniversityTaiyuan030001China
| | - Xiaobo Huang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
| | - Paul K Chu
- Department of PhysicsDepartment of Materials Science and Engineering, and Department of Biomedical EngineeringCity University of Hong KongTat Chee Avenue, KowloonHong Kong999077China
| | - Xiangyu Zhang
- Shanxi Key Laboratory of Biomedical Metal MaterialsCollege of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuan030024China
- College of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024China
| |
Collapse
|
2
|
Wu D, Tang H, Qiu X, Song S, Chen S, Robinson CV. Native MS-guided lipidomics to define endogenous lipid microenvironments of eukaryotic receptors and transporters. Nat Protoc 2025; 20:1-25. [PMID: 39174660 DOI: 10.1038/s41596-024-01037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/06/2024] [Indexed: 08/24/2024]
Abstract
The mammalian membrane is composed of various eukaryotic lipids interacting with extensively post-translationally modified proteins. Probing interactions between these mammalian membrane proteins and their diverse and heterogeneous lipid cohort remains challenging. Recently, native mass spectrometry (MS) combined with bottom-up 'omics' approaches has provided valuable information to relate structural and functional lipids to membrane protein assemblies in eukaryotic membranes. Here we provide a step-by-step protocol to identify and provide relative quantification for endogenous lipids bound to mammalian membrane proteins and their complexes. Using native MS to guide our lipidomics strategies, we describe the necessary sample preparation steps, followed by native MS data acquisition, tailored lipidomics and data interpretation. We also highlight considerations for the integration of different levels of information from native MS and lipidomics and how to deal with the various challenges that arise during the experiments. This protocol begins with the preparation of membrane proteins from mammalian cells and tissues for native MS. The results enable not only direct assessment of copurified endogenous lipids but also determination of the apparent affinities of specific lipids. Detailed sample preparation for lipidomics analysis is also covered, along with comprehensive settings for liquid chromatography-MS analysis. This protocol is suitable for the identification and quantification of endogenous lipids, including fatty acids, sterols, glycerolipids, phospholipids and glycolipids and can be used to interrogate proteins from recombinant sources to native membranes.
Collapse
Affiliation(s)
- Di Wu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Haiping Tang
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Xingyu Qiu
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Siyuan Song
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Siyun Chen
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Oluwole AO, Kalmankar NV, Guida M, Bennett JL, Poce G, Bolla JR, Robinson CV. Lipopeptide antibiotics disrupt interactions of undecaprenyl phosphate with UptA. Proc Natl Acad Sci U S A 2024; 121:e2408315121. [PMID: 39361645 PMCID: PMC11474028 DOI: 10.1073/pnas.2408315121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
The peptidoglycan pathway represents one of the most successful antibacterial targets with the last critical step being the flipping of carrier lipid, undecaprenyl phosphate (C55-P), across the membrane to reenter the pathway. This translocation of C55-P is facilitated by DedA and DUF368 domain-containing family membrane proteins via unknown mechanisms. Here, we employ native mass spectrometry to investigate the interactions of UptA, a member of the DedA family of membrane protein from Bacillus subtilis, with C55-P, membrane phospholipids, and cell wall-targeting antibiotics. Our results show that UptA, expressed and purified in Escherichia coli, forms monomer-dimer equilibria, and binds to C55-P in a pH-dependent fashion. Specifically, we show that UptA interacts more favorably with C55-P over shorter-chain analogs and membrane phospholipids. Moreover, we demonstrate that lipopeptide antibiotics, amphomycin and aspartocin D, can directly inhibit UptA function by out-competing the substrate for the protein binding, in addition to their propensity to form complex with free C55-P. Overall, this study shows that UptA-mediated translocation of C55-P is potentially mediated by pH and anionic phospholipids and provides insights for future development of antibiotics targeting carrier lipid recycling.
