1
|
Awais M, Naqvi SMZA, Wei Z, Wu J, Arshad I, Raghavan V, Hu J. Exploring the applications for Abscissic acid (ABA) detection using perovskite derived opto-electronic sensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125457. [PMID: 39579731 DOI: 10.1016/j.saa.2024.125457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/14/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
The hormone abscisic acid (ABA) is crucial in the regulation of many physiological processes in plants, particularly in stress response and developmental control. Recent developments in detection methods utilizing opto-electronic sensors have enabled a more profound comprehension of the processes linked to plant hormones, namely ABA. The present work investigates the potential uses of opto-electronic sensors produced from tailored perovskite materials for the targeted detection of ABA. Modified perovskite substrates, which are characterized by their large surface area, intense Raman scattering, and great sensitivity, provide a distinct advantage in differentiating ABA from other interfering substances present in intricate plant media. Notwithstanding the advancements in these sophisticated detection methods, there is still a significant lack of knowledge on how the distinct opto-electronic characteristics of high-purity perovskite crystals impact their ability to detect ABA. This work aims to close this gap by a thorough investigation of the production, modification, and use of sensors based on perovskite materials. This study also intends to give a thorough analysis comparing the performance of perovskite substrates with traditional substrates, with a specific focus on important characteristics including efficiency, specificity, and sensitivity. Furthermore, the objective of this study is to evaluate the capacity of perovskite substrates to surpass the constraints of conventional detection techniques, namely in terms of sensitivity and interference from competing matrix components. The objective of this work is to make novel contributions to the design and optimization of opto-electronic sensors based on perovskite materials, with the goal of achieving more accurate and dependable detection of ABA. Consequently, this could facilitate the advancement of specialized diagnostic instruments for monitoring plant hormones, so enabling the use of enhanced agricultural techniques and effective stress management in plants.
Collapse
Affiliation(s)
- Muhammad Awais
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Syed Muhammad Zaigham Abbas Naqvi
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Zhang Wei
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Junfeng Wu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Ifzan Arshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060 China; College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec H9X 3V9, Canada.
| | - Jiandong Hu
- College of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou 450002, China; Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou 450002, China; State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Cho K, Tahara H, Yamada T, Muto M, Saruyama M, Sato R, Teranishi T, Kanemitsu Y. Internal Electric Field Manipulates Exciton-Phonon Couplings in Single Lead Halide Perovskite Nanocrystals. J Phys Chem Lett 2024; 15:11969-11974. [PMID: 39584258 DOI: 10.1021/acs.jpclett.4c03016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Lead halide perovskite nanocrystals (NCs) have attracted much attention as materials for light-emitting diodes and quantum light sources. A deep understanding of exciton-phonon couplings is essential for obtaining a narrow emission line, weak phonon-sideband photoluminescence (PL), and a long exciton coherence time, which are especially useful for high-color-purity quantum-light-source applications. Here, we report the PL spectra of single CsPbBr3 NCs at 5.5 K as a function of the applied electric field. The exciton peak energy shows an asymmetric parabolic shift for positive and negative biases, implying the presence of a spontaneously generated internal electric field in the NCs when no field is applied. Both the internal electric field and exciton-phonon couplings become larger in smaller NCs, and they have a positive correlation with each other. Our findings show that the exciton-phonon couplings can be manipulated with an electric field, which dominates the PL properties of perovskite NCs.
Collapse
Affiliation(s)
- Kenichi Cho
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Hirokazu Tahara
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8501, Japan
| | - Takumi Yamada
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Mitsuki Muto
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Masaki Saruyama
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Ryota Sato
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Toshiharu Teranishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshihiko Kanemitsu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
3
|
Tsai PH, Liao TH, Chuang YT, Jan PE, Lin HC, Tan GH, Hsiao KY, Lu MY, Lai HL, Chiu PW, Sun SY, Li YL, Lin HW. Bright Structural-Phase-Pure CsPbI 3 Core-PbSO 4 Shell Nanoplatelets With Ultra-Narrow Emission Bandwidth of 77 meV at 630 nm. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404573. [PMID: 39279611 DOI: 10.1002/smll.202404573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Achieving a narrow emission bandwidth is long pursued for display applications. Among all primary colors, obtaining pure red emission with high visual perception is the most challenging. In this work, CsPbI3 halide perovskite nanoplatelets (NPLs) with rigorously controlled 2D [PbI6]4- octahedron layer number (n) are demonstrated. A perovskite core-PbSO4 shell structure is designed to prevent aggregation and fusion between NPLs, enabling consistent thickness and quantum confinement strength for each NPL. Consequently, exact n = 4 CsPbI3 NPLs are demonstrated, exhibiting emission peaks around 630 nm, with very narrow spectral bandwidths of <24 nm and high absolute photoluminescence quantum yields up to 85%. The emission of n = 4 NPLs falls exactly within the pure-red region, closely aligning with the International Telecommunication Union Recommendation BT.2020 standard. Measurements suggest predominant stability and color homogeneity compared to traditional red-emitting CsPbIxBr3- x nanocrystals. Finally, proof-of-concept pure-red emissive light-emitting diodes (LEDs) are demonstrated by integrating n = 4 CsPbI3 NPLs films with a blue LED chip, showing an excellent external quantum efficiency of 18.3% and high brightness exceeding 3 × 106 nits. Stringent requirements for future display technologies, are satisfied based on the high color purity, stability, and brightness of CsPbI3 NPLs.
Collapse
Affiliation(s)
- Ping-Hsun Tsai
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tzu-Hao Liao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Pei-En Jan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hao-Cheng Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Kai-Yuan Hsiao
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | | | | | | | - Yun-Li Li
- PlayNitride Inc., Miaoli, 350401, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
4
|
Vo VK, Bae SH, Dang THT, Phung DH, Kim J, Lee S, Lee N, Lim HJ, Kim KH, Lee JH, Heo YW. Tetraoctylammonium Bromide Interlayer between NiLiO x and Perovskite for Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:64210-64221. [PMID: 39530385 DOI: 10.1021/acsami.4c13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Physical vapor deposition is a favorable technique for fabricating light-emitting diodes (LEDs) due to its scalability and reproducibility. However, the performances of LEDs fabricated via this method are worse than those prepared via solution processing owing to the generation of high defect densities. In this study, we introduce a layer of tetraoctylammonium bromide (TOABr), an interfacial-modification compound containing four long octyl chains that are symmetrically arranged around an N atom, to reduce nonradiative recombination and trap densities in CsPbBr3. We examined the impacts of adding TOABr on perovskite thin films deposited on hole injection layers made of Li-doped NiOx and poly(3,4-ethylenedioxythiophene)/polystyrenesulfonate. Our investigations reveal that TOABr addition slightly increases crystallinity, dramatically increases photoluminescence, and achieves the preferred orientation in the perovskite films. Additionally, the interfacial layer passivates defects and improves charge balance in the device, thereby enhancing performance. Consequently, perovskite LEDs with a TOABr layer exhibit a lower turn-on voltage of 3 V than their pristine counterparts, achieving a maximum luminance of 11,133 cd m-2 and an external quantum efficiency of 1.24%, whereas the pristine perovskite LEDs achieve an EQE of 0.015%. The approach proposed in this study can be used to fabricate efficient vacuum-thermal-evaporated perovskite LEDs.
Collapse
Affiliation(s)
- Van-Khoe Vo
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung-Hoon Bae
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Thi Huong Thao Dang
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Dinh Hoat Phung
- Department of Physics, Le Quy Don Technical University, Hanoi 100000, Vietnam
| | - Juhan Kim
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seungwon Lee
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nayoon Lee
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyo-Jun Lim
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ki-Hee Kim
- Institute of Next-Generation Semiconductor Convergence Technology (DGIST), Daegu 42988, Republic of Korea
| | - Joon-Hyung Lee
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Advanced Material Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Woo Heo
- School of Materials Science and Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
- KNU Advanced Material Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
5
|
Zhang D, Cao X, Liu C, Chen M, Ye W, Zhou J, Fan X, You G, Zheng C, Ning J, Xu S. Abnormal Temperature Dependence of Huang-Rhys Factor and Exciton Recombination Kinetics in CsPbBr 3 Perovskite Quantum Dots. J Phys Chem Lett 2024; 15:11015-11021. [PMID: 39466238 DOI: 10.1021/acs.jpclett.4c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Anomalous thermal behaviors of excitonic luminescence in CsPbBr3 perovskite quantum dots (PQDs) were observed. It is found that the main luminescence peak originated from the excitonic radiative recombination assisted by the longitudinal-optical (LO) phonon, and its integrated intensity first declines as the temperature varies from 10 to 150 K and then turns to increase at ∼160 K, reaching a maximum value at 300 K. A model considering the thermal detrapping and transfer of electrons from a trap level is developed to interpret these abnormal thermal behaviors of the luminescence from the PQDs. On the other hand, the quantum-mechanical multimode Brownian oscillator model was employed to unravel that the Huang-Rhys factor exclusively characterizing the exciton-phonon coupling in the studied CsPbBr3 PQDs decreases from 1.65 at 10 K to 1.31 at 200 K.
Collapse
Affiliation(s)
- Debao Zhang
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xuguang Cao
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Canyu Liu
- Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingtong Chen
- Aerospace Laser Technology and System Department, Shanghai Institute of Optics and Fine Mechanics, Shanghai 201800, China
| | - Wanggui Ye
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Ji Zhou
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Xinye Fan
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Guanjun You
- Shanghai Key Laboratory of Modern Optical System, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Changcheng Zheng
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan 215316, China
| | - Jiqiang Ning
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| | - Shijie Xu
- Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200438, China
| |
Collapse
|
6
|
Ferreira DL, Silva AG, Schiavon MA, Vivas MG. Determination of the particle size distribution of cube-shaped colloidal perovskite quantum dots from photoluminescence spectra: A combined theoretical-experimental approach. J Chem Phys 2024; 161:164109. [PMID: 39450726 DOI: 10.1063/5.0234432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024] Open
Abstract
A theoretical-experimental approach is proposed to convert the photoluminescence spectra of colloidal perovskite quantum dot ensembles into accurate estimates for their intrinsic particle size distribution functions. Two main problems were addressed and properly correlated: the size dependence of the first excitonic transition in a single cube-shaped quantum dot and the inhomogeneous broadening of the fluorescence line shape due to the size nonuniformity of the chemically prepared quantum dot suspension in addition to the single-dot homogeneous broadening. By applying the reported methodology to CsPbBr3 quantum dot samples belonging to the strong and intermediate confinement regimes, the calculated size distributions exhibited close agreement with those obtained from transmission electron microscopy, with precise estimates for the average particle size and standard deviation. Specifically for strongly confined ultrasmall CsPbBr3 quantum dots, the presented spectroscopic model for size distribution computation is based on a new analytical expression for the size-dependent bandgap, which was developed within the framework of the finite-depth square-well effective mass approximation accounting for band nonparabolicity effects. Such a quantum mechanical approach correctly predicts the expected transition to the intermediate confinement regime in sufficiently large quantum dots, which are traditionally described by the well-known bandgap equation in the infinite potential barrier limit with a spatially correlated electron-hole wavefunction and nonparabolic carrier effective masses. The proposed calculation scheme originates from general theoretical considerations so that it can be readily adapted to semiconductor quantum dots of many other systems, from all inorganic metal halides to hybrid perovskite materials, regardless of the adopted chemical synthesis route.
