1
|
Xiong K, Zhang K, Zhang F, Zeng B, Lang X. Engineering fluorene-based covalent organic framework photocatalysts toward efficient and selective aerobic oxidation of amines. J Colloid Interface Sci 2025; 681:250-260. [PMID: 39608026 DOI: 10.1016/j.jcis.2024.11.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/30/2024]
Abstract
Covalent organic frameworks (COFs) have attracted significant interest due to diverse applications, relying on their versatile molecular building blocks like fluorenes. However, the twisted structures of fluorenes pose substantial challenges for the construction of porous crystalline materials like COFs. Here, the couplings of 1,3,5-triformylphloroglucinol (Tp) with 9H-fluorene-2,7-diamine (DAF), 9,9-dimethyl-9H-fluorene-2,7-diamine (MFC) and 9,9-difluoro-9H-fluorene-2,7-diamine (FFC) with a pyrrolidine catalyst afford three fluorene-based COFs, TpDAF-COF, TpMFC-COF and TpFFC-COF, respectively. The resulting COFs, with distinct functional groups, exhibit high crystallinity and porosity. Optoelectronic tests reveal that TpFFC-COF demonstrates the most intense photocurrent density and the lowest interfacial charge transfer resistance. When applied to the selective aerobic oxidation of amines to imines, the efficiency follows the order of TpFFC-COF > TpMFC-COF > TpDAF-COF, consistent with the observed optoelectronic properties. Additionally, the TpFFC-COF photocatalyst showcases excellent reusability and broad applicability. This work illuminates the potential of engineering COFs with functional groups toward efficient photocatalysts.
Collapse
Affiliation(s)
- Kanghui Xiong
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Keke Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bing Zeng
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Temmerman W, Goeminne R, Rawat KS, Van Speybroeck V. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412005. [PMID: 39723710 DOI: 10.1002/adma.202412005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications. Combining predictions from computational materials chemistry with advanced experimental characterization and synthesis procedures unlocks a design strategy to synthesize new materials with the desired properties and functions. Within this review, the current status of modeling reticular materials is addressed and supplemented with topical examples highlighting the necessity of advanced molecular modeling to design materials for technological applications. This review is structured as a templated molecular modeling study starting from the molecular structure of a realistic material towards the prediction of properties and functions of the materials. At the end, the authors provide their perspective on the past, present of future in modeling reticular materials and formulate open challenges to inspire future model and method developments.
Collapse
Affiliation(s)
- Wim Temmerman
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| |
Collapse
|
3
|
Lin WC, Sun YE, Zhuang YR, Huang TF, Lin KJ, Elsenety MM, Yen JC, Hsu HK, Chen BH, Chang CY, Chang JW, Huang HN, Li BH, Jungsuttiwong S, Haldar T, Wang SH, Lin WC, Wu TL, Chen CW, Yu CH, Su AC, Lin KH, Jeng US, Yang SD, Chou HH. Optimally Miscible Polymer Bulk-Heterojunction-Particles for Nonsurfactant Photocatalytic Hydrogen Evolution. J Am Chem Soc 2024. [PMID: 39705715 DOI: 10.1021/jacs.4c13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Mini-emulsion and nanoprecipitation techniques relied on large amounts of surfactants, and unresolved miscibility issues of heterojunction materials limited their efficiency and applicability in the past. Through our molecular design and developed surfactant-free precipitation method, we successfully fabricated the best miscible bulk-heterojunction-particles (BHJP) ever achieved, using donor (PS) and acceptor (PSOS) polymers. The structural similarity ensures optimal miscibility, as supported by the interaction parameter of the PS/PSOS blend is positioned very close to the binodal curve. Experimental studies and molecular dynamics simulations further revealed that surfactants hinder electron output sites and reduce the concentration of sacrificial agents at the interface, slowing polaron formation. Multiscale experiments verified that these BHJP, approximately 12 nm in diameter, further form cross-linked fractal networks of several hundred nanometers. Transient absorption spectroscopy showed that BHJP facilitates polaron formation and electron transfer. Our BHJP demonstrated a superior hydrogen evolution rate (HER) compared to traditional methods. The most active BHJP achieved an HER of 251.2 mmol h-1 g-1 and an apparent quantum yield of 26.2% at 500 nm. This work not only introduces a practical method for preparing BHJP but also offers a new direction for the development of heterojunction materials.
Collapse
Affiliation(s)
- Wei-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Yu-En Sun
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ying-Rang Zhuang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Tse-Fu Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Kuei-Jhong Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Mohamed M Elsenety
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Jui-Chen Yen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hung-Kai Hsu
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chen-Yu Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Je-Wei Chang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Ni Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bing-Heng Li
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Siriporn Jungsuttiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Toton Haldar
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Shin-Huei Wang
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
| | - Wan-Chi Lin
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
| | - Tien-Lin Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chin-Wen Chen
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 106344, Taiwan
| | - Chi-Hua Yu
- Department of Engineering Science, National Cheng Kung University, Tainan 701401, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - U-Ser Jeng
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies & Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Center for Photonics Research, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 300044, Taiwan
- Center for Photonics Research, National Tsing Hua University, Hsinchu 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
4
|
Zhu W, Zhu H, Zhang T, Qin L, Kang SZ, Li X. Surface Engineering of 2D Metal-Porphyrin Metal-Organic Frameworks Z-Scheme Heterostructure for Boosting and Stable Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408806. [PMID: 39659046 DOI: 10.1002/smll.202408806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/21/2024] [Indexed: 12/12/2024]
Abstract
How to improve the stability and activity of metal-organic frameworks is an attractive but challenging task in energy conversion and pollutant degradation of metal-organic frameworks materials. In this paper, we developed a facile method by fabricating TiO2 nanoparticles (NPs) layer on 2D copper tetracarboxylphenyl-metalloporphyrin metal-organic frameworks (MOFs) with Zn2+ as the linkers (ZnTCuMT-X, "Zn" represented Zn2+ as the linkers, the first "T" represented tetracarboxylphenyl-metalloporphyrin (TCPP), "Cu" represented the Cu2+ coordinated into the porphyrin macrocycle, "M" represented MOFs, the second "T" represented TiO2 NPs layer, and "X" represented the added volume of n-tetrabutyl titanate (X = 100, 200, 300 or 400)). It was found that the optimized ZnTCuMT-200 showed greatly and stably enhanced H2 generation, which was about 28.2 times and 47.0 times as high as those of the original metalloporphyrin MOFs and TiO2, respectively. Combined with the results of free radical capture, X-ray photoelectron spectra, electron spin resonance and theoretical calculation, a direct Z-scheme electron transfer mechanism was achieved to fully explain the enhanced photocatalytic performance. It demonstrates that facilely designing Z-scheme heterostructures based on porphyrin MOFs modified with inorganic semiconductor layer could be an advantageous strategy for enhancing the stability and activity of photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Wenjun Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Hu Zhu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Taiyang Zhang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Lixia Qin
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Shi-Zhao Kang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| | - Xiangqing Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai, 201418, China
| |
Collapse
|
5
|
Liu D, Li K, Su X, Li Z, Tian Y, Zhang Y, Liu B, Yue G, Tian Y, Xiong X. Fluorination-mediated polarization engineering in block copolymers for enhanced photocatalytic hydrogen evolution. J Colloid Interface Sci 2024; 683:111-121. [PMID: 39673924 DOI: 10.1016/j.jcis.2024.12.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Porous polymers have emerged as promising candidates for photocatalytic hydrogen evolution, but their structural rigidity and crosslinking pose significant challenges, often leading to charge recombination and inadequate water/polymer interfaces. This study introduces novel block copolymers (BCPs) comprising a rigid pyrene core and various fluorinated benzene structures coupled with flexible diethyl ether-based hydrophilic units. By computationally predicting monomer structures and dipoles, the relationship between structure and function in these BCPs is examined, particularly focusing on local charge delocalization. Four fluorinated block copolymers (F-BCPs), sharing identical π-conjugated skeletons but differing in the positions and quantities of fluorine atoms on the benzene rings, are explored. Experimental and theoretical analyses reveal that fine-tuning fluorination induces local charge polarization and delocalization. Notably, Py-DE-2F, with fluorination at two ortho positions on benzene, exhibits a remarkable hydrogen evolution rate of 77.68 μmol/h under visible light (λ > 420 nm) without any co-catalyst, surpassing other F-BCPs by an order of magnitude. These results underscore the potential of utilizing fluorination-mediated polarization engineering for developing advanced metal-free polymer photocatalysts.