Collapse
Affiliation(s)
- Abraham O. Oluwole
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Neha V. Kalmankar
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Michela Guida
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Rome00185, Italy
| | - Jack L. Bennett
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, Rome00185, Italy
| | - Jani R. Bolla
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
- Department of Biology, University of Oxford, OxfordOX1 3RB, United Kingdom
| | - Carol V. Robinson
- Department of Chemistry, University of Oxford, OxfordOX1 3QZ, United Kingdom
- The Kavli Institute for Nanoscience Discovery, University of Oxford, OxfordOX1 3QU, United Kingdom
| |
Collapse
|
4
|
Luo P, Liu Z, Lai C, Jin Z, Wang M, Zhao H, Liu Y, Zhang W, Wang X, Xiao C, Yang X, Wang F. Time-Resolved Ultraviolet Photodissociation Mass Spectrometry Probes the Mutation-Induced Alterations in Protein Stability and Unfolding Dynamics. J Am Chem Soc 2024; 146:8832-8838. [PMID: 38507251 DOI: 10.1021/jacs.4c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
How mutations impact protein stability and structure dynamics is crucial for understanding the pathological process and rational drug design. Herein, we establish a time-resolved native mass spectrometry (TR-nMS) platform via a rapid-mixing capillary apparatus for monitoring the acid-initiated protein unfolding process. The molecular details in protein structure unfolding are further profiled by a 193 nm ultraviolet photodissociation (UVPD) analysis of the structure-informative photofragments. Compared with the wild-type dihydrofolate reductase (WT-DHFR), the M42T/H114R mutant (MT-DHFR) exhibits a significant stability decrease in TR-nMS characterization. UVPD comparisons of the unfolding intermediates and original DHFR forms indicate the special stabilization effect of cofactor NADPH on DHFR structure, and the M42T/H114R mutations lead to a significant decrease in NADPH-DHFR interactions, thus promoting the structure unfolding. Our study paves the way for probing the mutation-induced subtle changes in the stability and structure dynamics of drug targets.
Collapse
Affiliation(s)
- Pan Luo
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiong Jin
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Mengdie Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yu Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Chunlei Xiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xueming Yang
- Institute of Advanced Science Facilities, Shenzhen 518107, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Oluwole A, Hernández-Rocamora VM, Cao Y, Li X, Vollmer W, Robinson CV, Bolla JR. Real-Time Biosynthetic Reaction Monitoring Informs the Mechanism of Action of Antibiotics. J Am Chem Soc 2024; 146:7007-7017. [PMID: 38428018 PMCID: PMC10941186 DOI: 10.1021/jacs.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
The rapid spread of drug-resistant pathogens and the declining discovery of new antibiotics have created a global health crisis and heightened interest in the search for novel antibiotics. Beyond their discovery, elucidating mechanisms of action has necessitated new approaches, especially for antibiotics that interact with lipidic substrates and membrane proteins. Here, we develop a methodology for real-time reaction monitoring of the activities of two bacterial membrane phosphatases, UppP and PgpB. We then show how we can inhibit their activities using existing and newly discovered antibiotics such as bacitracin and teixobactin. Additionally, we found that the UppP dimer is stabilized by phosphatidylethanolamine, which, unexpectedly, enhanced the speed of substrate processing. Overall, our results demonstrate the potential of native mass spectrometry for real-time biosynthetic reaction monitoring of membrane enzymes, as well as their in situ inhibition and cofactor binding, to inform the mode of action of emerging antibiotics.
Collapse
Affiliation(s)
- Abraham
O. Oluwole
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Víctor M. Hernández-Rocamora
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
| | - Yihui Cao
- Department
of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Xuechen Li
- Department
of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Waldemar Vollmer
- Centre
for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Richardson Road, Newcastle upon Tyne NE2 4AX, U.K.
- Institute
for Molecular Bioscience, University of
Queensland, Carmody Road, Brisbane, Queensland 4072, Australia
| | - Carol V. Robinson
- Department
of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Jani R. Bolla
- The
Kavli Institute for Nanoscience Discovery, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
- Department
of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, U.K.
| |
Collapse
|
6
|
Marmont LS, Orta AK, Baileeves BWA, Sychantha D, Fernández-Galliano A, Li YE, Greene NG, Corey RA, Stansfeld PJ, Clemons WM, Bernhardt TG. Synthesis of lipid-linked precursors of the bacterial cell wall is governed by a feedback control mechanism in Pseudomonas aeruginosa. Nat Microbiol 2024; 9:763-775. [PMID: 38336881 PMCID: PMC10914600 DOI: 10.1038/s41564-024-01603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
Many bacterial surface glycans such as the peptidoglycan (PG) cell wall are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting carrier is distributed among competing pathways has remained unclear. Here we describe the isolation of hyperactive variants of Pseudomonas aeruginosa MraY, the enzyme that forms the first lipid-linked PG precursor. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in vitro. The activated MraY variants have substitutions that map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural and molecular dynamics results suggest that this cavity is a binding site for externalized lipid II. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism that prevents the sequestration of lipid carrier in the PG biogenesis pathway.