Collapse
Affiliation(s)
- Diego Lourençoni Ferreira
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| | - Andreza Germana Silva
- Departamento de Física, CCE, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Marco Antônio Schiavon
- Grupo de Pesquisa em Química de Materiais, Universidade Federal de São João del-Rei, 36301-160 São João del-Rei, Minas Gerais, Brazil
| | - Marcelo Gonçalves Vivas
- Laboratório de Espectroscopia Óptica e Fotônica, Universidade Federal de Alfenas, 37715-400 Poços de Caldas, Minas Gerais, Brazil
| |
Collapse
|
7
|
Jeon MG, An GH, Kirakosyan A, Yun S, Kim J, Kim CY, Lee HS, Choi J. Suppressed Thermal Quenching via Tetrafluoroborate-Induced Surface Reconstruction of CsPbBr 3 Nanocrystals for Efficient Perovskite Light-Emitting Diodes. ACS NANO 2024; 18:29078-29088. [PMID: 39388594 DOI: 10.1021/acsnano.4c10320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although metal-halide perovskite nanocrystals (NCs) have garnered significant attention for optoelectronic applications, the presence of electrically insulating organic ligands in CsPbBr3 NCs hinders efficient charge injection and transportation in light-emitting diodes (LEDs). A common approach to address this issue involves ligand exchange with shorter ligands and precise control of the surface ligand density through additional purification steps. Nevertheless, the practical application of these methods has been hindered by their poor structural integrity and high surface-defect density, which remain a challenge. Our investigation reveals that NOBF4 treatment effectively replaces native ligands with BF4- anions, in which BF4- anions are readily coordinated with the positively charged CsPbBr3 surface metal centers, thereby improving the photoluminescence quantum yield (PLQY) and thermal stability. In particular, the presence of BF4- anions coordinated at CsPbBr3 surfaces efficiently suppresses the pathway of excitons toward thermally activated nonradiative recombination, leading to minimal thermal quenching and superior device performance in green-emitting PeLEDs. Notably, PeLEDs based on CsPbBr3 NCs with the reconstructed surface via NOBF4 treatment exhibit an improved current efficiency of 31.12 cd/A and an external quantum efficiency of 11.24%, increased by 2.8 times compared to that of the pristine sample, indicating the enhanced hole-electron injection and transport into the CsPbBr3 NCs. Therefore, our results highlight the potential of NOBF4 as a versatile reagent for the ligand exchange and surface passivation of CsPbBr3 NCs, thereby offering promising prospects for the development of stable, high-performance PeLEDs.
Collapse
Affiliation(s)
- Min-Gi Jeon
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Gwang Hwi An
- Department of Physics, Chungbuk National University Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea
| | - Artavazd Kirakosyan
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Subin Yun
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Joonseok Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Yeon Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Electron Microscopy Research Center, Korea Basic Science Institute, 169-14 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Hyun Seok Lee
- Department of Physics, Chungbuk National University Chungdae-ro, Seowon-gu, Cheongju-si, Chungcheongbuk-do 28644, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
8
|
Miranti R, Komatsu R, Enomoto K, Inoue D, Pu YJ. Symmetry-Broken Electronic State of CsPbBr 3 Cubic Perovskite Nanocrystals. J Phys Chem Lett 2024; 15:10009-10017. [PMID: 39319585 DOI: 10.1021/acs.jpclett.4c02160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The development of densely packed, self-assembled perovskite nanocrystals (PeNCs) with a favorable transition dipole moment (TDM) orientation is crucial for their application in solution-processable electronic devices. In this study, we fabricated anisotropic CsPbBr3 PeNCs with a symmetry-broken electronic state on quartz substrates modified by 3-aminopropyltrimethoxysilane (APS). Densely packed and self-assembled monolayers of cubic PeNCs were formed on the substrates by using a dip coating technique. The angle-dependent absorption and photoluminescence (PL) spectra confirmed that the PeNC monolayer on the APS-treated substrate exhibited anisotropic electronic states in the in-plane and out-of-plane directions of the substrate. In contrast, when the quartz substrate was modified with the long alkyl silane coupling agent, octadecyltrimethoxysilane, the absorption and PL spectra exhibited no angular dependence, indicating the absence of anisotropy. Experimental and simulated results confirmed the presence of vertical TDMs in the densely packed PeNCs on the APS-treated substrate, which could be attributed to the effect of the amino groups of the APS on the facet of the cubic PeNCs facing the quartz substrate. Hence, surface chemical modifications of the substrate can aid in the precise control of the symmetry of the electronic states and TDM orientation in cubic PeNCs. These findings can promote the development of densely packed, high-coverage PeNC films with a controllable TDM orientation for applications in electronic devices such as solar cells, sensors, and light-emitting diodes.
Collapse
Affiliation(s)
- Retno Miranti
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Research Center for Advanced Materials, National Research and Innovation Agency (BRIN), South Tangerang, Banten 15314, Indonesia
| | - Ryutaro Komatsu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kazushi Enomoto
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daishi Inoue
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
9
|
Alanazi M, Marshall AR, Liu Y, Kim J, Kar S, Snaith HJ, Taylor RA, Farrow T. Inhibiting the Appearance of Green Emission in Mixed Lead Halide Perovskite Nanocrystals for Pure Red Emission. NANO LETTERS 2024; 24:12045-12053. [PMID: 39311748 PMCID: PMC11450971 DOI: 10.1021/acs.nanolett.4c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024]
Abstract
Mixed halide perovskites exhibit promising optoelectronic properties for next-generation light-emitting diodes due to their tunable emission wavelength that covers the entire visible light spectrum. However, these materials suffer from severe phase segregation under continuous illumination, making long-term stability for pure red emission a significant challenge. In this study, we present a comprehensive analysis of the role of halide oxidation in unbalanced ion migration (I/Br) within CsPbI2Br nanocrystals and thin films. We also introduce a new approach using cyclic olefin copolymer (COC) to encapsulate CsPbI2Br perovskite nanocrystals (PNCs), effectively suppressing ion migration by increasing the corresponding activation energy. Compared with that of unencapsulated samples, we observe a substantial reduction in phase separation under intense illumination in PNCs with a COC coating. Our findings show that COC enhances phase stability by passivating uncoordinated surface defects (Pb2+ and I-), increasing the formation energy of halide vacancies, improving the charge carrier lifetime, and reducing the nonradiative recombination density.
Collapse
Affiliation(s)
- Mutibah Alanazi
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Ashley R. Marshall
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Helio
Display Materials Ltd., Wood Centre for Innovation, Oxford OX3 8SB, United Kingdom
| | - Yincheng Liu
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Institute
of Materials Research and Engineering, Agency for Science, Technology
and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Jinwoo Kim
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Shaoni Kar
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- Helio
Display Materials Ltd., Wood Centre for Innovation, Oxford OX3 8SB, United Kingdom
| | - Henry J. Snaith
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Robert A. Taylor
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
| | - Tristan Farrow
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, United Kingdom
- , NEOM U, and Education, Research and
Innovation Foundation, Tabuk 49643-9136, Saudi
Arabia
| |
Collapse
|
10
|
Kharintsev SS, Battalova EI, Matchenya IA, Nasibulin AG, Marunchenko AA, Pushkarev AP. Extreme Electron-Photon Interaction in Disordered Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2405709. [PMID: 39356054 DOI: 10.1002/advs.202405709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 10/03/2024]
Abstract
The interaction of light with solids can be dramatically enhanced owing to electron-photon momentum matching. This mechanism manifests when light scattering from nanometer-sized clusters including a specific case of self-assembled nanostructures that form a long-range translational order but local disorder (crystal-liquid duality). In this paper, a new strategy based on both cases for the light-matter-interaction enhancement in a direct bandgap semiconductor - lead halide perovskite CsPbBr3 - by using electric pulse-driven structural disorder, is addressed. The disordered state allows the generation of confined photons, and the formation of an electronic continuum of static/dynamic defect states across the forbidden gap (Urbach bridge). Both mechanisms underlie photon-momentum-enabled electronic Raman scattering (ERS) and single-photon anti-Stokes photoluminescence (PL) under sub-band pump. PL/ERS blinking is discussed to be associated with thermal fluctuations of cross-linked [PbBr6]4- octahedra. Time-delayed synchronization of PL/ERS blinking causes enhanced spontaneous emission at room temperature. These findings indicate the role of photon momentum in enhanced light-matter interactions in disordered and nanostructured solids.
Collapse
Affiliation(s)
- Sergey S Kharintsev
- Department of Optics and Nanophotonics, Institute of Physics, Kazan Federal University, Kazan, 420008, Russia
| | - Elina I Battalova
- Department of Optics and Nanophotonics, Institute of Physics, Kazan Federal University, Kazan, 420008, Russia
| | - Ivan A Matchenya
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Albert G Nasibulin
- Center for Photonics and Quantum Materials, Skolkovo Institute of Science and Technology, 30/1 Bolshoy Boulevard, Moscow, 121205, Russia
| | | | - Anatoly P Pushkarev
- School of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| |
Collapse
|
11
|
Li J, Jiang J, Zhang Y, Lin Z, Pang Z, Guan J, Liu Z, Ren Y, Li S, Lin R, Wu J, Wang J, Zhang Z, Dong H, Chen Z, Wang Y, Yang Y, Tan H, Zhu J, Lu Z, Deng Y. Freeze Metal Halide Perovskite for Dramatic Laser Tuning: Direct Observation via In Situ Cryo-Electron Microscope. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402338. [PMID: 38924259 DOI: 10.1002/smll.202402338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
A frozen-temperature (below -28 °C) laser tuning way is developed to optimize metal halide perovskite (MHP)'s stability and opto-electronic properties, for emitter, photovoltaic and detector applications. Here freezing can adjust the competitive laser irradiation effects between damaging and annealing/repairing. And the ligand shells on MHP surface, which are widely present for many MHP materials, can be frozen and act as transparent solid templates for MHP's re-crystallization/re-growth during the laser tuning. With model samples of different types of CsPbBr3 nanocube arrays,an attempt is made to turn the dominant exposure facet from low-energy [100] facet to high-energy [111], [-211], [113] and [210] ones respectively; selectively removing the surface impurities and defects of CsPbBr3 nanocubes to enhance the irradiation durability by 101 times; and quickly (tens of seconds) modifying a Ruddlesden-Popper (RP) boundary into another type of boundary like twinning, and so on. The laser tuning mechanism is revealed by an innovative in situ cryo-transmission electron microscope (cryo-TEM) exploration at atomic resolution.
Collapse
Affiliation(s)
- Jiayi Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Jing Jiang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yuchen Zhang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenhui Lin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhentao Pang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Guan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Zhiyu Liu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yifeng Ren
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Shiheng Li
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Renxing Lin
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jie Wu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Jian Wang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Ziyou Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Zhiqiang Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Yuanyuan Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yurong Yang
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Hairen Tan
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhenda Lu
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Yu Deng
- National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, College of Engineering and Applied Science and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
12
|
Bera A, Maiti A, Pal AJ. Electronic States of Single Perovskite Quantum Dots in Weak and Strong Interaction Regimes: Implications in Electrically Pumped Quantum Emitters. NANO LETTERS 2024; 24:11544-11550. [PMID: 39254085 DOI: 10.1021/acs.nanolett.4c03001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
We investigate the effect of Coulomb interactions on the electronic states of a single perovskite quantum dot (PQD), CsPbBr3, through scanning tunneling microscopy/spectroscopy (STM/S). Under a weak interaction regime, where the time-averaged occupation of electrons in a PQD remains zero, the peaks observed in the differential tunneling conductance (dI/dV) spectrum correspond to the single-particle density of states (DOS) without any electron-electron correlation. However, with a shorter tunnel distance between the STM tip and PQD, additional electrons are trapped in the QD, leading to a strong interaction regime with well-defined electronic fine structures due to the lifting of spin degeneracy in the conduction bands. Interestingly, we observe that the strong Coulomb interaction can modify the spin-orbit coupling (SOC) strength in the PQDs. We have concluded that the energy levels under a strong electron-electron interaction regime are of utmost importance since they will be applicable to electrically pumped PQD-based single photon quantum emitters.