Collapse
Affiliation(s)
- Dong Liu
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China
| | - Xiaohong Su
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongjia Zhang
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd., Yinchuan 750003, China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, China.
| | - Xianqiang Xiong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, China.
| |
Collapse
|
6
|
Luan BB, Chu X, Wang Y, Qiao X, Jiang Y, Zhang FM. Construction of COF/COF Organic S-Scheme Heterostructure for Enhanced Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412653. [PMID: 39422373 DOI: 10.1002/adma.202412653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Covalent organic frameworks (COFs) as a new type of photocatalysts have shown unique advantages in visible-light-driven hydrogen evolution, while the reported overall water-splitting systems are still very rare among various COF-based photocatalysts. Herein, two COFs are integrated to construct a type of organic S-scheme heterojunction for improved overall water splitting. In this system, TpBpy-COF and COF-316 serve as H2- and O2-evolving components, respectively, which are combined through π-π interaction between conjugated aromatic rings. By introducing ultra-small Pt nanoparticles (NPs) into the pores of the TpBpy-COF nanosheets (NS), the resultant COF-316/Pt@TpBpy-COF NS heterostructure achieves extremely high H2 and O2 evolution rates of 220.4 and 110.2 µmol g-1 h-1, respectively, under visible light irradiation (λ ≥ 420 nm). The results of transient absorption spectra (TAS) and photoelectronic measurements indicate that the organic heterojunction interface notably facilitates the separation and transfer of photogenerated electron-hole pairs. Further, theoretical calculations and in situ experiments confirm the spontaneous formation of the COF/COF heterojunction interface and the active sites for overall water splitting.
Collapse
Affiliation(s)
- Bing-Bing Luan
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiaoyu Chu
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Ya Wang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Xiu Qiao
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Yanxia Jiang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| | - Feng-Ming Zhang
- Heilongjiang Provincial Key Laboratory of CO2 Resource Utilization and Energy Catalytic Materials, School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 52, Xuefu Road, Harbin, 150040, P. R. China
| |
Collapse
|
7
|
Sun K, Qian Y, Li D, Jiang HL. Reticular Materials for Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411118. [PMID: 39601158 DOI: 10.1002/adma.202411118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/25/2024] [Indexed: 11/29/2024]
Abstract
Photocatalysis leverages solar energy to overcome the thermodynamic barrier, enabling efficient chemical reactions under mild conditions. It can greatly reduce reliance on traditional energy sources and has attracted significant research interest. Reticular materials, including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), represent a class of crystalline materials constructed from molecular building blocks linked by coordination and covalent bonds, respectively. Reticular materials function as heterogeneous catalysts, combining well-defined structures and high tailorability akin to homogeneous catalysts. In this review, the regulation of light absorption, charge separation, and surface reactions in the photocatalytic process through precise molecular-level design based on the features of reticular materials is elaborated. Notably, for MOFsmicroenvironment modulation around catalytic sites affects photocatalytic performance is delved, with emphasis on their unique dynamic and flexible microenvironments. For COFs, the inherent excitonic effects due to their fully organic nature is discussed and highlight the strategies to regulate excitonic effects for charge- and/or energy-transfer-mediated photocatalysis. Finally, the current challenges and future directions in this field, aiming to provide a comprehensive understanding of how reticular materials can be optimized for enhanced photocatalysis is discussed.
Collapse
Affiliation(s)
- Kang Sun
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Yunyang Qian
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Dandan Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Duan J, Zhao Y, Wu Y, Liu Y, Chen J, Yang R, Huang J, Luo C, Wu M, Zheng X, Li P, Jiang X, Guan J, Zhai T. Strain-induced charge delocalization achieves ultralow exciton binding energy toward efficient photocatalysis. Chem Sci 2024; 15:19546-19555. [PMID: 39568926 PMCID: PMC11575543 DOI: 10.1039/d4sc05873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/03/2024] [Indexed: 11/22/2024] Open
Abstract
The exciton effect is commonly observed in photocatalysts, where substantial exciton binding energy (E b) significantly hampers the efficient generation of photo-excited electron-hole pairs, thereby severely constraining photocatalysis. Herein, we propose a strategy to reduce E b through strain-induced charge delocalization. Taking Ta2O5 as a prototype, tensile strain was introduced by engineering a crystalline/amorphous interface, weakening the interaction between Ta 5d and O 2p orbitals, thus endowing a delocalized charge transport and significantly lowering E b. Consequently, the E b of strained Ta2O5 nanorods (s-Ta2O5 NRs) was reduced to 24.26 meV, below the ambient thermal energy (26 meV). The ultralow E b significantly enhanced the yield of free charges, resulting in a two-fold increase in carrier lifetime and surface potential. Remarkably, the hydrogen evolution rate of s-Ta2O5 NRs increased 51.5 times compared to that of commercial Ta2O5. This strategy of strain-induced charge delocalization to significantly reduce E b offers a promising avenue for developing advanced semiconductor photoconversion systems.
Collapse
Affiliation(s)
- Junyuan Duan
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
- Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Youwen Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Junnian Chen
- School of Materials Science & Engineering, Hubei University Wuhan 430062 China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Jiazhao Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Chuanqi Luo
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Mao Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xiaodong Zheng
- Department of Applied Physics, The Hong Kong Polytechnic University Kowloon Hong Kong China
| | - Pengyu Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and New Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, Wuhan Institute of Technology Wuhan 430205 China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
9
|
Blätte D, Ortmann F, Bein T. Photons, Excitons, and Electrons in Covalent Organic Frameworks. J Am Chem Soc 2024; 146:32161-32205. [PMID: 39556616 PMCID: PMC11613328 DOI: 10.1021/jacs.3c14833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
Covalent organic frameworks (COFs) are created by the condensation of molecular building blocks and nodes to form two-dimensional (2D) or three-dimensional (3D) crystalline frameworks. The diversity of molecular building blocks with different properties and functionalities and the large number of possible framework topologies open a vast space of possible well-defined porous architectures. Besides more classical applications of porous materials such as molecular absorption, separation, and catalytic conversions, interest in the optoelectronic properties of COFs has recently increased considerably. The electronic properties of both the molecular building blocks and their linkage chemistry can be controlled to tune photon absorption and emission, to create excitons and charge carriers, and to use these charge carriers in different applications such as photocatalysis, luminescence, chemical sensing, and photovoltaics. In this Perspective, we will discuss the relationship between the structural features of COFs and their optoelectronic properties, starting with the building blocks and their chemical connectivity, layer stacking in 2D COFs, control over defects and morphology including thin film synthesis, exploring the theoretical modeling of structural, electronic, and dynamic features of COFs, and discussing recent intriguing applications with a focus on photocatalysis and photoelectrochemistry. We conclude with some remarks about present challenges and future prospects of this powerful architectural paradigm.