Collapse
Affiliation(s)
- Lindsey S Marmont
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Michael DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Anna K Orta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Becca W A Baileeves
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
| | - David Sychantha
- Michael DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Ana Fernández-Galliano
- Michael DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Yancheng E Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Neil G Greene
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Department of Cell and Molecular Biology, The University of Rhode Island, Kingston, RI, USA
| | - Robin A Corey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Thomas G Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Dodge GJ, Anderson AJ, He Y, Liu W, Viner R, Imperiali B. Mapping the architecture of the initiating phosphoglycosyl transferase from S. enterica O-antigen biosynthesis in a liponanoparticle. eLife 2024; 12:RP91125. [PMID: 38358918 PMCID: PMC10942596 DOI: 10.7554/elife.91125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
Bacterial cell surface glycoconjugates are critical for cell survival and for interactions between bacteria and their hosts. Consequently, the pathways responsible for their biosynthesis have untapped potential as therapeutic targets. The localization of many glycoconjugate biosynthesis enzymes to the membrane represents a significant challenge for expressing, purifying, and characterizing these enzymes. Here, we leverage cutting-edge detergent-free methods to stabilize, purify, and structurally characterize WbaP, a phosphoglycosyl transferase (PGT) from the Salmonella enterica (LT2) O-antigen biosynthesis. From a functional perspective, these studies establish WbaP as a homodimer, reveal the structural elements responsible for dimerization, shed light on the regulatory role of a domain of unknown function embedded within WbaP, and identify conserved structural motifs between PGTs and functionally unrelated UDP-sugar dehydratases. From a technological perspective, the strategy developed here is generalizable and provides a toolkit for studying other classes of small membrane proteins embedded in liponanoparticles beyond PGTs.
Collapse
Affiliation(s)
- Greg J Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alyssa J Anderson
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Yi He
- Thermo Fisher ScientificSan JoseUnited States
| | - Weijing Liu
- Thermo Fisher ScientificSan JoseUnited States
| | - Rosa Viner
- Thermo Fisher ScientificSan JoseUnited States
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
8
|
Ying Y, Li H. Native top-down mass spectrometry for monitoring the rapid chymotrypsin catalyzed hydrolysis reaction. Anal Chim Acta 2024; 1285:341971. [PMID: 38057065 DOI: 10.1016/j.aca.2023.341971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 12/08/2023]
Abstract
Enzymes play crucial roles in life sciences, pharmaceuticals and industries as biological catalysts that speed up biochemical reactions in living organisms. New catalytic reactions are continuously developed by enzymatic engineering to meet industrial needs, which thereby drives the development of analytical approaches for real-time reaction monitoring to reveal catalytic processes. Here, taking the hydrolase- chymotrypsin as a model system, we proposed a convenient method for monitoring catalytic processes through native top-down mass spectrometry (native TDMS). The chymotrypsin sample heterogeneity was first explored. By altering sample introduction modes and pHs, covalent and noncovalent enzymatic complexes, substrates and products can be monitored during the catalysis and further confirmed by tandem MS. Our results demonstrated that native TDMS based catalysis monitoring has distinctive strength on real-time inspection and continuous observation, making it a promising tool for characterizing more biocatalysts.
Collapse
Affiliation(s)
- Yujia Ying
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China; Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Kamal El-sagheir A, Abdelmesseh Nekhala I, Abd El-Gaber MK, Aboraia AS, Persson J, Schäfer AB, Wenzel M, Omar FA. N4-Substituted Piperazinyl Norfloxacin Derivatives with Broad-Spectrum Activity and Multiple Mechanisms on Gyrase, Topoisomerase IV, and Bacterial Cell Wall Synthesis. ACS BIO & MED CHEM AU 2023; 3:494-506. [PMID: 38144255 PMCID: PMC10739246 DOI: 10.1021/acsbiomedchemau.3c00038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 12/26/2023]
Abstract
Fluoroquinolones are an important class of antibiotics with broad-spectrum antibacterial and antitubercular activity. Here, we describe the design and synthesis of a series of 38 N4-substituted piperazinyl norfloxacin derivatives. Their activity and mechanism of action were characterized using in silico, in vitro, and in vivo approaches. Several compounds displayed interesting activities against both Gram-negative and Gram-positive bacteria, and few displayed antimycobacterial activity, whereby some were as potent as norfloxacin and ciprofloxacin. Molecular docking experiments suggested that the new derivatives inhibit both DNA gyrase and DNA topoisomerase IV in a similar manner as norfloxacin. Selecting the most promising candidates for experimental mode of action analysis, we confirmed DNA gyrase and topoisomerase IV as targets of all tested compounds using enzymatic in vitro assays. Phenotypic analysis of both Escherichia coli and Bacillus subtilis confirmed a typical gyrase inhibition phenotype for all of the tested compounds. Assessment of possible additional targets revealed three compounds with unique effects on the B. subtilis cell wall synthesis machinery, suggesting that they may have an additional target in this pathway. Comparison with known cell wall synthesis inhibitors showed that the new compounds elicit a distinct and, so far, unique phenotype, suggesting that they act differently from known cell wall synthesis inhibitors. Interestingly, our phenotypic analysis revealed that both norfloxacin and ciprofloxacin displayed additional cellular effects as well, which may be indicative of the so far unknown additional mechanisms of fluoroquinolones.