Collapse
Affiliation(s)
- Arpan Bera
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Abhishek Maiti
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Amlan J Pal
- School of Physical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore 452001, India
| |
Collapse
|
13
|
Kambhampati P. Unraveling the excitonics of light emission from metal-halide perovskite quantum dots. NANOSCALE 2024; 16:15033-15058. [PMID: 39052235 DOI: 10.1039/d4nr01481b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Metal halide semicondictor perovskites have been under intense investigation for their promise in light absorptive applications like photovoltaics. They have more recently experienced interest for their promise in light emissive applications. A key aspect of perovskites is their glassy, ionic lattice that exhibits dynamical disorder. One possible result of this dynamical disorder is their strong coupling between electronic and lattice degrees of freedom which may confer remarkable properties for light emission such as defect tolerance. How does the system, comprised of excitons, couple to the bath, comprised of lattice modes? How does this system-bath interaction give rise to novel light emissive properties and how do these properties give insight into the nature of these materials? We review recent work from this group in which time-resolved photoluminescence spectroscopy is used to reveal such insights. Based upon a fast time resolution of 3 ps, energy resolution, and temperature dependence, a wide variety of insights are gleaned. These insights include: lattice contributions to the emission linewidths, multiexciton formation, hot carrier cooling, excitonic fine structure, single dot superradiance, and a breakdown of the Condon approximation, all due to complex structural dynamics in these materials.
Collapse
|
14
|
Ye J, Gaur D, Mi C, Chen Z, Fernández IL, Zhao H, Dong Y, Polavarapu L, Hoye RLZ. Strongly-confined colloidal lead-halide perovskite quantum dots: from synthesis to applications. Chem Soc Rev 2024; 53:8095-8122. [PMID: 38894687 DOI: 10.1039/d4cs00077c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Colloidal semiconductor nanocrystals enable the realization and exploitation of quantum phenomena in a controlled manner, and can be scaled up for commercial uses. These materials have become important for a wide range of applications, from ultrahigh definition displays, to solar cells, quantum computing, bioimaging, optical communications, and many more. Over the last decade, lead-halide perovskite nanocrystals have rapidly gained prominence as efficient semiconductors. Although the majority of studies have focused on large nanocrystals in the weak- to intermediate-confinement regime, quantum dots (QDs) in the strongly-confined regime (with sizes smaller than the Bohr diameter, which ranges from 4-12 nm for lead-halide perovskites) offer unique opportunities, including polarized light emission and color-pure, stable luminescence in the region that is unattainable by perovskites with single-halide compositions. In this tutorial review, we bring together the latest insights into this emerging and rapidly growing area, focusing on the synthesis, steady-state optical properties (including exciton fine-structure splitting), and transient kinetics (including hot carrier cooling) of strongly-confined perovskite QDs. We also discuss recent advances in their applications, including single photon emission for quantum technologies, as well as light-emitting diodes. We finish with our perspectives on future challenges and opportunities for strongly-confined QDs, particularly around improving the control over monodispersity and stability, important fundamental questions on the photophysics, and paths forward to improve the performance of perovskite QDs in light-emitting diodes.
Collapse
Affiliation(s)
- Junzhi Ye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| | - Deepika Gaur
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Chenjia Mi
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Zijian Chen
- Centre for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Iago López Fernández
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Haitao Zhao
- Centre for Intelligent and Biomimetic Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 440305, China
| | - Yitong Dong
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry Campus Universitario As Lagoas, Marcosende 36310, Vigo, Spain.
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.
| |
Collapse
|
15
|
Tao Y, Zhang M, Li D, Liu K, Xu J, Wei L, Zhang K, Wang Y, Dai F, Teng L, Wang L, Wu Z, Xing J. Near-unity quantum yield and long-term emission stability in halide perovskite nanocrystal glass composite. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 316:124379. [PMID: 38692106 DOI: 10.1016/j.saa.2024.124379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Metal halide perovskites are promising optoelectronic materials due to their outstanding luminescent properties. However, the instability of perovskites has long been the bottleneck to their practical applications. Here Cs4PbBr6 nanocrystals based glass composite (Cs4PbBr6 NCs@glass) are successfully prepared, which displays green emission color (520 nm), narrow bandwidth (23 nm) and a near-unity photoluminescence quantum yield (PLQY). The H2O molecules permeating in the lattice of Cs4PbBr6 were found to be a crucial role in the subband energy emission. The Cs4PbBr6 NCs@glass has excellent emission stability; maintains 93 % of initial PL intensity after ultraviolet light irradiation for over 5000 h. In addition, by adjusting the halogen content, we have achieved tunable emission color from blue (450 nm) to green (520 nm) and red (670 nm) on Cs4PbX6 NCs@glass (X = Cl, Br, I), which covers up to 127 % of the National Television Systems Board (NTSC) standard system. Our finding indicates the commercial applications of perovskite materials in lighting and display.
Collapse
Affiliation(s)
- Yafei Tao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Mingming Zhang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; College of Sino-German Science and Technology, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Deyu Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Kang Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Jixiang Xu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lulu Wei
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Kai Zhang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yunhu Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Fangxu Dai
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lihua Teng
- School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266061, China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhanchao Wu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| | - Jun Xing
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, China.
| |
Collapse
|
16
|
Zhu J, Li Y, Lin X, Han Y, Wu K. Coherent phenomena and dynamics of lead halide perovskite nanocrystals for quantum information technologies. NATURE MATERIALS 2024; 23:1027-1040. [PMID: 38951651 DOI: 10.1038/s41563-024-01922-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 05/15/2024] [Indexed: 07/03/2024]
Abstract
Solution-processed colloidal nanocrystals of lead halide perovskites have been intensively investigated in recent years in the context of optoelectronic devices, during which time their quantum properties have also begun to attract attention. Their unmatched ease of synthetic tunability and unique structural, optical and electronic properties, in conjunction with the confinement of carriers in three dimensions, have motivated studies on observing and controlling coherent light-matter interaction in these materials for quantum information technologies. This Review outlines the recent efforts and achievements in this direction. Particularly notable examples are the observation of coherent single-photon emission, evidence for superfluorescence and the realization of room-temperature coherent spin manipulation for ensemble samples, which have not been achieved for prototypical colloidal CdSe nanocrystals that have been under investigation for decades. This Review aims to highlight these results, point out the challenges ahead towards realistic applications and bring together the efforts of multidisciplinary communities in this nascent field.
Collapse
Affiliation(s)
- Jingyi Zhu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuxuan Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuyang Lin
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaoyao Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
17
|
Gallagher S, Kline J, Jahanbakhshi F, Sadighian JC, Lyons I, Shen G, Hammel BF, Yazdi S, Dukovic G, Rappe AM, Ginger DS. Ligand Equilibrium Influences Photoluminescence Blinking in CsPbBr 3: A Change Point Analysis of Widefield Imaging Data. ACS NANO 2024; 18:19208-19219. [PMID: 38982590 DOI: 10.1021/acsnano.4c04968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Photoluminescence intermittency remains one of the biggest challenges in realizing perovskite quantum dots (QDs) as scalable single photon emitters. We compare CsPbBr3 QDs capped with different ligands, lecithin, and a combination of oleic acid and oleylamine, to elucidate the role of surface chemistry on photoluminescence intermittency. We employ widefield photoluminescence microscopy to sample the blinking behavior of hundreds of QDs. Using change point analysis, we achieve the robust classification of blinking trajectories, and we analyze representative distributions from large numbers of QDs (Nlecithin = 1308, Noleic acid/oleylamine = 1317). We find that lecithin suppresses blinking in CsPbBr3 QDs compared with oleic acid/oleylamine. Under common experimental conditions, lecithin-capped QDs are 7.5 times more likely to be nonblinking and spend 2.5 times longer in their most emissive state, despite both QDs having nearly identical solution photoluminescence quantum yields. We measure photoluminescence as a function of dilution and show that the differences between lecithin and oleic acid/oleylamine capping emerge at low concentrations during preparation for single particle experiments. From experiment and first-principles calculations, we attribute the differences in lecithin and oleic acid/oleylamine performance to differences in their ligand binding equilibria. Consistent with our experimental data, density functional theory calculations suggest a stronger binding affinity of lecithin to the QD surface compared to oleic acid/oleylamine, implying a reduced likelihood of ligand desorption during dilution. These results suggest that using more tightly binding ligands is a necessity for surface passivation and, consequently, blinking reduction in perovskite QDs used for single particle and quantum light experiments.
Collapse
Affiliation(s)
- Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Jessica Kline
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Farzaneh Jahanbakhshi
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - James C Sadighian
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ian Lyons
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gillian Shen
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Benjamin F Hammel
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Sadegh Yazdi
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Gordana Dukovic
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309-0215, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
18
|
Polimeno L, Coriolano A, Mastria R, Todisco F, De Giorgi M, Fieramosca A, Pugliese M, Prontera CT, Rizzo A, De Marco L, Ballarini D, Gigli G, Sanvitto D. Room Temperature Polariton Condensation from Whispering Gallery Modes in CsPbBr 3 Microplatelets. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312131. [PMID: 38632702 DOI: 10.1002/adma.202312131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Room temperature (RT) polariton condensate holds exceptional promise for revolutionizing various fields of science and technology, encompassing optoelectronics devices to quantum information processing. Using perovskite materials, like all-inorganic cesium lead bromide (CsPbBr3) single crystal, provides additional advantages, such as ease of synthesis, cost-effectiveness, and compatibility with existing semiconductor technologies. In this work, the formation of whispering gallery modes (WGM) in CsPbBr3 single crystals with controlled geometry is shown, synthesized using a low-cost and efficient capillary bridge method. Through the implementation of microplatelets geometry, enhanced optical properties and performance are achieved due to the presence of sharp edges and a uniform surface, effectively avoiding non-radiative scattering losses caused by defects. This allows not only to observe strong light matter coupling and formation of whispering gallery polaritons, but also to demonstrate the onset of polariton condensation at RT. This investigation not only contributes to the advancement of the knowledge concerning the exceptional optical properties of perovskite-based polariton systems, but also unveils prospects for the exploration of WGM polariton condensation within the framework of a 3D perovskite-based platform, working at RT. The unique characteristics of polariton condensate, including low excitation thresholds and ultrafast dynamics, open up unique opportunities for advancements in photonics and optoelectronics devices.
Collapse
Affiliation(s)
- Laura Polimeno
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Annalisa Coriolano
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Rosanna Mastria
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Francesco Todisco
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Milena De Giorgi
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Antonio Fieramosca
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Marco Pugliese
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Carmela T Prontera
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Aurora Rizzo
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Luisa De Marco
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Dario Ballarini
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| | - Giuseppe Gigli
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
- Dipartimento di Matematica e Fisica "Ennio de Giorgi", Universitá del Salento, Lecce, 73100, Italy
| | - Daniele Sanvitto
- CNR Nanotec, Institute of Nanotechnology, via Monteroni, Lecce, 73100, Italy
| |
Collapse
|
19
|
Wang L, Bai J, Huang X, He X, Yang Z, Zhang T, Li Q, Jin X, Wang Y, Zhang X, Song Y. Improving spectral linewidth performance of InP quantum dots by promoting size-focused growth and decreasing exciton-phonon coupling. OPTICS EXPRESS 2024; 32:25000-25011. [PMID: 39538923 DOI: 10.1364/oe.523817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/15/2024] [Indexed: 11/16/2024]
Abstract
InP-based quantum dots (QDs) are widely adopted as a superior alternative to CdSe-based QDs in various fields owing to their high quantum yield, environmental friendliness, and excellent stability. However, improving its color purity remains a challenging task. In this work, we employ a multistage heating strategy to optimize the nucleation and shell growth processes of amino-phosphine-based InP/ZnSe/ZnS QDs for reducing emission linewidths. The multistage heating strategy mitigates the undesired formation of small-size cores by decreasing monomer supersaturation during the nucleation process, thereby promoting size-focusing growth. During the shelling process, multistage heating effectively suppresses Zn2+ diffusion into the InP core while ensuring high-quality shell growth, thus reducing the homogeneous broadening caused by exciton-phonon coupling. Compared to classical synthesis, the multistage heating strategy can reduce the emission linewidth of nucleation and shelling by 13.2% and 30.9% respectively. The optimized InP/ZnSe/ZnS QDs exhibit a narrow full width at half maximum (FWHM) of 41.5 nm at 630 nm, representing significant progress in studying spectral linewidths of amino-phosphine InP QDs. This work provides potential insights for further improving the spectral linewidth performance of InP QDs or other nanocrystals with similar reaction-limited growth systems.