Collapse
Affiliation(s)
- Dominic Blätte
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| | - Frank Ortmann
- Department
of Chemistry, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Thomas Bein
- Department
of Chemistry and Center for NanoScience, University of Munich (LMU), Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
10
|
Su J, Li P, Duan F, Chen Y, Zhou Y, Shen M, Zhang L, Ren SB, Chen M. Molecular Engineering of Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution from Water. Chemistry 2024:e202403627. [PMID: 39582257 DOI: 10.1002/chem.202403627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/21/2024] [Accepted: 11/24/2024] [Indexed: 11/26/2024]
Abstract
Covalent organic frameworks (COFs) have demonstrated significant potential as photocatalysts for efficiently generating hydrogen through photocatalytic water splitting. However, the design of COFs with distinct organic unit blocks at a molecular level profoundly influences their photocatalytic performance. In this study, we synthesized a series of β-ketoamine COFs through molecular engineering of nitrogen sites, including phenyl-structured TpBD, phenylpyridine-structured TpPpy, phenylpyrimidine-structured TpPpm, and bipyridine-structured TpBpy. Advanced characterization techniques reveal that TpPpm and TpBpy with more nitrogen sites exhibit superior efficiencies in electron transfer and charge separation compared to TpBD and TpPpy, thereby endowing them with enhanced photocatalytic performance for hydrogen evolution from water. As a result, the photocatalytic hydrogen production rates of TpPpm (33.80 mmol g-1 h-1) and TpBpy (29.18 mmol g-1 h-1) surpass those of TpBD (20.82 mmol g-1 h-1) and TpPpy (27.49 mmol g-1 h-1). Additionally, due to the different plane symmetries between Ppm and Bpy resulting from the various positions of nitrogen sites, TpPpm displays superior photochemical properties and better photocatalytic performance compared to TpBpy. Moreover, theoretical calculation results further confirm the exceptional intramolecular charge transfer ability of TpPpm among all COFs. This work underscores the significance of precisely controlling N sites in COFs for designing high-performance photocatalysts.
Collapse
Affiliation(s)
- Jie Su
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China
| | - Feng Duan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Yuxiang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Yida Zhou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mao Shen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Li Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Shi-Bin Ren
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| | - Mengyang Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, 318000, P. R. China
| |
Collapse
|
11
|
Wang L, Zhang Y. Impact of Interfaces on the Performance of Covalent Organic Frameworks for Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408395. [PMID: 39558696 DOI: 10.1002/smll.202408395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/07/2024] [Indexed: 11/20/2024]
Abstract
The rise in global temperatures and environmental contamination resulting from traditional fossil fuel usage has prompted a search for alternative energy sources. Utilizing solar energy to drive the direct splitting of water for hydrogen production has emerged as a promising solution to these challenges. Covalent organic frameworks (COFs) are ordered, crystalline materials made up of organic molecules linked by covalent bonds, featuring permanent porosity and a wide range of structural topologies. COFs serve as suitable platforms for solar-driven water splitting to produce hydrogen, as their building blocks can be tailored to possess adjustable band gaps, charge separation capabilities, porosity, wettability, and chemical stability. Here, the impact of the interface in the context of the photocatalytic reaction is focused and propose strategies to enhance the hydrogen production performance of COFs photocatalysis. In particular, how hybrid photocatalytic interfaces affect photocatalytic performance is focused.
Collapse
Affiliation(s)
- Lin Wang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yong Zhang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
12
|
Wang M, Dai H, Yang Q. Catalytic applications of organic-inorganic hybrid porous materials. Chem Commun (Camb) 2024; 60:13325-13335. [PMID: 39444317 DOI: 10.1039/d4cc04284k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic-inorganic hybrid porous materials (OIHMs) inherit the unique properties from both organic and inorganic components, and the flexibility in the incorporation of functional groups renders the OIHMs an ideal platform for the construction of catalytic materials with multiple active sites. The preparation of OIHMs with precise locations of organic-inorganic components and tunable structures is one of the important topics for the catalytic application of OIHMs, but it is still very challenging. In this feature article, we describe our work related to the preparation of OIHMs via confining active sites in the nanostructure and a layer-by-layer assembly method and their applications in acid-base catalysis, catalytic hydrogenation and photocatalysis with a focus on the elucidation of the synergistic effects of different active sites and the unique properties of OIHMs in catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
13
|
Gao R, Shen R, Huang C, Huang K, Liang G, Zhang P, Li X. 2D/2D Hydrogen-Bonded Organic Frameworks/Covalent Organic Frameworks S-Scheme Heterojunctions for Photocatalytic Hydrogen Evolution. Angew Chem Int Ed Engl 2024:e202414229. [PMID: 39528399 DOI: 10.1002/anie.202414229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) demonstrate significant potential for application in photocatalysis. However, the low efficiency of electron-hole separation and limited stability inhibit their practical utilization in photocatalytic hydrogen evolution from water splitting. Herein, the novel dual-pyrene-base supramolecular HOF/COF 2D/2D S-scheme heterojunction between HOF-H4TBAPy (Py-HOF, H4TBAPy represents the 1,3,6,8-tetrakis (p-benzoic acid) pyrene) and Py-COF was successfully established using a rapid self-assembly solution dispersion method. Experimental and theoretical investigations confirm that the size-matching of two crystalline porous materials enables the integrated heterostructure material with abundant surface reaction sites, strong interaction, and an enhanced S-scheme built-in electric field, thus significantly improving the efficiency of photogenerated charge carrier separation and stability. Notably, the optimal HOF/COF heterojunction achieves a photocatalytic hydrogen evolution rate of 390.68 mmol g-1 h-1, which is 2.28 times higher than that of pure Py-HOF and 9.24 times higher than that of pure COF. These findings precisely acquire valuable atomic-scale insights into the ingenious design of dual-pyrene-based S-scheme heterojunction. This work presents an innovative perspective for forming supramolecular S-scheme heterojunctions over HOF-based semiconductors, offering a protocol for designing the powerful and strong-coupling S-scheme built-in electric fields for efficient solar energy utilization.
Collapse
Affiliation(s)
- Ruiqi Gao
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Rongchen Shen
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Can Huang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Kaihui Huang
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, 441053, P.R. China
| | - Peng Zhang
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Xin Li
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and, Utilization of Ministry of Agriculture and Rural Affairs, Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
- State Centre for International Cooperation on Designer Low-Carbon & Environmental Materials (CDLCEM), School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
14
|
Zhang L, Wang C, Jiang Q, Lyu P, Xu Y. Structurally Locked High-Crystalline Covalent Triazine Frameworks Enable Remarkable Overall Photosynthesis of Hydrogen Peroxide. J Am Chem Soc 2024; 146:29943-29954. [PMID: 39418115 DOI: 10.1021/jacs.4c12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The development of green and efficient hydrogen peroxide (H2O2) production is of great interest but remains challenging. Herein, we develop a new and simple strategy via locking the coplanarity in highly crystalline covalent triazine frameworks (CTFs) to remarkably boost direct photosynthesis of H2O2 from oxygen and water. The exfoliated ultrathin 2D-CTF nanosheets exhibit excellent photocatalytic H2O2 evolution with an ultrahigh solar-to-chemical efficiency of 0.91% and a superb apparent quantum yield of 16.8% at 420 nm, surpassing all previous CTFs and most of the metal-free photocatalysts ever reported. Our detailed experimental and theoretical studies reveal that the spatially locked structure in the crystalline CTF photocatalyst can not only greatly enhance the separation and transfer of photoexcited charge-carriers for promoting H2O2 photogeneration but also alter the local electronic structures that unexpectedly turn water oxidation from a four-electron route to a two-electron pathway, resulting in a 100% atom utilization efficiency. This work provides valuable insights into the designed synthesis of highly efficient metal-free photocatalysts and precise control over photocatalytic reaction pathways in organic materials.