Collapse
Affiliation(s)
| | - Ireny Abdelmesseh Nekhala
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | | | - Ahmed S. Aboraia
- Medicinal
Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Jonatan Persson
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), 405 30 Gothenburg, Sweden
| | - Ann-Britt Schäfer
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), 405 30 Gothenburg, Sweden
| | - Michaela Wenzel
- Division
of Chemical Biology, Department of Life Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Center
for Antibiotic Resistance Research in Gothenburg (CARe), 405 30 Gothenburg, Sweden
| | - Farghaly A. Omar
- Medicinal
Chemistry Department, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
10
|
Majumder A, Vuksanovic N, Ray LC, Bernstein HM, Allen KN, Imperiali B, Straub JE. Synergistic computational and experimental studies of a phosphoglycosyl transferase membrane/ligand ensemble. J Biol Chem 2023; 299:105194. [PMID: 37633332 PMCID: PMC10519829 DOI: 10.1016/j.jbc.2023.105194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Complex glycans serve essential functions in all living systems. Many of these intricate and byzantine biomolecules are assembled employing biosynthetic pathways wherein the constituent enzymes are membrane-associated. A signature feature of the stepwise assembly processes is the essentiality of unusual linear long-chain polyprenol phosphate-linked substrates of specific isoprene unit geometry, such as undecaprenol phosphate (UndP) in bacteria. How these enzymes and substrates interact within a lipid bilayer needs further investigation. Here, we focus on a small enzyme, PglC from Campylobacter, structurally characterized for the first time in 2018 as a detergent-solubilized construct. PglC is a monotopic phosphoglycosyl transferase that embodies the functional core structure of the entire enzyme superfamily and catalyzes the first membrane-committed step in a glycoprotein assembly pathway. The size of the enzyme is significant as it enables high-level computation and relatively facile, for a membrane protein, experimental analysis. Our ensemble computational and experimental results provided a high-level view of the membrane-embedded PglC/UndP complex. The findings suggested that it is advantageous for the polyprenol phosphate to adopt a conformation in the same leaflet where the monotopic membrane protein resides as opposed to additionally disrupting the opposing leaflet of the bilayer. Further, the analysis showed that electrostatic steering acts as a major driving force contributing to the recognition and binding of both UndP and the soluble nucleotide sugar substrate. Iterative computational and experimental mutagenesis support a specific interaction of UndP with phosphoglycosyl transferase cationic residues and suggest a role for critical conformational transitions in substrate binding and specificity.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | | | - Leah C Ray
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Hannah M Bernstein
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, USA; Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Barbara Imperiali
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| | - John E Straub
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
11
|
Swain B, Campodonico VA, Curtiss R. Recombinant Attenuated Edwardsiella piscicida Vaccine Displaying Regulated Lysis to Confer Biological Containment and Protect Catfish against Edwardsiellosis. Vaccines (Basel) 2023; 11:1470. [PMID: 37766146 PMCID: PMC10534663 DOI: 10.3390/vaccines11091470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
We implemented a unique strategy to construct a recombinant attenuated Edwardsiella vaccine (RAEV) with a biological containment phenotype that causes regulated bacterial cell wall lysis. This process ensures that the vaccine strain is not able to persist in the environment. The murA gene is responsible for the catalysis of one of the first steps in the biosynthesis of muramic acid, which is a crucial component of the bacterial cell wall. The regulated lysis phenotype was achieved by inserting the tightly regulated araC ParaBAD cassette in place of the chromosomal murA promoter. Strains with this mutation require growth media supplemented with arabinose in order to survive. Without arabinose, they are unable to synthesize the peptidoglycan cell wall. Following the colonization of fish lymphoid tissues, the murA protein is no longer synthesized due to the lack of arabinose. Lysis is subsequently achieved in vivo, thus preventing the generation of disease symptoms and the spread of the strain into the environment. Vaccine strain χ16016 with the genotype ΔPmurA180::TT araC ParaBADmurA is attenuated and shows a higher LD50 value than that of the wild-type strain. Studies have demonstrated that χ16016 induced TLR4, TLR5, TLR8, TLR9, NOD1 and NOD2-mediated NF-κB pathways and upregulated the gene expression of various cytokines, such as il-8, il-1β, tnf-a, il-6 and ifn-γ in catfish. We observed significant upregulation of the expression profiles of cd4, cd8 and mhc-II genes in different organs of vaccinated catfish. Vaccine strain χ16016 induced systemic and mucosal IgM titers and conferred significant protection to catfish against E. piscicida wild-type challenge. Our lysis RAEV is the first live attenuated vaccine candidate designed to be used in the aquaculture industry that displays this biological containment property.