Collapse
|
20
|
Hu J, Ning S, Hao C, Ren Z, Li C, Wang F, Dong G, Yue G, Guan L, Li X, Liu Z. Synthesis and performance optimization of CsPbBr 3/CdS core/shell lead halide perovskite nanocrystals by an ion exchange method. OPTICS EXPRESS 2024; 32:25023-25035. [PMID: 39538925 DOI: 10.1364/oe.525715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/03/2024] [Indexed: 11/16/2024]
Abstract
All-inorganic lead halide perovskite nanocrystals (NCs) have excellent optoelectronic properties and promising applications. Improving the stability of inorganic halide NCs and optimizing their photoluminescence quantum yields (PLQY) has become an urgent task. Constructing core-shell structures is an effective method to improve the environmental stability and PLQY, however, realizing core-shell structured perovskite NCs with good dispersion and multiple perovskites encapsulated within the shell material remains challenging. In this work, CdS shells were grown on the surface of CsPbBr3 NCs by ion-exchange method utilizing perovskite NCs with their ionic properties, and the effectiveness of the surface shell protection is reflected in its enhancement of long-term storage stability, storage stability in water, and thermal stability of NCs. In addition, the PLQY and exciton binding energies of CsPbBr3/CdS NCs are increased. Finally, the NCs were packaged into green emitting LED devices and performed high stability. The results will facilitate the further commercialization of all-inorganic lead halide perovskite materials for optoelectronic devices.
Collapse
|
21
|
Zhang M, Zhang J, Gu L, Su Q, Qiang P, Yang Y, Ding S, Yao T, Zhang X, Du G, Xu B, Wang H. Ultranarrow Deep-Blue Luminescence of Perovskite Nanocrystals by A-Site Cation Control. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31524-31533. [PMID: 38841741 DOI: 10.1021/acsami.4c06705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Metal-halide perovskite nanocrystals (NCs) are one of the most promising emitters for the application of display and nanolight sources. The full width at half-maximum (FWHM) of photoluminescence (PL) emission is essential for color purity, which however remains a difficulty to further reduce the FWHM of the perovskite NCs at room temperature. Here, we show the quasi-sphere perovskite NCs with narrow PL emission at a deep-blue wavelength of ∼430 nm; its PL FWHM reaches ∼11 nm at room temperature, owing to the monodispersion in size distribution as well as the symmetric quasi-sphere morphology of NCs releasing the fine structure splitting-induced inhomogeneous broadening. Through regulating A cations with respect to the ratio of FA (or MA)-to-Cs and Cs-to-Pb, the PL emission of the NCs could be tuned from ∼505 to ∼430 nm combined with varied morphologies from large cube to small quasi-sphere. Such spectroscopic and morphological discrepancies are supposed to be attributed to the different crystalline kinetics that is strongly dependent on the synthetic condition. To be specific, in the case of increasing FA (or MA)-to-Cs, the growth rate of CsPbBr3 and FAPbBr3 (or MAPbBr3) perovskites is determined by the reactivity of transient species, while in the case of decreasing the Cs-to-Pb ratio, the growth rate of perovskites is slowed down by the serious reduction of Cs+ in the precursor. This study provides an effective strategy to adjust the emission across from green to deep-blue color and promotes the perovskite NCs with a narrow FWHM, and tunable PL emission facilitates in application of optoelectronic devices.
Collapse
Affiliation(s)
- Miao Zhang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jingyun Zhang
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lei Gu
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | | | - Pengpeng Qiang
- School of Materials Science & Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yingjun Yang
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuakai Ding
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Tanxin Yao
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Xiuhai Zhang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| | - Gaohui Du
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, School of Physics & Information Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| | - Hongyue Wang
- State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University and Shaanxi Joint Laboratory of Graphene, Xi'an 710072, China
| |
Collapse
|
22
|
Yao X, Li Y, Shi H, Yu Z, Wu B, Zhou Z, Zhou C, Zheng X, Tang M, Wang X, Ma H, Meng Z, Huang W, An Z. Narrowband room temperature phosphorescence of closed-loop molecules through the multiple resonance effect. Nat Commun 2024; 15:4520. [PMID: 38806515 PMCID: PMC11133472 DOI: 10.1038/s41467-024-48856-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Luminescent materials with narrowband emission show great potential for diverse applications in optoelectronics. Purely organic phosphors with room-temperature phosphorescence (RTP) have made significant success in rationally manipulating quantum efficiency, lifetimes, and colour gamut in the past years, but there is limited attention on the purity of the RTP colours. Herein we report a series of closed-loop molecules with narrowband phosphorescence by multiple resonance effect, which significantly improves the colour purity of RTP. Phosphors show narrowband phosphorescence with full width at half maxima (FWHM) of 30 nm after doping into a rigid benzophenone matrix under ambient conditions, of which the RTP efficiency reaches 51.8%. At 77 K, the FWHM of phosphorescence is only 11 nm. Meanwhile, the colour of narrowband RTP can be tuned from sky blue to green with the modification of methyl groups. Additionally, the potential applications in X-ray imaging and display are demonstrated. This work not only outlines a design principle for developing narrowband RTP materials but also makes a major step forward extending the potential applications of narrowband luminescent materials in optoelectronics.
Collapse
Affiliation(s)
- Xiaokang Yao
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yuxin Li
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Huifang Shi
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Ze Yu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Beishen Wu
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zixing Zhou
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Chifeng Zhou
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xifang Zheng
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Mengting Tang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Wang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Zhengong Meng
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, China
- Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, Zhengzhou, China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Henan Institute of Flexible Electronics (HIFE) and School of Flexible Electronics (SoFE), Henan University, Zhengzhou, China.
| |
Collapse
|
23
|
Wang B, Lim JWM, Loh SM, Mayengbam R, Ye S, Feng M, He H, Liang X, Cai R, Zhang Q, Kwek LC, Demir HV, Mhaisalkar SG, Blundell SA, Chien Sum T. Weakly Confined Organic-Inorganic Halide Perovskite Quantum Dots as High-Purity Room-Temperature Single Photon Sources. ACS NANO 2024; 18:10807-10817. [PMID: 38598660 DOI: 10.1021/acsnano.3c12311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Colloidal perovskite quantum dots (PQDs) have emerged as highly promising single photon emitters for quantum information applications. Presently, most strategies have focused on leveraging quantum confinement to increase the nonradiative Auger recombination (AR) rate to enhance single-photon (SP) purity in all-inorganic CsPbBr3 QDs. However, this also increases the fluorescence intermittency. Achieving high SP purity and blinking mitigation simultaneously remains a significant challenge. Here, we transcend this limitation with room-temperature synthesized weakly confined hybrid organic-inorganic perovskite (HOIP) QDs. Superior single photon purity with a low g(2)(0) < 0.07 ± 0.03 and a nearly blinking-free behavior (ON-state fraction >95%) in 11 nm FAPbBr3 QDs are achieved at room temperature, attributed to their long exciton lifetimes (τX) and short biexciton lifetimes (τXX). The significance of the organic A-cation is further validated using the mixed-cation FAxCs1-xPbBr3. Theoretical calculations utilizing a combination of the Bethe-Salpeter (BSE) and k·p approaches point toward the modulation of the dielectric constants by the organic cations. Importantly, our findings provide valuable insights into an additional lever for engineering facile-synthesized room-temperature PQD single photon sources.
Collapse
Affiliation(s)
- Bo Wang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Siow Mean Loh
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Rishikanta Mayengbam
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Senyun Ye
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Minjun Feng
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Huajun He
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Xiao Liang
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Rui Cai
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Qiannan Zhang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Leong-Chuan Kwek
- Centre for Quantum Technologies, National University of Singapore, Singapore 117543, on Singapore
- National Institute of Education, Nanyang Technological University, 1 Nanyang Walk Singapore 637616, Singapore
| | - Hilmi Volkan Demir
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- LUMINOUS! Center of Excellence for Semiconductor Lighting and Displays, The Photonics Institute, School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore
- UNAM─Institute of Materials Science and Nanotechnology, The National Nanotechnology Research Center, Department of Electrical and Electronics Engineering, Department of Physics, Bilkent University, Bilkent, Ankara 06800, Turkey
| | - Subodh G Mhaisalkar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 440-746, Korea
| | - Steven A Blundell
- Université Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000 Grenoble, France
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
24
|
Awais M, Naqvi SMZA, Wei Z, Wu J, Arshad I, Raghavan V, Khan SU, Hu J. Functionalized Single Crystal Perovskite Materials for SERS and Their Potential Detection Applications. J Fluoresc 2024:10.1007/s10895-024-03716-7. [PMID: 38613710 DOI: 10.1007/s10895-024-03716-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
Recent advances in detection and diagnostic tools have improved understanding and identification of plant physiological and biochemical processes. Effective and safe Surface Enhanced Raman Spectroscopy (SERS) can find objects quickly and accurately. Raman enhancement amplifies the signal by 1014-1015 to accurately quantify plant metabolites at the molecular level. This paper shows how to use functionalized perovskite substrates for SERS. These perovskite substrates have lots of surface area, intense Raman scattering, and high sensitivity and specificity. These properties eliminate sample matrix component interference. This study identified research gaps on perovskite substrates' effectiveness, precision, and efficiency in biological metabolite detection compared to conventional substrates. This article details the synthesis and use of functionalized perovskites for plant metabolites measurement. It analyzes their pros and cons in this context. The manuscript analyzes perovskite-based SERS substrates, including single-crystalline perovskites with enhanced optoelectronic properties. This manuscript aims to identify this study gap by comprehensively reviewing the literature and using it to investigate plant metabolite detection in future studies.
Collapse
Affiliation(s)
- Muhammad Awais
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Syed Muhammad Zaigham Abbas Naqvi
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| | - Zhang Wei
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Junfeng Wu
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China
| | - Ifzan Arshad
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, Guangdong, China
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, China
| | - Vijaya Raghavan
- Department of Bioresource Engineering, Faculty of Agriculture and Environmental Studies, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Sami Ullah Khan
- Department of Mathematics, Namal University, Talagang Road, Mianwali, 42250, Pakistan
| | - Jiandong Hu
- Department of Mechanical and Electrical Engineering, Henan Agricultural University, Zhengzhou, 450002, China.
- Henan International Joint Laboratory of Laser Technology in Agriculture Sciences, Zhengzhou, 450002, China.
- State Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450002, China.
| |
Collapse
|
25
|
Amara MR, Huo C, Voisin C, Xiong Q, Diederichs C. Impact of Bright-Dark Exciton Thermal Population Mixing on the Brightness of CsPbBr 3 Nanocrystals. NANO LETTERS 2024; 24:4265-4271. [PMID: 38557055 DOI: 10.1021/acs.nanolett.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Understanding the interplay between bright and dark exciton states is crucial for deciphering the luminescence properties of low-dimensional materials. The origin of the outstanding brightness of lead halide perovskites remains elusive. Here, we analyze temperature-dependent time-resolved photoluminescence to investigate the population mixing between bright and dark exciton sublevels in individual CsPbBr3 nanocrystals in the intermediate confinement regime. We extract bright and dark exciton decay rates and show quantitatively that the decay dynamics can only be reproduced with second-order phonon transitions. Furthermore, we find that any exciton sublevel ordering is compatible with the most likely population transfer mechanism. The remarkable brightness of lead halide perovskite nanocrystals rather stems from a reduced asymmetry between bright-to-dark and dark-to-bright conversion originating from the peculiar second-order phonon-assisted transitions that freeze bright-dark conversion at low temperatures together with the very fast radiative recombination and favorable degeneracy of the bright exciton state.