Collapse
Affiliation(s)
- Ling Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Congxu Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Qike Jiang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
15
|
Li M, Chi X, Zhang Z, Bi S, Meng F, Jiao Y, Mou K, Wang Z, Xue B, Li X, Zhang F. Mesoporous Vinylene-Linked Covalent Organic Frameworks with Heteroatom-Tuned Crystallinity and Photocatalytic Behaviors. Angew Chem Int Ed Engl 2024; 63:e202411474. [PMID: 39007514 DOI: 10.1002/anie.202411474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/16/2024]
Abstract
Owing to its prominent π-delocalization and stability, vinylene linkage holds great merits in the construction of covalent organic frameworks (COFs) with promising semiconducting properties. However, carbon-carbon double bond formation reaction always exhibits relatively low reversibility, unfavorable for the formation of high crystalline frameworks through self-error correction and assembling processes. In this work, we report a heteroatom-tuned strategy to build up a series of two-dimensional (2D) vinylene-linked COFs by Knoevenagel condensation of an electron-deficient methylthiazolyl-based monomer with different triformyl substituted (hetero-)aromatic derivatives. The resulting COFs show high-quality periodic mesoporous structures with high surface areas. Embedding heteroatoms into the backbones enables significantly improving their crystallinity, and finely tailoring their semiconducting structures. Upon visible light stimulation, one of the as-prepared COFs with donor-π-acceptor structure could deliver a nearly seven-fold increase in the catalytic activity of hydrogen generation as compared with the other two. Meanwhile, in combination with high crystallinity and the matched conduction band energy level, such kind of COFs can be able to selectively generate singlet oxygen and superoxide radicals in a high ratio of up to 30 : 1, allowing for catalyzing aerobic thioanisole oxidation in distinctly tunable activities through the substituent electronic effect of the substrates.
Collapse
Affiliation(s)
- Mengqi Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Xu Chi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Zixing Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Shuai Bi
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Fancheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Yang Jiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Kaiwen Mou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Zhiheng Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Bai Xue
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Xiaomeng Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| | - Fan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
16
|
Wu R, Hua M, Lu Y, Chen L, Chen Y, Hu Z. Modulating Pore Wall Chemistry Empowers Sonodynamic Activity of Two-Dimensional Covalent Organic Framework Heterojunctions for Pro-Oxidative Nanotherapy. Angew Chem Int Ed Engl 2024:e202416461. [PMID: 39384540 DOI: 10.1002/anie.202416461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Covalent organic frameworks (COFs) have garnered growing interest in the field of biomedicine; however, their application in sonodynamic therapy remains underexplored due to limited understanding of their intrinsic activity and structure-property relationships. Here, we present a pore wall chemistry modulation strategy for empowering sonodynamic activity to two-dimensional (2D) COF heterojunctions through in situ growth of COFs on bismuth oxycarbonate nanosheets (B NSs). Compared to the negligible sonodynamic effects observed in the pristine B NSs, the 2D heterojunction with vinyl-decorated COF pore walls demonstrates a 3.6-fold enhancement in sonocatalytic singlet oxygen generation. This performance also significantly outperforms that of isoreticular COFs functionalized with methoxy or non-substituted groups. Mechanistic studies reveal that the vinyl groups in the B@COF (BC) heterojunction facilitate the separation and transfer of charge carriers while also enhancing the adsorption of oxygen molecules. Furthermore, peroxymonosulfate (PMS) loading into the porous COFs boosts the therapeutic efficacy of antitumor nanotherapy via sonocatalytic dual oxidative species generation. These findings underscore the critical role of pore wall chemistry in modulating the sonocatalytic properties of COFs, and advance the development of COF-based sonosensitizers for pro-oxidative applications.
Collapse
Affiliation(s)
- Ruohui Wu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Mengying Hua
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Yanjia Lu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| | - Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, P. R. China
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China
| | - Zhongqian Hu
- Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, P. R. China
| |
Collapse
|
17
|
Zhang Y, Wei D, Zhang W, Zhao Y, Luo X, Li H. Emissive Covalent Organic Frameworks: Improved Fluorescence via Flexible Building Blocks and Selective Sensing of Nitroaromatic Explosives. Macromol Rapid Commun 2024:e2400673. [PMID: 39340484 DOI: 10.1002/marc.202400673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Indexed: 09/30/2024]
Abstract
2D covalent organic frameworks (COFs) are attractive for fluorescence sensing due to their lightweight, robust, and highly ordered porous structures. However, the highly conjugated structures between adjacent layers of covalent organic frameworks can often result in aggregation-caused quenching (ACQ) properties. Here, the study designs two flexible hydrazone-linked COFs to suppress ACQ effects, thereby enhancing their luminescent activities. Furthermore, the high density of nitrogen and oxygen atoms on these flexible walls serves as binding sites for hydrogen bonding interactions, indicating sensitivity and selectivity towards 2,4,6-trinitrophenol detection.
Collapse
Affiliation(s)
- Yuwei Zhang
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Dongxue Wei
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Wenzhuo Zhang
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - Yanning Zhao
- Laboratory of Preparation and Applications of Environmental Friendly Materials (Jilin Normal University), Ministry of Education, Changchun, 130103, China
| | - Xiaolong Luo
- Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, China
| | - He Li
- Division of Energy Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
18
|
Sun R, Yang X, Hu X, Guo Y, Zhang Y, Shu C, Yang X, Gao H, Wang X, Hussain I, Tan B. Unprecedented Photocatalytic Hydrogen Peroxide Production via Covalent Triazine Frameworks Constructed from Fused Building Blocks. Angew Chem Int Ed Engl 2024:e202416350. [PMID: 39247985 DOI: 10.1002/anie.202416350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/10/2024]
Abstract
Covalent organic frameworks (COFs) have garnered attention for their potential in photocatalytic hydrogen peroxide (H2O2) production. However, their photocatalytic efficiency is impeded by insufficient exciton dissociation and charge carrier transport. Constructing COFs with superior planarity is an effective way to enhance the π-conjugation degree and facilitate electron-hole separation. Nonetheless, the conventional linear linkers of COFs inevitably introduce torsional strain that disrupts coplanarity. Herein, we address this issue by introducing inherently coplanar triazine rings as linkers and fused building blocks as monomers to create covalent triazine frameworks (CTFs) with superior coplanarity. Both experimental and theoretical calculations confirm that CTFs constructed from fused building blocks significantly enhance the electron-hole separation efficiency and improve the photocatalytic performance, compared to the CTFs constructed with non-fused building blocks. The frontier molecular orbitals and electrostatic potentials (ESP) revealed that the oxygen reduction reaction (ORR) is preferentially facilitated by the triazine rings, with the water oxidation reaction (WOR) likely occurring at the thiophene-containing moiety. Remarkably, CTF-BTT achieved an exceptional H2O2 production rate of 74956 μmol g-1 h-1 when employing 10 % benzyl alcohol (V/V) as a sacrificial agent in an O2-saturated atmosphere, surpassing existing photocatalysts by nearly an order of magnitude. Our findings provide valuable insights for designing highly coplanar polymer-based photocatalysts that enhance the solar-to-chemical energy conversion process.
Collapse
Affiliation(s)
- Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xunliang Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Yantong Guo
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Yaqin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Chang Shu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Hui Gao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| | - Irshad Hussain
- Department of Chemistry and Chemical Engineering, SBA School of Science and Engineering (SSE), Lahore University of Management Sciences (LUMS), 54792, Lahore Cantt, Pakistan
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, P. R. China
| |
Collapse
|
19
|
Fan Y, Shen Y, Zhang J, Zhang X, Zhang Z, Li H, Peng Y, Weng J, Xie R, Zhang W, Han Y, Xiao Y, Zhang S, Zheng B, Zhang HL, Li S, Huang W, Huo F, Zhang W. Wedging crystals to fabricate crystalline framework nanosheets via mechanochemistry. Nat Commun 2024; 15:6973. [PMID: 39143058 PMCID: PMC11324900 DOI: 10.1038/s41467-024-51177-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 07/30/2024] [Indexed: 08/16/2024] Open
Abstract
Mechanochemistry studies the effect of mechanical force on chemical bonds, bringing opportunities for synthesizing alloys, ceramics, organics, polymers, and biomaterials. A vital issue of applying macro-scale mechanical force to manipulate crystal structures is finding ways to precisely adjust the force directions to break micro-scale target chemical bonds. Inspired by a common technique of driving a wedge into the wood to make wood chopping much easier, a wedging strategy of splitting three-dimensional structured crystalline frameworks and then converting them to nanosheets was proposed, where specific molecules were wedged into crystalline frameworks to drive the directional transmission of mechanical force to break chemical bonds. As a result, various crystalline framework nanosheets including metal-organic framework nanosheets, covalent organic framework nanosheets, and coordination polymer nanosheets were fabricated. This wedging crystal strategy exhibits advantages of operability, flexibility and designability, and furthermore, it is expected to expand mechanochemistry applications in material preparation.