Collapse
Affiliation(s)
- Banikalyan Swain
- Department of Infectious Diseases & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32608, USA
| | | | | |
Collapse
|
12
|
Nygaard R, Graham CLB, Belcher Dufrisne M, Colburn JD, Pepe J, Hydorn MA, Corradi S, Brown CM, Ashraf KU, Vickery ON, Briggs NS, Deering JJ, Kloss B, Botta B, Clarke OB, Columbus L, Dworkin J, Stansfeld PJ, Roper DI, Mancia F. Structural basis of peptidoglycan synthesis by E. coli RodA-PBP2 complex. Nat Commun 2023; 14:5151. [PMID: 37620344 PMCID: PMC10449877 DOI: 10.1038/s41467-023-40483-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Peptidoglycan (PG) is an essential structural component of the bacterial cell wall that is synthetized during cell division and elongation. PG forms an extracellular polymer crucial for cellular viability, the synthesis of which is the target of many antibiotics. PG assembly requires a glycosyltransferase (GT) to generate a glycan polymer using a Lipid II substrate, which is then crosslinked to the existing PG via a transpeptidase (TP) reaction. A Shape, Elongation, Division and Sporulation (SEDS) GT enzyme and a Class B Penicillin Binding Protein (PBP) form the core of the multi-protein complex required for PG assembly. Here we used single particle cryo-electron microscopy to determine the structure of a cell elongation-specific E. coli RodA-PBP2 complex. We combine this information with biochemical, genetic, spectroscopic, and computational analyses to identify the Lipid II binding sites and propose a mechanism for Lipid II polymerization. Our data suggest a hypothesis for the movement of the glycan strand from the Lipid II polymerization site of RodA towards the TP site of PBP2, functionally linking these two central enzymatic activities required for cell wall peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Chris L B Graham
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Meagan Belcher Dufrisne
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA
| | - Jonathan D Colburn
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph Pepe
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Molly A Hydorn
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Silvia Corradi
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Chelsea M Brown
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Nicholas S Briggs
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - John J Deering
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, 89 Convent Avenue, New York, NY, 10027, USA
| | - Bruno Botta
- Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Linda Columbus
- Department of Chemistry and Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22904, USA.
| | - Jonathan Dworkin
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - David I Roper
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
13
|
Marmont LS, Orta AK, Corey RA, Sychantha D, Galliano AF, Li YE, Baileeves BW, Greene NG, Stansfeld PJ, Clemons WM, Bernhardt TG. A feedback control mechanism governs the synthesis of lipid-linked precursors of the bacterial cell wall. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551478. [PMID: 37577621 PMCID: PMC10418202 DOI: 10.1101/2023.08.01.551478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Many bacterial surface glycans such as the peptidoglycan (PG) cell wall, O-antigens, and capsules are built from monomeric units linked to a polyprenyl lipid carrier. How this limiting lipid carrier is effectively distributed among competing pathways has remained unclear for some time. Here, we describe the isolation and characterization of hyperactive variants of Pseudomonas aeruginosa MraY, the essential and conserved enzyme catalyzing the formation of the first lipid-linked PG precursor called lipid I. These variants result in the elevated production of the final PG precursor lipid II in cells and are hyperactive in a purified system. Amino acid substitutions within the activated MraY variants unexpectedly map to a cavity on the extracellular side of the dimer interface, far from the active site. Our structural evidence and molecular dynamics simulations suggest that the cavity is a binding site for lipid II molecules that have been transported to the outer leaflet of the membrane. Overall, our results support a model in which excess externalized lipid II allosterically inhibits MraY, providing a feedback mechanism to prevent the sequestration of lipid carrier in the PG biogenesis pathway. MraY belongs to the broadly distributed polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase (PNPT) superfamily of enzymes. We therefore propose that similar feedback mechanisms may be widely employed to coordinate precursor supply with demand by polymerases, thereby optimizing the partitioning of lipid carriers between competing glycan biogenesis pathways.