Collapse
Affiliation(s)
- Mohamed-Raouf Amara
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, F-75005 Paris, France
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Caixia Huo
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
- Institute of Materials/School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Shaoxing Institute of Technology, Shanghai University, Zhejiang 312000, China
| | - Christophe Voisin
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, F-75005 Paris, France
| | - Qihua Xiong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
- Frontier Science Center for Quantum Information, Beijing 100084, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, People's Republic of China
| | - Carole Diederichs
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Cité, F-75005 Paris, France
- Institut Universitaire de France (IUF), 75231 Paris, France
| |
Collapse
|
26
|
Chen L, Chu Y, Qin X, Gao Z, Zhang G, Zhang H, Wang Q, Li Q, Guo H, Li Y, Liu C. Ultrafast Dynamics Across Pressure-Induced Electronic State Transitions, Fluorescence Quenching, and Bandgap Evolution in CsPbBr 3 Quantum Dots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308016. [PMID: 38308192 PMCID: PMC11005694 DOI: 10.1002/advs.202308016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
This work investigates the impact of pressure on the structural, optical properties, and electronic structure of CsPbBr3 quantum dots (QDs) using steady-state photoluminescence, steady-state absorption, and femtosecond transient absorption spectroscopy, reaching a maximum pressure of 3.38 GPa. The experimental results indicate that CsPbBr3 QDs undergo electronic state (ES) transitions from ES-I to ES-II and ES-II to ES-III at 0.38 and 1.08 GPa, respectively. Intriguingly, a mixed state of ES-II and ES-III is observed within the pressure range of 1.08-1.68 GPa. The pressure-induced fluorescence quenching in ES-II is attributed to enhanced defect trapping and reduced radiative recombination. Above 1.68 GPa, fluorescence vanishes entirely, attributed to the complete phase transformation from ES-II to ES-III in which radiative recombination becomes non-existent. Notably, owing to stronger quantum confinement effects, CsPbBr3 QDs exhibit an impressive bandgap tuning range of 0.497 eV from 0 to 2.08 GPa, outperforming nanocrystals by 1.4 times and bulk counterparts by 11.3 times. Furthermore, this work analyzes various carrier dynamics processes in the pressure-induced bandgap evolution and electron state transitions, and systematically studies the microphysical mechanisms of optical properties in CsPbBr3 QDs under pressure, offering insights for optimizing optical properties and designing novel materials.
Collapse
Affiliation(s)
- Lin Chen
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Ya Chu
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Xiaxia Qin
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Zhijian Gao
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Guozhao Zhang
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Haiwa Zhang
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Qinglin Wang
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Qian Li
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| | - Haizhong Guo
- Key Laboratory of Material PhysicsMinistry of EducationSchool of Physics and MicroelectronicsZhengzhou UniversityZhengzhou450052P. R. China
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and ApplicationSchool of Physics and Electronic EngineeringJiangsu Normal UniversityXuzhou221116P. R. China
| | - Cailong Liu
- School of Physics Science & Information TechnologyLiaocheng UniversityLiaocheng252059P. R. China
| |
Collapse
|
27
|
Sekh T, Cherniukh I, Kobiyama E, Sheehan TJ, Manoli A, Zhu C, Athanasiou M, Sergides M, Ortikova O, Rossell MD, Bertolotti F, Guagliardi A, Masciocchi N, Erni R, Othonos A, Itskos G, Tisdale WA, Stöferle T, Rainò G, Bodnarchuk MI, Kovalenko MV. All-Perovskite Multicomponent Nanocrystal Superlattices. ACS NANO 2024; 18:8423-8436. [PMID: 38446635 PMCID: PMC10958606 DOI: 10.1021/acsnano.3c13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Nanocrystal superlattices (NC SLs) have long been sought as promising metamaterials, with nanoscale-engineered properties arising from collective and synergistic effects among the constituent building blocks. Lead halide perovskite (LHP) NCs come across as outstanding candidates for SL design, as they demonstrate collective light emission, known as superfluorescence, in single- and multicomponent SLs. Thus far, LHP NCs have only been assembled in single-component SLs or coassembled with dielectric NC building blocks acting solely as spacers between luminescent NCs. Here, we report the formation of multicomponent LHP NC-only SLs, i.e., using only CsPbBr3 NCs of different sizes as building blocks. The structural diversity of the obtained SLs encompasses the ABO6, ABO3, and NaCl structure types, all of which contain orientationally and positionally locked NCs. For the selected model system, the ABO6-type SL, we observed efficient NC coupling and Förster-like energy transfer from strongly confined 5.3 nm CsPbBr3 NCs to weakly confined 17.6 nm CsPbBr3 NCs, along with characteristic superfluorescence features at cryogenic temperatures. Spatiotemporal exciton dynamics measurements reveal that binary SLs exhibit enhanced exciton diffusivity compared to single-component NC assemblies across the entire temperature range (from 5 to 298 K). The observed coherent and incoherent NC coupling and controllable excitonic transport within the solid NC SLs hold promise for applications in quantum optoelectronic devices.
Collapse
Affiliation(s)
- Taras
V. Sekh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Thomas J. Sheehan
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Andreas Manoli
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Modestos Athanasiou
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - Marios Sergides
- Laboratory
of Ultrafast Science, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Oleksandra Ortikova
- Electron
Microscopy Center, Empa−Swiss Federal
Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Marta D. Rossell
- Electron
Microscopy Center, Empa−Swiss Federal
Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Federica Bertolotti
- Department
of Science and High Technology and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Antonietta Guagliardi
- Istituto
di Cristallografia and To.Sca.Lab, Consiglio Nazionale delle Ricerche, via Valleggio 11, 22100 Como, Italy
| | - Norberto Masciocchi
- Department
of Science and High Technology and To.Sca.Lab, University of Insubria, via Valleggio 11, 22100 Como, Italy
| | - Rolf Erni
- Electron
Microscopy Center, Empa−Swiss Federal
Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Andreas Othonos
- Laboratory
of Ultrafast Science, Department of Physics, University of Cyprus, Nicosia 1678, Cyprus
| | - Grigorios Itskos
- Experimental
Condensed Matter Physics Laboratory, Department of Physics, University of Cyprus, 1678 Nicosia, Cyprus
| | - William A. Tisdale
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Thilo Stöferle
- IBM
Research Europe−Zürich, Rüschlikon CH-8803, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa−Swiss
Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
28
|
Krajewska CJ, Kick M, Kaplan AEK, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. A-Site Cation Influence on the Structural and Optical Evolution of Ultrathin Lead Halide Perovskite Nanoplatelets. ACS NANO 2024; 18:8248-8258. [PMID: 38428021 DOI: 10.1021/acsnano.3c12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Imposing quantum confinement has the potential to significantly modulate both the structural and optical parameters of interest in many material systems. In this work, we investigate strongly confined ultrathin perovskite nanoplatelets APbBr3. We compare the all-inorganic and hybrid compositions with the A-sites cesium and formamidinium, respectively. Compared to each other and their bulk counterparts, the materials show significant differences in variable-temperature structural and optical evolution. We quantify and correlate structural asymmetry with the excitonic transition energy, spectral purity, and emission rate. Negative thermal expansion, structural and photoluminescence asymmetry, photoluminescence full width at half-maximum, and splitting between bright and dark excitonic levels are found to be reduced in the hybrid composition. This work provides composition- and structure-based mechanisms for engineering of the excitons in these materials.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
29
|
Huang Y, Zhu J, Li J, Luo J, Du P, Song B, Tang J. Thermally Evaporated Blue Quasi-Two-Dimensional Perovskite Light-Emitting Diodes via Low-Dimensional Phase Distribution Arrangement. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38471065 DOI: 10.1021/acsami.3c17082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Perovskite light-emitting diodes (PeLEDs) have shown great potential in the display domain due to their wide color gamut, narrow emission, and low cost. In current PeLEDs manufacturing methods, thermal evaporation shows great competitiveness with its advantages of easy patterning, production line compatibility, and solvent-free processability. However, the development of thermally evaporated blue PeLEDs is limited by their low radiative recombination rate and high defect density. Herein, we report high-performance thermally evaporated blue PeLEDs by in situ introduction of ammonium cations. We confirm that phenethylammonium (PEA+) has lower adsorption energy, which significantly reduces the low-n phases in a quasi-2D perovskite film. The energy transfer rate is also promoted by the PEA+ addition. As a result, we fabricate blue PeLEDs with an external quantum efficiency of 1.56% by thermal evaporation. The strategy of arranging phase distribution could benefit the industrialization of full-color PeLEDs.
Collapse
Affiliation(s)
- Yuanlong Huang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiaxing Zhu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jinghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Peipei Du
- School of Integrated Circuits, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Boxiang Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
30
|
Zhang Z, Ghonge S, Ding Y, Zhang S, Berciu M, Schaller RD, Jankó B, Kuno M. Resonant Multiple-Phonon Absorption Causes Efficient Anti-Stokes Photoluminescence in CsPbBr 3 Nanocrystals. ACS NANO 2024; 18:6438-6444. [PMID: 38363716 DOI: 10.1021/acsnano.3c11908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Lead halide perovskite nanocrystals, such as CsPbBr3, exhibit efficient photoluminescence (PL) up-conversion, also referred to as anti-Stokes photoluminescence (ASPL). This is a phenomenon where irradiating nanocrystals up to 100 meV below gap results in higher energy band edge emission. Most surprising is that ASPL efficiencies approach unity and involve single-photon interactions with multiple phonons. This is unexpected given the statistically disfavored nature of multiple-phonon absorption. Here, we report and rationalize near-unity anti-Stokes photoluminescence efficiencies in CsPbBr3 nanocrystals and attribute them to resonant multiple-phonon absorption by polarons. The theory explains paradoxically large efficiencies for intrinsically disfavored, multiple-phonon-assisted ASPL in nanocrystals. Moreover, the developed microscopic mechanism has immediate and important implications for applications of ASPL toward condensed phase optical refrigeration.
Collapse
Affiliation(s)
- Zhuoming Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Sushrut Ghonge
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Yang Ding
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Shubin Zhang
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Mona Berciu
- Department of Physics and Astronomy, University of British Columbia, Vancouver Campus 325-6224, Agricultural Road, Vancouver, BC V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Boldizsár Jankó
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| | - Masaru Kuno
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
- Department of Physics and Astronomy, University of Notre Dame, 225 Nieuwland Science Hall, Notre Dame, Indiana 46556, United States
| |
Collapse
|
31
|
Baek H, Kang S, Heo J, Choi S, Kim R, Kim K, Ahn N, Yoon YG, Lee T, Chang JB, Lee KS, Park YG, Park J. Insights into structural defect formation in individual InP/ZnSe/ZnS quantum dots under UV oxidation. Nat Commun 2024; 15:1671. [PMID: 38396037 PMCID: PMC10891109 DOI: 10.1038/s41467-024-45944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
InP/ZnSe/ZnS quantum dots (QDs) stand as promising candidates for advancing QD-organic light-emitting diodes (QLED), but low emission efficiency due to their susceptibility to oxidation impedes applications. Structural defects play important roles in the emission efficiency degradation of QDs, but the formation mechanism of defects in oxidized QDs has been less investigated. Here, we investigated the impact of diverse structural defects formation on individual QDs and propagation during UV-facilitated oxidation using high-resolution (scanning) transmission electron microscopy. UV-facilitated oxidation of the QDs alters shell morphology by the formation of surface oxides, leaving ZnSe surfaces poorly passivated. Further oxidation leads to the formation of structural defects, such as dislocations, and induces strain at the oxide-QD interfaces, facilitating In diffusion from the QD core. These changes in the QD structures result in emission quenching. This study provides insight into the formation of structural defects through photo-oxidation, and their effects on emission properties of QDs.