Collapse
Affiliation(s)
- Yun Fan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Jia Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zeqi Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hongfeng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yong Peng
- School of Materials and Energy and Electron Microscopy Centre of Lanzhou University, Lanzhou University, Lanzhou, 730000, China
| | - Jiena Weng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Ruijie Xie
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China
| | - Wenlei Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Yu Han
- Advanced Membranes and Porous Materials Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Yawen Xiao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Bing Zheng
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
- Institute of Advanced Materials, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China.
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China.
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, Fujian, China.
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China.
| |
Collapse
|
20
|
Lyons RJ, Sprick RS. Processing polymer photocatalysts for photocatalytic hydrogen evolution. MATERIALS HORIZONS 2024; 11:3764-3791. [PMID: 38895815 DOI: 10.1039/d4mh00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Conjugated materials have emerged as competitive photocatalysts for the production of sustainable hydrogen from water over the last decade. Interest in these polymer photocatalysts stems from the relative ease to tune their electronic properties through molecular engineering, and their potentially low cost. However, most polymer photocatalysts have only been utilised in rudimentary suspension-based photocatalytic reactors, which are not scalable as these systems can suffer from significant optical losses and often require constant agitation to maintain the suspension. Here, we will explore research performed to utilise polymeric photocatalysts in more sophisticated systems, such as films or as nanoparticulate suspensions, which can enhance photocatalytic performance or act as a demonstration of how the polymer can be scaled for real-world applications. We will also discuss how the systems were prepared and consider both the benefits and drawbacks of each system before concluding with an outlook on the field of processable polymer photocatalysts.
Collapse
Affiliation(s)
- Richard Jack Lyons
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L7 3NY, UK
| | | |
Collapse
|
21
|
Liu D, Zhang C, Shi J, Shi Y, Nga TTT, Liu M, Shen S, Dong CL. Defect Engineering Simultaneously Regulating Exciton Dissociation in Carbon Nitride and Local Electron Density in Pt Single Atoms Toward Highly Efficient Photocatalytic Hydrogen Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310289. [PMID: 38597769 DOI: 10.1002/smll.202310289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/10/2024] [Indexed: 04/11/2024]
Abstract
The high exciton binding energy (Eb) and sluggish surface reaction kinetics have severely limited the photocatalytic hydrogen production activity of carbon nitride (CN). Herein, a hybrid system consisting of nitrogen defects and Pt single atoms is constructed through a facile self-assembly and photodeposition strategy. Due to the acceleration of exciton dissociation and regulation of local electron density of Pt single atoms along with the introduction of nitrogen defects, the optimized Pt-MCT-3 exhibits a hydrogen production rate of 172.0 µmol h-1 (λ ≥ 420 nm), ≈41 times higher than pristine CN. The apparent quantum yield for the hydrogen production is determined to be 27.1% at 420 nm. The experimental characterizations and theoretical calculations demonstrate that the nitrogen defects act as the electron traps for the exciton dissociation, resulting in a decrease of Eb from 86.92 to 43.20 meV. Simultaneously, the stronger interaction between neighboring nitrogen defects and Pt single atoms directionally drives free electrons to aggregate around Pt single atoms, and tailors the d-band electrons of Pt, forming a moderate binding strength between Pt atoms and H* intermediates.
Collapse
Affiliation(s)
- Dongjie Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Chunyang Zhang
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Jinwen Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
- Integrated Energy Institute, Sichuan Digital Economy Industry Development Research Institute, 88 Jiefang Road, Chengdu, 610036, China
| | - Yuchuan Shi
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Ta Thi Thuy Nga
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| | - Maochang Liu
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Shaohua Shen
- State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), International Research Center for Renewable Energy (IRCRE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an, 710049, China
| | - Chun-Li Dong
- Department of Physics, Tamkang University, New Taipei City, 25137, Taiwan
| |
Collapse
|
22
|
Qin Y, She P, Wang Y, Wong WY. An All-In-One Integrating Strategy for Designing Platinum(II)-Based Supramolecular Polymers for Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400259. [PMID: 38624171 DOI: 10.1002/smll.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/06/2024] [Indexed: 04/17/2024]
Abstract
Organic polymer photocatalysts have achieved significant progress in photocatalytic hydrogen evolution, while developing the integrated organic polymers possessing the functions of photosensitizer, electron transfer mediator, and catalyst simultaneously is urgently needed and presents a great challenge. Considering that chalcogenoviologens are able to act as photosensitizers and electron-transfer mediators, a series of chalcogenoviologen-containing platinum(II)-based supramolecular polymers is designed, which exhibited strong visible light-absorbing ability and suitable bandgap for highly efficient photocatalytic hydrogen evolution without the use of a cocatalyst. The hydrogen evolution rate (HER) increases steadily with the decrease in an optical gap of the polymer. Among these "all-in-one" polymers, Se-containing 2D porous polymer exhibited the best photocatalytic performance with a HER of 3.09 mmol g-1 h-1 under visible light (>420 nm) irradiation. Experimental and theoretical calculations reveal that the distinct intramolecular charge transfer characteristics and heteroatom N in terpyridine unit promote charge separation and transfer within the molecules. This work could provide new insights into the design of metallo-supramolecular polymers with finely tuned components for photocatalytic hydrogen evolution from water.
Collapse
Affiliation(s)
- Yanyan Qin
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Pengfei She
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Yidi Wang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
23
|
Zhao W, Luo L, Cong M, Liu X, Zhang Z, Bahri M, Li B, Yang J, Yu M, Liu L, Xia Y, Browning ND, Zhu WH, Zhang W, Cooper AI. Nanoscale covalent organic frameworks for enhanced photocatalytic hydrogen production. Nat Commun 2024; 15:6482. [PMID: 39090140 PMCID: PMC11294449 DOI: 10.1038/s41467-024-50839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Nanosizing confers unique functions in materials such as graphene and quantum dots. Here, we present two nanoscale-covalent organic frameworks (nano-COFs) that exhibit exceptionally high activity for photocatalytic hydrogen production that results from their size and morphology. Compared to bulk analogues, the downsizing of COFs crystals using surfactants provides greatly improved water dispersibility and light-harvesting properties. One of these nano-COFs shows a hydrogen evolution rate of 392.0 mmol g-1 h-1 (33.3 μmol h-1), which is one of the highest mass-normalized rates reported for a COF or any other organic photocatalysts. A reverse concentration-dependent photocatalytic phenomenon is observed, whereby a higher photocatalytic activity is found at a lower catalyst concentration. These materials also show a molecule-like excitonic nature, as studied by photoluminescence and transient absorption spectroscopy, which is again a function of their nanoscale dimensions. This charts a new path to highly efficient organic photocatalysts for solar fuel production.