Collapse
Affiliation(s)
- Lindsey S. Marmont
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Anna K. Orta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Robin A. Corey
- School of Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - David Sychantha
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Ana Fernández Galliano
- M.G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Yancheng E. Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Becca W.A. Baileeves
- School of Life Sciences and Department of Chemistry, University of Warwick, Warwick, UK
| | - Neil G. Greene
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Phillip J. Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Warwick, UK
| | - William M. Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, USA
| | - Thomas G. Bernhardt
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
- Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
14
|
Orta AK, Riera N, Li YE, Tanaka S, Yun HG, Klaic L, Clemons WM. The mechanism of the phage-encoded protein antibiotic from ΦX174. Science 2023; 381:eadg9091. [PMID: 37440661 DOI: 10.1126/science.adg9091] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
The historically important phage ΦX174 kills its host bacteria by encoding a 91-residue protein antibiotic called protein E. Using single-particle electron cryo-microscopy, we demonstrate that protein E bridges two bacterial proteins to form the transmembrane YES complex [MraY, protein E, sensitivity to lysis D (SlyD)]. Protein E inhibits peptidoglycan biosynthesis by obstructing the MraY active site leading to loss of lipid I production. We experimentally validate this result for two different viral species, providing a clear model for bacterial lysis and unifying previous experimental data. Additionally, we characterize the Escherichia coli MraY structure-revealing features of this essential enzyme-and the structure of the chaperone SlyD bound to a protein. Our structures provide insights into the mechanism of phage-mediated lysis and for structure-based design of phage therapeutics.
Collapse
Affiliation(s)
- Anna K Orta
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nadia Riera
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yancheng E Li
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shiho Tanaka
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hyun Gi Yun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lada Klaic
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Ganesan N, Mishra B, Felix L, Mylonakis E. Antimicrobial Peptides and Small Molecules Targeting the Cell Membrane of Staphylococcus aureus. Microbiol Mol Biol Rev 2023; 87:e0003722. [PMID: 37129495 PMCID: PMC10304793 DOI: 10.1128/mmbr.00037-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
Clinical management of Staphylococcus aureus infections presents a challenge due to the high incidence, considerable virulence, and emergence of drug resistance mechanisms. The treatment of drug-resistant strains, such as methicillin-resistant S. aureus (MRSA), is further complicated by the development of tolerance and persistence to antimicrobial agents in clinical use. To address these challenges, membrane disruptors, that are not generally considered during drug discovery for agents against S. aureus, should be explored. The cell membrane protects S. aureus from external stresses and antimicrobial agents, but membrane-targeting antimicrobial agents are probably less likely to promote bacterial resistance. Nontypical linear cationic antimicrobial peptides (AMPs), highly modified AMPs such as daptomycin (lipopeptide), bacitracin (cyclic peptide), and gramicidin S (cyclic peptide), are currently in clinical use. Recent studies have demonstrated that AMPs and small molecules can penetrate the cell membrane of S. aureus, inhibit phospholipid biosynthesis, or block the passage of solutes between the periplasm and the exterior of the cell. In addition to their primary mechanism of action (MOA) that targets the bacterial membrane, AMPs and small molecules may also impact bacteria through secondary mechanisms such as targeting the biofilm, and downregulating virulence genes of S. aureus. In this review, we discuss the current state of research into cell membrane-targeting AMPs and small molecules and their potential mechanisms of action against drug-resistant physiological forms of S. aureus, including persister cells and biofilms.