Collapse
Grants
- IBS-R006-D1 Institute for Basic Science (IBS)
- This work was supported by the Institute for Basic Science (IBS-R006-D1) (H.B., S.K., and J.P.) and Samsung Display Co., Ltd (H.B., S.K., J.H., S.C., R.K., K.K., N.A., Y.-G.Y., T.L., J.B.C., K.S.L., Y.-G.P., and J.P.). H.B. and J.P. acknowledge support from Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-MA2002-3. H.B. and S.K.
Collapse
Affiliation(s)
- Hayeon Baek
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Junyoung Heo
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Soonmi Choi
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Ran Kim
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kihyun Kim
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Nari Ahn
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Yeo-Geon Yoon
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Taekjoon Lee
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Jae Bok Chang
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyung Sig Lee
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea
| | - Young-Gil Park
- Samsung Display Co., Ltd., Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Institute of Engineering Research, College of Engineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, Republic of Korea.
| |
Collapse
|
32
|
Bodnarchuk MI, Feld LG, Zhu C, Boehme SC, Bertolotti F, Avaro J, Aebli M, Mir SH, Masciocchi N, Erni R, Chakraborty S, Guagliardi A, Rainò G, Kovalenko MV. Colloidal Aziridinium Lead Bromide Quantum Dots. ACS NANO 2024. [PMID: 38320982 PMCID: PMC10883123 DOI: 10.1021/acsnano.3c11579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The compositional engineering of lead-halide perovskite nanocrystals (NCs) via the A-site cation represents a lever to fine-tune their structural and electronic properties. However, the presently available chemical space remains minimal since, thus far, only three A-site cations have been reported to favor the formation of stable lead-halide perovskite NCs, i.e., Cs+, formamidinium (FA), and methylammonium (MA). Inspired by recent reports on bulk single crystals with aziridinium (AZ) as the A-site cation, we present a facile colloidal synthesis of AZPbBr3 NCs with a narrow size distribution and size tunability down to 4 nm, producing quantum dots (QDs) in the regime of strong quantum confinement. NMR and Raman spectroscopies confirm the stabilization of the AZ cations in the locally distorted cubic structure. AZPbBr3 QDs exhibit bright photoluminescence with quantum efficiencies of up to 80%. Stabilized with cationic and zwitterionic capping ligands, single AZPbBr3 QDs exhibit stable single-photon emission, which is another essential attribute of QDs. In particular, didodecyldimethylammonium bromide and 2-octyldodecyl-phosphoethanolamine ligands afford AZPbBr3 QDs with high spectral stability at both room and cryogenic temperatures, reduced blinking with a characteristic ON fraction larger than 85%, and high single-photon purity (g(2)(0) = 0.1), all comparable to the best-reported values for MAPbBr3 and FAPbBr3 QDs of the same size.
Collapse
Affiliation(s)
- Maryna I Bodnarchuk
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Leon G Feld
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Chenglian Zhu
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Simon C Boehme
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Federica Bertolotti
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Jonathan Avaro
- Centre for X-ray Analytics & Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen 9014, Switzerland
| | - Marcel Aebli
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Showkat Hassan Mir
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Norberto Masciocchi
- Department of Science and High Technology and To.Sca.Lab., University of Insubria, via Valleggio 11, Como 22100, Italy
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Sudip Chakraborty
- Materials Theory for Energy Scavenging (MATES) Lab, Harish-Chandra Research Institute (HRI) Allahabad, A C.I. of Homi Bhabha National Institute (HBNI), Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
| | - Antonietta Guagliardi
- Istituto di Cristallografia and To.Sca.Lab, Consiglio Nazionale delle Ricerche, via Valleggio 11, Como 22100, Italy
| | - Gabriele Rainò
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
| | - Maksym V Kovalenko
- Laboratory for Thin Films and Photovoltaics, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich 8093, Switzerland
- SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
33
|
Morad V, Stelmakh A, Svyrydenko M, Feld LG, Boehme SC, Aebli M, Affolter J, Kaul CJ, Schrenker NJ, Bals S, Sahin Y, Dirin DN, Cherniukh I, Raino G, Baumketner A, Kovalenko MV. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 2024; 626:542-548. [PMID: 38109940 PMCID: PMC10866715 DOI: 10.1038/s41586-023-06932-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.
Collapse
Affiliation(s)
- Viktoriia Morad
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Mariia Svyrydenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Leon G Feld
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Simon C Boehme
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Joel Affolter
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christoph J Kaul
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yesim Sahin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Ihor Cherniukh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Gabriele Raino
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andrij Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland.
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
34
|
Wan Y, Zhao Y, Li Y, Zhang Z, Li S, Tian T, Wang L. Direct in situ photolithography of ultra-stable CsPbBr 3 quantum dot arrays based on crosslinking polymerization. NANOSCALE 2024; 16:2504-2512. [PMID: 38205675 DOI: 10.1039/d3nr04876d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
CsPbX3 (X = Br, Cl, I) perovskite quantum dots (PQDs) are the rising star for various display applications owing to their excellent opto-electrical properties, such as an adjustable spectrum, narrow emission linewidth and high quantum yield. However, these PQDs are well known to suffer from intrinsic instability under atmospheric conditions. In this work, a novel photosensitive ligand, phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (XBPO), was employed as a dual-functional reagent for PQD surface engineering. The XBPO ligand could cleave to produce phenylphosphinyl radicals and trimethylbenzoyl radicals under UV light irradiation. The phenylphosphinyl radicals with PO bonds could effectively passivate the PQD surface defects, leading to quantum yield improvement. The CsPbBr3 and CsPbI3 PQDs with XBPO modification could achieve a photoluminescence quantum yield (PLQY) of near unity and 92%, respectively. Additionally, the in situ encapsulation of the PQDs was achieved by the subsequent crosslinking polymerization, which significantly improved the stability of the PQDs against solvents and the environment. By combining a standard photolithography procedure, we demonstrated a micro-pattern of CsPbBr3 PQDs. These results establish a universal route for PQD patterning, compatible with the existing photolithography processes, which could facilitate the application of PQDs in next-generation display technology.
Collapse
Affiliation(s)
- Yanli Wan
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Yixing Zhao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Yaling Li
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Zhenwei Zhang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Sen Li
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Tingfang Tian
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| | - Li Wang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
35
|
Zhu C, Boehme SC, Feld LG, Moskalenko A, Dirin DN, Mahrt RF, Stöferle T, Bodnarchuk MI, Efros AL, Sercel PC, Kovalenko MV, Rainò G. Single-photon superradiance in individual caesium lead halide quantum dots. Nature 2024; 626:535-541. [PMID: 38297126 PMCID: PMC10866711 DOI: 10.1038/s41586-023-07001-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
The brightness of an emitter is ultimately described by Fermi's golden rule, with a radiative rate proportional to its oscillator strength times the local density of photonic states. As the oscillator strength is an intrinsic material property, the quest for ever brighter emission has relied on the local density of photonic states engineering, using dielectric or plasmonic resonators1,2. By contrast, a much less explored avenue is to boost the oscillator strength, and hence the emission rate, using a collective behaviour termed superradiance. Recently, it was proposed3 that the latter can be realized using the giant oscillator-strength transitions of a weakly confined exciton in a quantum well when its coherent motion extends over many unit cells. Here we demonstrate single-photon superradiance in perovskite quantum dots with a sub-100 picosecond radiative decay time, almost as short as the reported exciton coherence time4. The characteristic dependence of radiative rates on the size, composition and temperature of the quantum dot suggests the formation of giant transition dipoles, as confirmed by effective-mass calculations. The results aid in the development of ultrabright, coherent quantum light sources and attest that quantum effects, for example, single-photon emission, persist in nanoparticles ten times larger than the exciton Bohr radius.
Collapse
Affiliation(s)
- Chenglian Zhu
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Simon C Boehme
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Leon G Feld
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Anastasiia Moskalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | | | | | - Maryna I Bodnarchuk
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Alexander L Efros
- Center for Computational Materials Science, US Naval Research Laboratory, Washington DC, USA
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, CO, USA.
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland.
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| | - Gabriele Rainò
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland.
- Laboratory for Thin Films and Photovoltaics, Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
36
|
Liu Y, Shao X, Gao Z, Xie Q, Ying Y, Zhu X, Pan Z, Yang J, Lin H, Tang X, Chen W, Pei W, Tu Y. In situ and General Multidentate Ligand Passivation Achieves Efficient and Ultra-Stable CsPbX 3 Perovskite Quantum Dots for White Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305664. [PMID: 37691085 DOI: 10.1002/smll.202305664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/13/2023] [Indexed: 09/12/2023]
Abstract
Inorganic CsPbX3 perovskite quantum dots (PeQDs) show great potential in white light-emitting diodes (WLEDs) due to excellent optoelectronic properties, but their practical application is hampered by low photoluminescence quantum yield (PLQY) and especially poor stability. Herein, we developed an in-situ and general multidentate ligand passivation strategy that allows for CsPbX3 PeQDs not only near-unit PLQY, but significantly improved stability against storage, heat, and polar solvent. The enhanced optical property arises from high effectiveness of the multidentate ligand, diethylenetriaminepentaacetic acid (DTPA) with five carboxyl groups, in passivating uncoordinated Pb2+ defects and suppressing nonradiative recombination. First-principles calculations reveal that the excellent stability is attributed to tridentate binding mode of DTPA that remarkably boosts the adsorption capacity to PeQD core. Finally, combining the green and red PeQDs with blue chip, we demonstrated highly luminous WLEDs with distinctly enhanced operation stability, a wide color gamut of 121.3% of national television system committee, standard white light of (0.33,0.33) in CIE 1931, and tunable color temperatures from warm to cold white light readily by emitters' ratio. This study provides an operando yet general approach to achieve efficient and stable PeQDs for WLEDs and accelerates their progress to commercialization.
Collapse
Affiliation(s)
- Yongfeng Liu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xiuwen Shao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Zhaoju Gao
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Qingyu Xie
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yupeng Ying
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Xiaolin Zhu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Zhangcheng Pan
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Jinpeng Yang
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Hao Lin
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macao SAR, 999078, P. R. China
| | - Xiaosheng Tang
- College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Weiwei Chen
- College of Optoelectronic Engineering, Chongqing University of Post and Telecommunications, Chongqing, 400065, People's Republic of China
| | - Wei Pei
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| | - Yusong Tu
- College of Physical Science and Technology & Microelectronics Industry Research Institute, Yangzhou University, Yangzhou, 225002, P. R. China
| |
Collapse
|
37
|
Farrow T, Dhawan AR, Marshall AR, Ghorbal A, Son W, Snaith HJ, Smith JM, Taylor RA. Ultranarrow Line Width Room-Temperature Single-Photon Source from Perovskite Quantum Dot Embedded in Optical Microcavity. NANO LETTERS 2023; 23:10667-10673. [PMID: 38016047 PMCID: PMC10722583 DOI: 10.1021/acs.nanolett.3c02058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Ultranarrow bandwidth single-photon sources operating at room-temperature are of vital importance for viable optical quantum technologies at scale, including quantum key distribution, cloud-based quantum information processing networks, and quantum metrology. Here we show a room-temperature ultranarrow bandwidth single-photon source generating single-mode photons at a rate of 5 MHz based on an inorganic CsPbI3 perovskite quantum dot embedded in a tunable open-access optical microcavity. When coupled to an optical cavity mode, the quantum dot room-temperature emission becomes single-mode, and the spectrum narrows down to just ∼1 nm. The low numerical aperture of the optical cavities enables efficient collection of high-purity single-mode single-photon emission at room-temperature, offering promising performance for photonic and quantum technology applications. We measure 94% pure single-photon emission in a single-mode under pulsed and continuous-wave (CW) excitation.