Collapse
Affiliation(s)
- Wei Zhao
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Liang Luo
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Muyu Cong
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Xueyan Liu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhiyun Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Mounib Bahri
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, UK
| | - Boyu Li
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Jing Yang
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Miaojie Yu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Lunjie Liu
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Yu Xia
- Department of Materials Science and Engineering, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Nigel D Browning
- Albert Crewe Centre for Electron Microscopy, University of Liverpool, Liverpool, L69 3GL, UK
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Andrew I Cooper
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK.
| |
Collapse
|
24
|
Xu T, Wang Z, Zhang W, An S, Wei L, Guo S, Huang Y, Jiang S, Zhu M, Zhang YB, Zhu WH. Constructing Photocatalytic Covalent Organic Frameworks with Aliphatic Linkers. J Am Chem Soc 2024; 146:20107-20115. [PMID: 38842422 DOI: 10.1021/jacs.4c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photocatalytic covalent organic frameworks (COFs) are typically constructed with rigid aromatic linkers for crystallinity and extended π-conjugation. However, the essential hydrophobicity of the aromatic backbone can limit their performances in water-based photocatalytic reactions. Here, we for the first time report the synthesis of hydrophilic COFs with aliphatic linkers [tartaric acid dihydrazide (TAH) and butanedioic acid dihydrazide] that can function as efficient photocatalysts for H2O2 and H2 evolution. In these hydrophilic aliphatic linkers, the specific multiple hydrogen bonding networks not only enhance crystallization but also ensure an ideal compatibility of crystallinity, hydrophilicity, and light harvesting. The resulting aliphatic linker COFs adopt an unusual ABC stacking, giving rise to approximately 0.6 nm nanopores with an improved interaction with water guests. Remarkably, both aliphatic linker-based COFs show strong visible light absorption, along with a narrow optical band gap of ∼1.9 eV. The H2O2 evolution rate for TAH-COF reaches up to 6003 μmol h-1 g-1, in the absence of sacrificial agents, surpassing the performance of all previously reported COF-based photocatalysts. Theoretical calculations reveal that the TAH linker can enhance the indirect two-electron oxygen reduction reaction for H2O2 production by improving the O2 adsorption and stabilizing the *OOH intermediate. This study opens a new avenue for constructing semiconducting COFs using nonaromatic linkers.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuhao An
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaomeng Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanlin Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
25
|
Wang S, Wu T, Guo J, Zhao R, Hua Y, Zhao Y. Engineering the Hole Transport Layer with a Conductive Donor-Acceptor Covalent Organic Framework for Stable and Efficient Perovskite Solar Cells. ACS CENTRAL SCIENCE 2024; 10:1383-1395. [PMID: 39071056 PMCID: PMC11273455 DOI: 10.1021/acscentsci.4c00416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/30/2024]
Abstract
Spiro-OMeTAD doped with lithium-bis(trifluoromethylsulfonyl)-imide (Li-TFSI) and tertbutyl-pyridine (t-BP) is widely used as a hole transport layer (HTL) in n-i-p perovskite solar cells (PSCs). Spiro-OMeTAD based PSCs typically show poor stability owing to the agglomeration of Li-TFSI, the migration of lithium ions (Li+), and the existence of potential mobile defects originating from the perovskite layer. Thus, it is necessary to search for a strategy that suppresses the degradation of PSCs and overcomes the Shockley Queisser efficiency limit via harvesting excess energy from hot charge carrier. Herein, two covalent organic frameworks (COFs) including BPTA-TAPD-COF and a well-defined donor-acceptor COF (BPTA-TAPD-COF@TCNQ) were developed and incorporated into Spiro-OMeTAD HTL. BPTA-TAPD-COF and BPTA-TAPD-COF@TCNQ could act as multifunctional additives of Spiro-OMeTAD HTL, which improve the photovoltaic performance and stability of the PSC device by accelerating charge-carrier extraction, suppressing the Li+ migration and Li-TFSI agglomeration, and capturing mobile defects. Benefiting from the increased conductivity, the addition of BPTA-TAPD-COF@TCNQ in the device led to the highest power conversion efficiency of 24.68% with long-term stability in harsh conditions. This work provides an example of using COFs as additives of HTL to enable improvements of both efficiency and stability for PSCs.
Collapse
Affiliation(s)
- Shihuai Wang
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Tai Wu
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Jingjing Guo
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Rongjun Zhao
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Yong Hua
- Yunnan
Key Laboratory for Micro/Nano Materials & Technology, School of
Materials and Energy, Yunnan University, Kunming 650091, Yunnan, P. R. China
| | - Yanli Zhao
- School
of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| |
Collapse
|
26
|
Xu H, Xia S, Li C, Li Y, Xing W, Jiang Y, Chen X. Programming Tetrathiafulvalene-Based Covalent Organic Frameworks for Promoted Photoinduced Molecular Oxygen Activation. Angew Chem Int Ed Engl 2024; 63:e202405476. [PMID: 38706228 DOI: 10.1002/anie.202405476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/23/2024] [Accepted: 05/05/2024] [Indexed: 05/07/2024]
Abstract
Despite the pivotal role of molecular oxygen (O2) activation in artificial photosynthesis, the activation efficiency is often restricted by sluggish exciton dissociation and charge transfer kinetics within polymer photocatalysts. Herein, we propose two tetrathiafulvalene (TTF)-based imine-linked covalent organic frameworks (COFs) with tailored donor-acceptor (D-A) structures, TTF-PDI-COF and TTF-TFPP-COF, to promote O2 activation. Because of enhanced electron push-pull interactions that facilitated charge separation and transfer behavior, TTF-PDI-COF exhibited superior photocatalytic activity in electron-induced O2 activation reactions over TTF-TFPP-COF under visible light irradiation, including the photosynthesis of (E)-3-amino-2-thiocyano-α,β-unsaturated compounds and H2O2. These findings highlight the significant potential of the rational design of COFs with D-A configurations as suitable candidates for advanced photocatalytic applications.
Collapse
Affiliation(s)
- Hetao Xu
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Shuling Xia
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Chunlei Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yang Li
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Yi Jiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiong Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, and Key Laboratory of Molecular Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| |
Collapse
|
27
|
Yan Y, Zhao Y, Chen X, Lu Z, Peng Y, Chen Z, Xu Q. Linkage-Mediated Electronic Structure Modulation in Multicomponent Covalent Organic Frameworks for Dramatically Promoted Photocatalytic Hydrogen Evolution. Chemistry 2024; 30:e202401122. [PMID: 38749913 DOI: 10.1002/chem.202401122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Indexed: 06/01/2024]
Abstract
Linkage chemistry is an essential aspect to covalent organic framework (COF) applications; it is highly desirable to precisely modulate electronic structure mediated directly by linkage for efficient COF-based photocatalytic hydrogen evolution, which however, remains substantially challenging. Herein, as a proof of concept, a collection of robust multicomponent pyrene-based COFs with abundant donor-acceptor (D-A) interactions has been judiciously designed and synthesized through molecularly engineering linkage for photogeneration of hydrogen. Controlled locking and conversion of linkage critically contribute to continuously regulating COFs' electronic structures further to optimize photocatalytic activities. Remarkably, the well-modulated optoelectronic properties turn on the average hydrogen evolution rate from zero to 15.67 mmol g-1 h-1 by the protonated quinoline-linked COF decorated with the trifluoromethyl group (TT-PQCOF-CF3). Using diversified spectroscopy and theoretical calculations, we show that multiple modifications toward linkage synergistically lead to the redistribution of charge on COFs with extended π-conjugation and reinforced D-A effect, making TT-PQCOF-CF3 a promising material with significantly boosted carrier separation and migration. This study provides important guidance for the design of high-performance COF photocatalysts based on the strategy of linkage-mediated electronic structure modulation in COFs.