Collapse
Affiliation(s)
- Narchonai Ganesan
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Biswajit Mishra
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, The Miriam Hospital, Providence, Rhode Island, USA
| | - LewisOscar Felix
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
16
|
Bai Y, Liu Z, Li Y, Zhao H, Lai C, Zhao S, Chen K, Luo C, Yang X, Wang F. Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation. J Am Chem Soc 2023; 145:11477-11481. [PMID: 37207290 DOI: 10.1021/jacs.3c01697] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rational design and development of effective inhibitors for cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) are largely dependent on the understanding of the dynamic inhibition conformations but are difficult to be achieved by conventional characterization tools. Herein, we integrate the structural mass spectrometry (MS) methods of lysine reactivity profiling (LRP) and native MS (nMS) to systematically interrogate both the dynamic molecular interactions and overall protein assembly of CDK12/CDK13-cyclin K (CycK) complexes under the modulation of small molecule inhibitors. The essential structure insights, including inhibitor binding pocket, binding strength, interfacial molecular details, and dynamic conformation changes, can be derived from the complementary results of LRP and nMS. We find the inhibitor SR-4835 binding can greatly destabilize the CDK12/CDK13-CycK interactions in an unusual allosteric activation way, thereby providing a novel alternative for the kinase activity inhibition. Our results underscore the great potential of LRP combination with nMS for the evaluation and rational design of effective kinase inhibitors at the molecular level.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, China Medical University, Shenyang 110122, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
18
|
Emergence of mass spectrometry detergents for membrane proteomics. Anal Bioanal Chem 2023:10.1007/s00216-023-04584-z. [PMID: 36808272 PMCID: PMC10328889 DOI: 10.1007/s00216-023-04584-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/25/2023] [Accepted: 02/02/2023] [Indexed: 02/21/2023]
Abstract
Detergents enable the investigation of membrane proteins by mass spectrometry. Detergent designers aim to improve underlying methodologies and are confronted with the challenge to design detergents with optimal solution and gas-phase properties. Herein, we review literature related to the optimization of detergent chemistry and handling and identify an emerging research direction: the optimization of mass spectrometry detergents for individual applications in mass spectrometry-based membrane proteomics. We provide an overview about qualitative design aspects including their relevance for the optimization of detergents in bottom-up proteomics, top-down proteomics, native mass spectrometry, and Nativeomics. In addition to established design aspects, such as charge, concentration, degradability, detergent removal, and detergent exchange, it becomes apparent that detergent heterogeneity is a promising key driver for innovation. We anticipate that rationalizing the role of detergent structures in membrane proteomics will serve as an enabling step for the analysis of challenging biological systems.
Collapse
|
19
|
Ming H, Yan G, Zhang X, Pei X, Fu L, Zhou D. Harsh temperature induces Microcystis aeruginosa growth enhancement and water deterioration during vernalization. WATER RESEARCH 2022; 223:118956. [PMID: 35985140 DOI: 10.1016/j.watres.2022.118956] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial blooms are seasonal phenomena in eutrophic water. Cyanobacteria grow fast in the warm spring/summer while disappearing in cold autumn/winter. The temperature change induces algal vernalization. However, whether vernalization affects cyanobacterial blooms, and the regulatory signaling mechanisms are unclear. This study used Microcystis aeruginosa as the model cyanobacteria, and 4 °C and 10 °C as the low-temperature stimulation to explore the cell growth, metabolites, and signaling pathways in cyanobacteria vernalization. Low temperatures induced M. aeruginosa vernalization; the growth rate and cell density increased by 35±4% and 33±2%. Vernalization influenced peptidoglycan synthesis and cell permeability. Soluble microbial products (SMPs) in water increased by 109±5%, resulting in water deterioration. Polysaccharides were the predominant SMPs during the initial term of vernalization. Tryptophan protein-like & humic acid-like substances became the main increased SMPs in the middle-later period of vernalization. Harsh temperatures triggered quorum sensing and two-component system. Signaling sensing systems upregulated photosynthesis, glycolysis, TCA cycle, oxidative phosphorylation, and DNA replication, enhancing M. aeruginosa growth and metabolism during vernalization. This study verified that low temperature stimulates cyanobacteria growth and metabolism, and vernalization possibly aggravates cyanobacterial blooms and water deterioration. It provides new insights into the mechanism of seasonal cyanobacterial blooms and the pivotal role of signaling regulation.
Collapse
Affiliation(s)
- Hao Ming
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Ge Yan
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Xue Zhang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Xiaofen Pei
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun 130117, Jilin, China
| |
Collapse
|