Collapse
Affiliation(s)
- Tristan Farrow
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Amit R. Dhawan
- Department
of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Ashley R. Marshall
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Alexander Ghorbal
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Wonmin Son
- Sogang
University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, South
Korea
| | - Henry J. Snaith
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Jason M. Smith
- Department
of Materials, University of Oxford, Oxford OX1 3PH, United Kingdom
| | - Robert A. Taylor
- Department
of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
38
|
D'Amato M, Belzane L, Dabard C, Silly M, Patriarche G, Glorieux Q, Le Jeannic H, Lhuillier E, Bramati A. Highly Photostable Zn-Treated Halide Perovskite Nanocrystals for Efficient Single Photon Generation. NANO LETTERS 2023; 23:10228-10235. [PMID: 37930320 DOI: 10.1021/acs.nanolett.3c02739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Achieving pure single-photon emission is essential for a range of quantum technologies, from quantum computing to quantum key distribution to quantum metrology. Among solid-state quantum emitters, colloidal lead halide perovskite (LHP) nanocrystals (NCs) have attracted considerable interest due to their structural and optical properties, which make them attractive candidates for single-photon sources (SPSs). However, their practical utilization has been hampered by environment-induced instabilities. In this study, we fabricate and characterize in a systematic manner Zn-treated CsPbBr3 colloidal NCs obtained through Zn2+ ion doping at the Pb-site, demonstrating improved stability under dilution and illumination. The doped NCs exhibit high single-photon purity, reduced blinking on a submillisecond time scale, and stability of the bright state even at excitation powers well above saturation. Our findings highlight the potential of this synthesis approach to optimize the performance of LHP-based SPSs, opening up interesting prospects for their integration into nanophotonic systems for quantum technology applications.
Collapse
Affiliation(s)
- Marianna D'Amato
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75252 Cedex 05 Paris, France
| | - Lucien Belzane
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75252 Cedex 05 Paris, France
| | - Corentin Dabard
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Mathieu Silly
- Synchrotron-SOLEIL, Saint-Aubin, BP48, F91192 Gif sur Yvette Cedex, France
| | - Gilles Patriarche
- Centre de Nanosciences et de Nanotechnologies, CNRS, Université Paris-Saclay, 10 Bd Thomas Gobert, Palaiseau 91120, France
| | - Quentin Glorieux
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75252 Cedex 05 Paris, France
| | - Hanna Le Jeannic
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75252 Cedex 05 Paris, France
| | - Emmanuel Lhuillier
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Alberto Bramati
- Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France, 4 place Jussieu, 75252 Cedex 05 Paris, France
| |
Collapse
|
39
|
Yazdani N, Bodnarchuk MI, Bertolotti F, Masciocchi N, Fureraj I, Guzelturk B, Cotts BL, Zajac M, Rainò G, Jansen M, Boehme SC, Yarema M, Lin MF, Kozina M, Reid A, Shen X, Weathersby S, Wang X, Vauthey E, Guagliardi A, Kovalenko MV, Wood V, Lindenberg AM. Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons. NATURE PHYSICS 2023; 20:47-53. [PMID: 38261834 PMCID: PMC10791581 DOI: 10.1038/s41567-023-02253-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/15/2023] [Indexed: 01/25/2024]
Abstract
Understanding the origin of electron-phonon coupling in lead halide perovskites is key to interpreting and leveraging their optical and electronic properties. Here we show that photoexcitation drives a reduction of the lead-halide-lead bond angles, a result of deformation potential coupling to low-energy optical phonons. We accomplish this by performing femtosecond-resolved, optical-pump-electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in nanocrystals of FAPbBr3. Our results indicate a stronger coupling in FAPbBr3 than CsPbBr3. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multi-excitonic state constructively interfere, giving rise to a coupling strength that scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in lead halide perovskites.
Collapse
Affiliation(s)
- Nuri Yazdani
- Department of Materials Science and Engineering, Stanford University, Stanford, CA USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA USA
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Maryna I. Bodnarchuk
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Federica Bertolotti
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab, Università dell’Insubria, Como, Italy
| | - Norberto Masciocchi
- Dipartimento di Scienza e Alta Tecnologia & To.Sca.Lab, Università dell’Insubria, Como, Italy
| | - Ina Fureraj
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Burak Guzelturk
- X-ray Science Division, Argonne National Laboratory, Lemont, IL USA
| | - Benjamin L. Cotts
- Department of Materials Science and Engineering, Stanford University, Stanford, CA USA
- Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT USA
| | - Marc Zajac
- X-ray Science Division, Argonne National Laboratory, Lemont, IL USA
| | - Gabriele Rainò
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maximilian Jansen
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Simon C. Boehme
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Maksym Yarema
- Chemistry and Materials Design Group, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Michael Kozina
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Alexander Reid
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | | | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA USA
| | - Eric Vauthey
- Department of Physical Chemistry, University of Geneva, Geneva, Switzerland
| | - Antonietta Guagliardi
- Istituto di Cristallografia & To.Sca.Lab, Consiglio Nazionale delle Ricerche, Como, Italy
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Biosciences, ETH Zürich, Zürich, Switzerland
- Empa-Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Vanessa Wood
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland
| | - Aaron M. Lindenberg
- Department of Materials Science and Engineering, Stanford University, Stanford, CA USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA USA
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA USA
- Department of Photon Science, Stanford University and SLAC National Accelerator Laboratory, Menlo Park, CA USA
| |
Collapse
|
40
|
Bi Y, Cao S, Yu P, Du Z, Wang Y, Zheng J, Zou B, Zhao J. Reducing Emission Linewidth of Pure-Blue ZnSeTe Quantum Dots through Shell Engineering toward High Color Purity Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303247. [PMID: 37420332 DOI: 10.1002/smll.202303247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Indexed: 07/09/2023]
Abstract
High color purity blue quantum dot light-emitting diodes (QLEDs) have great potential applications in the field of ultra-high-definition display. However, the realization of eco-friendly pure-blue QLEDs with a narrow emission linewidth for high color purity remains a significant challenge. Herein, a strategy for fabricating high color purity and efficient pure-blue QLEDs based on ZnSeTe/ZnSe/ZnS quantum dots (QDs) is presented. It is found that by finely controlling the internal ZnSe shell thickness of the QDs, the emission linewidth can be narrowed by reducing the exciton-longitudinal optical phonon coupling and trap states in the QDs. Additionally, the regulation of the QD shell thickness can suppress the Förster energy transfer between QDs in the QLED emission layer, which will help to reduce the emission linewidth of the device. As a result, the fabricated pure-blue (452 nm) ZnSeTe QLED with ultra-narrow electroluminescence linewidth (22 nm) exhibit high color purity with the Commission Internationale de l'Eclairage chromatic coordinates of (0.148, 0.042) and considerable external quantum efficiency (18%). This work provides a demonstration of the preparation of pure-blue eco-friendly QLEDs with both high color purity and efficiency, and it is believed that it will accelerate the application process of eco-friendly QLEDs in ultra-high-definition displays.
Collapse
Affiliation(s)
- Yuhe Bi
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Peng Yu
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Zhentao Du
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Yunjun Wang
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, 215123, China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, China
| | - Bingsuo Zou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| |
Collapse
|
41
|
Cherrette VL, Babbe F, Cooper JK, Zhang JZ. Octahedral Distortions Generate a Thermally Activated Phonon-Assisted Radiative Recombination Pathway in Cubic CsPbBr 3 Perovskite Quantum Dots. J Phys Chem Lett 2023; 14:8717-8725. [PMID: 37737107 DOI: 10.1021/acs.jpclett.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Exciton-phonon interactions elucidate structure-function relationships that aid in the control of color purity and carrier diffusion, which is necessary for the performance-driven design of solid-state optical emitters. Temperature-dependent steady-state photoluminescence (PL) and time-resolved PL (TRPL) reveal that thermally activated exciton-phonon interactions originate from structural distortions related to vibrations in cubic CsPbBr3 perovskite quantum dots (PQDs) at room temperature. Exciton-phonon interactions cause performance-degrading PL line width broadening and slower electron-hole recombination. Structural distortions in cubic PQDs at room temperature exist as the bending and stretching of the PbBr6 octahedra subunit. The PbBr6 octahedral distortions cause symmetry breaking, resulting in thermally activated longitudinal optical (LO) phonon coupling to the photoexcited electron-hole pair that manifests as inhomogeneous PL line width broadening. At cryogenic temperatures, the line width broadening is minimized due to a decrease in phonon-assisted recombination through shallow traps. A fundamental understanding of these intrinsic exciton-phonon interactions gives insight into the polymorphic nature of the cubic phase and the origins of performance degradation in PQD optical emitters.
Collapse
Affiliation(s)
- Vivien L Cherrette
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Finn Babbe
- Chemical Science Division, Liquid Sunlight Alliance (LiSA), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jason K Cooper
- Chemical Science Division, Liquid Sunlight Alliance (LiSA), Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jin Z Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
42
|
Kim JI, Zeng Q, Park S, Lee H, Park J, Kim T, Lee TW. Strategies to Extend the Lifetime of Perovskite Downconversion Films for Display Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209784. [PMID: 36525667 DOI: 10.1002/adma.202209784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Metal halide perovskite nanocrystals (PeNCs) have outstanding luminescent properties that are suitable for displays that have high color purity and high absorption coefficient; so they are evaluated for application as light emitters for organic light-emitting diodes, light-converters for downconversion displays, and future near-eye augmented reality/virtual reality displays. However, PeNCs are chemically vulnerable to heat, light, and moisture, and these weaknesses must be overcome before devices that use PeNCs can be commercialized. This review examines strategies to overcome the low stability of PeNCs and thereby permit the fabrication of stable downconversion films, and summarizes downconversion-type display applications and future prospects. First, methods to increase the chemical stability of PeNCs are examined. Second, methods to encapsulate PeNC downconversion films to increase their lifetime are reviewed. Third, methods to increase the long-term compatibility of resin with PeNCs, and finally, how to secure stability using fillers added to the resin are summarized. Fourth, the method to manufacture downconversion films and the procedure to evaluate their reliability for commercialization is then described. Finally, the prospects of a downconversion system that exploits the properties of PeNCs and can be employed to fabricate fine pixels for high-resolution displays and for near-eye augmented reality/virtual reality devices are explored.
Collapse
Affiliation(s)
- Jae Il Kim
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Qingsen Zeng
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Sunghee Park
- School of Chemical and Biological Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- PEROLED Co. Ltd., 08826, Building 940, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hyejin Lee
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Jinwoo Park
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Taejun Kim
- School of Chemical and Biological Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Research Institute of Advanced Materials, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- PEROLED Co. Ltd., 08826, Building 940, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Soft Foundry, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- Institute of Engineering Research, Seoul National University, 08826, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
- SN Display Co. Ltd., 08826, Building 33, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| |
Collapse
|
43
|
Geng C, Jiang P, Zhang L, Xu S. Recent Advances and Perspectives of Metal Halide Perovskite Heteronanocrystals. J Phys Chem Lett 2023; 14:8648-8657. [PMID: 37729537 DOI: 10.1021/acs.jpclett.3c02143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Heteronanocrystals that combine multiple semiconductors into a nanoscale heterostructure possess excellent optical performance and flexibility in property engineering compared with their single-component counterparts. The successes in fabricating lead halide perovskite-based heteronanocrystals (PHNCs) have drastically improved the stability and tunability of the optical and electrical properties. However, the epitaxial growth of semiconductor materials on perovskite nanocrystals remains a fundamental challenge because of the mismatch in their surface structure and crystal growth kinetics. Here, we review recent progress in the development of PHNCs with emphasis on their synthesis methods and surface chemistry that led to new insights and reaction protocols for the design and fabrication of PHNCs. In addition, the optical features of different types of PHNCs and nanocomposites and their application perspectives are summarized. Finally, we conclude with a discussion of the remaining issues, challenges, and opportunities in epitaxial growth of Janus and core-shell structure PHNCs.