Collapse
Affiliation(s)
- Yu Yan
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Yanming Zhao
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Xikai Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Zhou Lu
- Department of Chemistry, University of Rochester, Rochester, New York, 14621, United States
| | - Yunlei Peng
- Department of Applied Chemistry, College of Science, China, University of Petroleum (Beijing), Beijing, 102249, China
| | - Zongwei Chen
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| | - Qun Xu
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, China
| |
Collapse
|
28
|
Zhang Z, Hao Z, Yang R, Shan R, Li X, Zhang H. Covalent organic framework with donor-acceptor structure for rapid and sensitive photothermal sensing detection. Food Chem 2024; 445:138724. [PMID: 38350202 DOI: 10.1016/j.foodchem.2024.138724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/15/2024]
Abstract
Given the serious harm caused by dietary intake of diethylstilbestrol (DES), it is urgent to explore rapid and sensitive DES sensing methods. In this work, a photothermal DES immunochromatography sensor based on covalent organic framework (COF) was constructed. The performance of COF in the field of photothermal sensing was systematically investigated for the first time. A donor-acceptor type of COF with a photothermal conversion rate of 51.17 % was synthesized. The logarithm of the DES concentrations-temperature change value standard curve was plotted. The intensity of the photothermal sensing signal was inversely proportional to the sample concentration. The detection limit of the proposed photothermal method (0.24 μg·L-1) was 10 times higher than that of visual detection (3 μg·L-1). This work not only constructed a novel detection method for DES sensing, but also provided a feasible demonstration for the application of COF in photothermal sensing and expanded the application of their photothermal properties.
Collapse
Affiliation(s)
- Zhen Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Zhenkai Hao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Ruohan Yang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Ruiping Shan
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China
| | - Xiangyang Li
- Shandong Province Institute for the Control of Agrochemicals, Jinan 250131, PR China
| | - Hongyan Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Key Laboratory of Food Nutrition and Safety of Shandong Normal University, College of Life Sciences, Shandong Normal University, Jinan 250014, PR China.
| |
Collapse
|
29
|
Jia H, Yao N, Jin Y, Wu L, Zhu J, Luo W. Stabilizing atomic Ru species in conjugated sp 2 carbon-linked covalent organic framework for acidic water oxidation. Nat Commun 2024; 15:5419. [PMID: 38926414 PMCID: PMC11208516 DOI: 10.1038/s41467-024-49834-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Suppressing the kinetically favorable lattice oxygen oxidation mechanism pathway and triggering the adsorbate evolution mechanism pathway at the expense of activity are the state-of-the-art strategies for Ru-based electrocatalysts toward acidic water oxidation. Herein, atomically dispersed Ru species are anchored into an acidic stable vinyl-linked 2D covalent organic framework with unique crossed π-conjugation, termed as COF-205-Ru. The crossed π-conjugated structure of COF-205-Ru not only suppresses the dissolution of Ru through strong Ru-N motifs, but also reduces the oxidation state of Ru by multiple π-conjugations, thereby activating the oxygen coordinated to Ru and stabilizing the oxygen vacancies during oxygen evolution process. Experimental results including X-ray absorption spectroscopy, in situ Raman spectroscopy, in situ powder X-ray diffraction patterns, and theoretical calculations unveil the activated oxygen with elevated energy level of O 2p band, decreased oxygen vacancy formation energy, promoted electrochemical stability, and significantly reduced energy barrier of potential determining step for acidic water oxidation. Consequently, the obtained COF-205-Ru displays a high mass activity with 2659.3 A g-1, which is 32-fold higher than the commercial RuO2, and retains long-term durability of over 280 h. This work provides a strategy to simultaneously promote the stability and activity of Ru-based catalysts for acidic water oxidation.
Collapse
Affiliation(s)
- Hongnan Jia
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Na Yao
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei, 430073, PR China
| | - Yiming Jin
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Liqing Wu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Juan Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China
| | - Wei Luo
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, PR China.
| |
Collapse
|
30
|
Wang Y, Qiao Z, Li H, Zhang R, Xiang Z, Cao D, Wang S. Molecular Engineering for Modulating Photocatalytic Hydrogen Evolution of Fully Conjugated 3D Covalent Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202404726. [PMID: 38622997 DOI: 10.1002/anie.202404726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Covalent organic frameworks (COFs) have recently shown great potential for photocatalytic hydrogen production. Currently almost all reports are focused on two-dimensional (2D) COFs, while the 3D counterparts are rarely explored due to their non-conjugated frameworks derived from the sp3 carbon based tetrahedral building blocks. Here, we rationally designed and synthesized a series of fully conjugated 3D COFs by using the saddle-shaped cyclooctatetrathiophene derivative as the building block. Through molecular engineering strategies, we thoroughly discussed the influences of key factors including the donor-acceptor structure, hydrophilicity, specific surface areas, as well as the conjugated/non-conjugated structures on their photocatalytic hydrogen evolution properties. The as-synthesized fully conjugated 3D COFs could generate the hydrogen up to 40.36 mmol h-1 g-1. This is the first report on intrinsic metal-free 3D COFs in photocatalytic hydrogen evolution application. Our work provides insight on the structure design of 3D COFs for highly-efficient photocatalysis, and also reveals that the semiconducting fully conjugated 3D COFs could be a useful platform in clear energy-related fields.
Collapse
Affiliation(s)
- Yaqin Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zelong Qiao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Han Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Rui Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhonghua Xiang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Dapeng Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Shitao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
31
|
Li S, Mao Y, Yang J, Li Y, Dong J, Wang Z, Jiang L, He S. Efficient integration of covalent triazine frameworks (CTFs) for augmented photocatalytic efficacy: A review of synthesis, strategies, and applications. Heliyon 2024; 10:e32202. [PMID: 38947430 PMCID: PMC11214378 DOI: 10.1016/j.heliyon.2024.e32202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/02/2024] Open
Abstract
Heterogeneous photocatalysis emerges as an exceptionally appealing technological avenue for the direct capture, conversion, and storage of renewable solar energy, facilitating the generation of sustainable and ecologically benign solar fuels and a spectrum of other pertinent applications. Heterogeneous nanocomposites, incorporating Covalent Triazine Frameworks (CTFs), exhibit a wide-ranging spectrum of light absorption, well-suited electronic band structures, rapid charge carrier mobility, ample resource availability, commendable chemical robustness, and straightforward synthetic routes. These attributes collectively position them as highly promising photocatalysts with applicability in diverse fields, including but not limited to the production of photocatalytic solar fuels and the decomposition of environmental contaminants. As the field of photocatalysis through the hybridization of CTFs undergoes rapid expansion, there is a pressing and substantive need for a systematic retrospective analysis and forward-looking evaluation to elucidate pathways for enhancing performance. This comprehensive review commences by directing attention to diverse synthetic methodologies for the creation of composite materials. And then it delves into a thorough exploration of strategies geared towards augmenting performance, encompassing the introduction of electron donor-acceptor (D-A) units, heteroatom doping, defect Engineering, architecture of Heterojunction and optimization of morphology. Following this, it systematically elucidates applications primarily centered around the efficient generation of photocatalytic hydrogen, reduction of carbon dioxide through photocatalysis, and the degradation of organic pollutants. Ultimately, the discourse turns towards unresolved challenges and the prospects for further advancement, offering valuable guidance for the potent harnessing of CTFs in high-efficiency photocatalytic processes.
Collapse
Affiliation(s)
- Shuqi Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yintian Mao
- Hangzhou Environmental Group Company, Hangzhou, China
| | - Jian Yang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Yin Li
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Jun Dong
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Zhen Wang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Lixian Jiang
- Ecology and Health Institute, Hangzhou Vocational & Technical College, Hangzhou, China
| | - Shilong He
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
32
|
Ma S, Hou Y, Yang L, Yue H, Xia H, Liu X. Fully Conjugated Covalent Organic Framework Nanosheets for Visible-Light-Driven Organic Synthesis in Water. CHEMSUSCHEM 2024; 17:e202400315. [PMID: 38538541 DOI: 10.1002/cssc.202400315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Covalent organic framework (COF) nanosheets have recently garnered great attention as a new class of functional materials. As one of the sustainable processes, however, the photocatalytic organic synthesis in water has not been investigated using COF nanosheets as a photocatalyst to date. Herein, we reported the synthesis of a fully conjugated COF nanosheets with carboxyl functional group through a cooperative strategy of chemical exfoliation and group transformation. The new COF nanosheets was found to be an efficient heterogeneous photocatalyst for a wide range of organic synthesis including selective oxidation of sulfides and oxidative coupling of benzylamines in water under visible-light illumination. This work contributes a new roadmap for the design and synthesis of functional COF-based nanosheets, but also further extends the application boundary of the ultrathin COF nanosheets.