Collapse
Affiliation(s)
- Chong Geng
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China
| | - Panpan Jiang
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China
| | - Lulu Zhang
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China
| | - Shu Xu
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin, 300401, P. R. China
| |
Collapse
|
44
|
Chen J, Wu H, Huang Y, Xu J, Lu X, Zhou W, Song J, Huang R. Effect of CrF 3 Addition on Photoluminescence Properties of Lead-Free Cs 4SnBr 6-xF x Zero-Dimensional Perovskite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6309. [PMID: 37763588 PMCID: PMC10532708 DOI: 10.3390/ma16186309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
Zero-dimensional (0D) tin halide perovskites, characterized by their broadband and adjustable emissions, high photoluminescence quantum yield, and absence of self-absorption, are crucial for the fabrication of high-efficiency optoelectronic devices, such as LEDs, solar cells, and sensors. Despite these attributes, boosting their emission efficiency and stability poses a significant challenge. In this work, Cr3+-doped Cs4SnBr6-xFx perovskites were synthesized using a water-assisted wet ball-milling method. The effect of CrF3 addition on photoluminescence properties of Cs4SnBr6-xFx Perovskites was investigated. We found that Cr3+-doped Cs4SnBr6-xFx Perovskites exhibit a broad emission band, a substantial Stokes shift, and an efficient green light emission centered at about 525 nm at ambient temperature. The derived photoluminescence quantum yield amounted to as high as 56.3%. In addition, these Cr3+-doped Cs4SnBr6-xFx perovskites outperform their undoped counterparts in terms of thermal stability. Through a comprehensive analysis of photoluminescence measurements, our findings suggested that the elevated photoluminescence quantum yield can be attributed to the enhanced exciton binding energy of self-trapped excitons (STEs) and the suitable electron-phonon coupling resulting from the substantial distortion of [SnBr6]4- octahedra instigated by the addition of CrF3.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|
45
|
Liška P, Musálek T, Šamořil T, Kratochvíl M, Matula R, Horák M, Nedvěd M, Urban J, Planer J, Rovenská K, Dvořák P, Kolíbal M, Křápek V, Kalousek R, Šikola T. Correlative Imaging of Individual CsPbBr 3 Nanocrystals: Role of Isolated Grains in Photoluminescence of Perovskite Polycrystalline Thin Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:12404-12413. [PMID: 37405362 PMCID: PMC10316395 DOI: 10.1021/acs.jpcc.3c03056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/06/2023] [Indexed: 07/06/2023]
Abstract
We report on the optical properties of a CsPbBr3 polycrystalline thin film on a single grain level. A sample composed of isolated nanocrystals (NCs) mimicking the properties of the polycrystalline thin film grains that can be individually probed by photoluminescence spectroscopy was prepared. These NCs were analyzed using correlative microscopy allowing the examination of structural, chemical, and optical properties from identical sites. Our results show that the stoichiometry of the CsPbBr3 NCs is uniform and independent of the NCs' morphology. The photoluminescence (PL) peak emission wavelength is slightly dependent on the dimensions of NCs, with a blue shift up to 9 nm for the smallest analyzed NCs. The magnitude of the blueshift is smaller than the emission line width, thus detectable only by high-resolution PL mapping. By comparing the emission energies obtained from the experiment and a rigorous effective mass model, we can fully attribute the observed variations to the size-dependent quantum confinement effect.
Collapse
Affiliation(s)
- Petr Liška
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Tomáš Musálek
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Tomáš Šamořil
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
- Tescan
Orsay Holding, a.s, Libušina
tř. 21, Brno 623
00, Czech Republic
| | - Matouš Kratochvíl
- Faculty
of Chemistry, Brno University of Technology, Purkyňova 464/118, 612 00 Brno, Czech Republic
| | - Radovan Matula
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Michal Horák
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Matěj Nedvěd
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jakub Urban
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Jakub Planer
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Katarína Rovenská
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Petr Dvořák
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Miroslav Kolíbal
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Vlastimil Křápek
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| | - Radek Kalousek
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
| | - Tomáš Šikola
- Institute
of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic
- Central
European Institute of Technology, Brno University
of Technology, Purkyňova
123, 612 00 Brno, Czech Republic
| |
Collapse
|
46
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
47
|
Guggisberg D, Yakunin S, Neff C, Aebli M, Günther D, Kovalenko MV, Dirin DN. Colloidal CsPbX 3 Nanocrystals with Thin Metal Oxide Gel Coatings. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:2827-2834. [PMID: 37063595 PMCID: PMC10100534 DOI: 10.1021/acs.chemmater.2c03562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Lead halide perovskite (LHP) nanocrystals (NCs) have gathered much attention as light-emitting materials, particularly owing to their excellent color purity, band gap tunability, high photoluminescence quantum yield (PLQY), low cost, and scalable synthesis. To enhance the stability of LHP NCs, bulky strongly bound organic ligands are commonly employed, which counteract the extraction of charge carriers from the NCs and hinder their use as photoconductive materials and photocatalysts. Replacing these ligands with a thin coating is a complex challenge due to the highly dynamic ionic lattice, which is vulnerable to the commonly employed coating precursors and solvents. In this work, we demonstrate thin (<1 nm) metal oxide gel coatings through non-hydrolytic sol-gel reactions. The coated NCs are readily dispersible and highly stable in short-chain alcohols while remaining monodisperse and exhibiting high PLQY (70-90%). We show the successful coating of NCs in a wide range of sizes (5-14 nm) and halide compositions. Alumina-gel-coated NCs were chosen for an in-depth analysis, and the versatility of the approach is demonstrated by employing zirconia- and titania-based coatings. Compact films of the alumina-gel-coated NCs exhibit electronic and excitonic coupling between the NCs, leading to two orders of magnitude longer photoluminescence lifetimes (400-700 ns) compared to NCs in solution or their organically capped counterparts. This makes these NCs highly suited for applications where charge carrier delocalization or extraction is essential for performance.
Collapse
Affiliation(s)
- Dominic Guggisberg
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa -
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Sergii Yakunin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa -
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Christoph Neff
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
| | - Marcel Aebli
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa -
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Detlef Günther
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
| | - Maksym V. Kovalenko
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa -
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
- NCCR
Catalysis, Institute of Inorganic Chemistry, Department of Chemistry
and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| | - Dmitry N. Dirin
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich CH-8093, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa -
Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
- NCCR
Catalysis, Institute of Inorganic Chemistry, Department of Chemistry
and Applied Biosciences, ETH Zürich, Zürich CH-8093, Switzerland
| |
Collapse
|
48
|
Lin Z, Lin Z, Guo Y, Wu H, Song J, Zhang Y, Zhang W, Li H, Hou D, Huang R. Effect of a-SiC xN y:H Encapsulation on the Stability and Photoluminescence Property of CsPbBr 3 Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13071228. [PMID: 37049319 PMCID: PMC10097036 DOI: 10.3390/nano13071228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 06/12/2023]
Abstract
The effect of a-SiCxNy:H encapsulation layers, which are prepared using the very-high-frequency plasma-enhanced chemical vapor deposition (VHF-PECVD) technique with SiH4, CH4, and NH3 as the precursors, on the stability and photoluminescence of CsPbBr3 quantum dots (QDs) were investigated in this study. The results show that a-SiCxNy:H encapsulation layers containing a high N content of approximately 50% cause severe PL degradation of CsPbBr3 QDs. However, by reducing the N content in the a-SiCxNy:H layer, the PL degradation of CsPbBr3 QDs can be significantly minimized. As the N content decreases from around 50% to 26%, the dominant phase in the a-SiCxNy:H layer changes from SiNx to SiCxNy. This transition preserves the inherent PL characteristics of CsPbBr3 QDs, while also providing them with long-term stability when exposed to air, high temperatures (205 °C), and UV illumination for over 600 days. This method provided an effective and practical approach to enhance the stability and PL characteristics of CsPbBr3 QD thin films, thus holding potential for future developments in optoelectronic devices.
Collapse
Affiliation(s)
- Zewen Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
- National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhenxu Lin
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Yanqing Guo
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Haixia Wu
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Jie Song
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Yi Zhang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Wenxing Zhang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Hongliang Li
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Dejian Hou
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| | - Rui Huang
- School of Materials Science and Engineering, Hanshan Normal University, Chaozhou 521041, China; (Z.L.)
| |
Collapse
|
49
|
Krajewska CJ, Kaplan AEK, Kick M, Berkinsky DB, Zhu H, Sverko T, Van Voorhis T, Bawendi MG. Controlled Assembly and Anomalous Thermal Expansion of Ultrathin Cesium Lead Bromide Nanoplatelets. NANO LETTERS 2023; 23:2148-2157. [PMID: 36884029 DOI: 10.1021/acs.nanolett.2c04526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Quantum confined lead halide perovskite nanoplatelets are anisotropic materials displaying strongly bound excitons with spectrally pure photoluminescence. We report the controlled assembly of CsPbBr3 nanoplatelets through varying the evaporation rate of the dispersion solvent. We confirm the assembly of superlattices in the face-down and edge-up configurations by electron microscopy, as well as X-ray scattering and diffraction. Polarization-resolved spectroscopy shows that superlattices in the edge-up configuration display significantly polarized emission compared to face-down counterparts. Variable-temperature X-ray diffraction of both face-down and edge-up superlattices uncovers a uniaxial negative thermal expansion in ultrathin nanoplatelets, which reconciles the anomalous temperature dependence of the emission energy. Additional structural aspects are investigated by multilayer diffraction fitting, revealing a significant decrease in superlattice order with decreasing temperature, with a concomitant expansion of the organic sublattice and increase of lead halide octahedral tilt.
Collapse
Affiliation(s)
- Chantalle J Krajewska
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander E K Kaplan
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Matthias Kick
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David B Berkinsky
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hua Zhu
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Tara Sverko
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Moungi G Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
50
|
Nette J, Montanarella F, Zhu C, Sekh TV, Boehme SC, Bodnarchuk MI, Rainò G, Howes PD, Kovalenko MV, deMello AJ. Microfluidic synthesis of monodisperse and size-tunable CsPbBr 3 supraparticles. Chem Commun (Camb) 2023; 59:3554-3557. [PMID: 36880408 DOI: 10.1039/d3cc00093a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
The highly controlled, microfluidic template-assisted self-assembly of CsPbBr3 nanocrystals into spherical supraparticles is presented, achieving precise control over average supraparticle size through the variation of nanocrystal concentration and droplet size; thus facilitating the synthesis of highly monodisperse, sub-micron supraparticles (with diameters between 280 and 700 nm).
Collapse
Affiliation(s)
- Julia Nette
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| | - Federico Montanarella
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Chenglian Zhu
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Taras V Sekh
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Simon C Boehme
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Maryna I Bodnarchuk
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Gabriele Rainò
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Philip D Howes
- Division of Mechanical Engineering and Design, London South Bank University, 103 Borough Road, London SE1 0AA, UK
| | - Maksym V Kovalenko
- Institute of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland
- Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf CH-8600, Switzerland
| | - Andrew J deMello
- Institute of Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich 8093, Switzerland.
| |
Collapse
|