Collapse
Affiliation(s)
- Si Ma
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| | - Yuxin Hou
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| | - Liuliu Yang
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| | - Huijuan Yue
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Technology, Jilin University, Changchun, 130012, P.R. China
| | - Xiaoming Liu
- College of Chemistry, Jilin University, Changchun, 130012, R.P., China
| |
Collapse
|
33
|
Shu C, Yang X, Liu L, Hu X, Sun R, Yang X, Cooper AI, Tan B, Wang X. Mixed-Linker Strategy for the Construction of Sulfone-Containing D-A-A Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2024; 63:e202403926. [PMID: 38414401 DOI: 10.1002/anie.202403926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
The solar-driven photocatalytic production of hydrogen peroxide (H2O2) from water and oxygen using semiconductor catalysts offers a promising approach for converting solar energy into storable chemical energy. However, the efficiency of photocatalytic H2O2 production is often restricted by the low photo-generated charge separation, slow surface reactions and inadequate stability. Here, we developed a mixed-linker strategy to build a donor-acceptor-acceptor (D-A-A) type covalent organic framework (COF) photocatalyst, FS-OHOMe-COF. The FS-OHOMe-COF structure features extended π-π conjugation that improves charge mobility, while the introduction of sulfone units not only as active sites facilitates surface reactions with water but also bolsters stability through increased interlayer forces. The resulting FS-OHOMe-COF has a low exciton binding energy, long excited-state lifetime and high photo-stability that leads to high performance for photocatalytic H2O2 production (up to 1.0 mM h-1) with an H2O2 output of 19 mM after 72 hours of irradiation. Furthermore, the catalyst demonstrates high stability, which sustained activity over 192 hours of photocatalytic experiment.
Collapse
Affiliation(s)
- Chang Shu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Lunjie Liu
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
| | - Xunliang Hu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Ruixue Sun
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Andrew I Cooper
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, United Kingdom
| | - Bien Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| | - Xiaoyan Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Luoyu Road No. 1037, 430074, Wuhan, China
| |
Collapse
|
34
|
Lee S, Kim J, Kim H, Kim C, Kim S, Kim C, Lee H, Choi B, Muthu C, Kim T, Lee J, Lee S, Ihee H, Lee JY. Brightening deep-blue perovskite light-emitting diodes: A path to Rec. 2020. SCIENCE ADVANCES 2024; 10:eadn8465. [PMID: 38758786 PMCID: PMC11100563 DOI: 10.1126/sciadv.adn8465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/15/2024] [Indexed: 05/19/2024]
Abstract
Deep-blue perovskite light-emitting diodes (PeLEDs) of high purity are highly sought after for next-generation displays complying with the Rec. 2020 standard. However, mixed-halide perovskite materials designed for deep-blue emitters are prone to halide vacancies, which readily occur because of the low formation energy of chloride vacancies. This degrades bandgap instability and performance. Here, we propose a chloride vacancy-targeting passivation strategy using sulfonate ligands with different chain lengths. The sulfonate groups have a strong affinity for lead(II) ions, effectively neutralizing vacancies. Our strategy successfully suppressed phase segregation, yielding color-stable deep-blue PeLEDs with an emission peak at 461 nanometers and a maximum luminance (Lmax) of 2707 candela per square meter with external quantum efficiency (EQE) of 3.05%, one of the highest for Rec. 2020 standard-compliant deep-blue PeLEDs. We also observed a notable increase in EQE up to 5.68% at Lmax of 1978 candela per square meter with an emission peak at 461 nanometers by changing the carbon chain length.
Collapse
Affiliation(s)
- Seungjae Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Junho Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyojun Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changwon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Siin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Changjo Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Heeseung Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Bongjun Choi
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Chinnadurai Muthu
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taehyun Kim
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jihyung Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seungbok Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jung-Yong Lee
- School of Electrical Engineering (EE), Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
35
|
Zhang JA, Chao Y, Xiao X, Luo S, Chen W, Tian W. Self-Adaptive Aromatic Cation-π Driven Dimensional Polymorphism in Supramolecular Polymers for the Photocatalytic Oxidation and Separation of Aromatic/Cyclic Aliphatic Compounds. Angew Chem Int Ed Engl 2024; 63:e202402760. [PMID: 38483296 DOI: 10.1002/anie.202402760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/06/2024]
Abstract
The phenomenon of polymorphism is ubiquitous in nature, the controlled manipulation of which not only increases our ontological understanding of nature but also facilitates the conceptualization and realization of novel functional materials. However, achieving targeted polymorphism in supramolecular assemblies (SAs) remains a formidable challenge, largely because of the constraints inherent in controlling the specific binding motifs of noncovalent interactions. Herein, we propose self-adaptive aromatic cation-π binding motifs to construct polymorphic SAs in both the solid and solution states. Using distinct discrete cation-π-cation and long-range cation-π binding motifs enables control of the self-assembly directionality of a C2h-symmetric bifunctional monomer, resulting in the successful formation of both two-dimensional and three-dimensional crystalline SAs (2D-CSA and 3D-CSA). The differences in the molecular packing of 3D-CSA compared with that of 2D-CSA significantly improve the charge separation and carrier mobility, leading to enhanced photocatalytic activity for the aerobic oxidation of thioanisole to methyl phenyl sulfoxide (yield of 99 % vs 57 %). 2D-CSA, which has a vertical extended structure with favorable stronger interaction with toluene though face-to-face cation-π interactions than methylcyclohexane, shows higher toluene/methylcyclohexane separation efficiency than 3D-CSA (96.9 % for 2D-CSA vs 56.3 % for 3D-CSA).
Collapse
Affiliation(s)
- Ju-An Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yi Chao
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xuedong Xiao
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Shuai Luo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenzhuo Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xian-yang, 712046, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
36
|
Zhou E, Wang F, Zhang X, Hui Y, Wang Y. Cyanide-based Covalent Organic Frameworks for Enhanced Overall Photocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2024; 63:e202400999. [PMID: 38489230 DOI: 10.1002/anie.202400999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
Photocatalytic oxygen reduction to produce hydrogen peroxide (H2O2) is a promising route to providing oxidants for various industrial applications. However, the lack of well-designed photocatalysts for efficient overall H2O2 production in pure water has impeded ongoing research and practical thrusts. Here we present a cyanide-based covalent organic framework (TBTN-COFs) combining 2,4,6-trimethylbenzene-1,3,5-tricarbonitrile (TBTN) and benzotrithiophene-2,5,8-tricarbaldehyde (BTT) building blocks with water-affinity and charge-separation. The ultrafast intramolecular electron transfer (<500 fs) and prolonged excited state lifetime (748 ps) can be realized by TBTN-COF, resulting in a hole accumulated BTT and electron-rich TBTN building block. Under one sun, the 11013 μmol h-1 g-1 yield rate of H2O2 can be achieved without any sacrificial agent, outperforming most previous reports. Furthermore, the DFT calculation and in situ DRIFTS spectrums suggesting a Yeager-type absorption of *O2⋅- intermediate in the cyanide active site, which prohibits the formation of superoxide radical and revealing a favored H2O2 production pathway.
Collapse
Affiliation(s)
- Enbo Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Futong Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiang Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| | - Yangdan Hui
- Fuzhou University, Fuzhou, 350108, Fujian, P. R. China
| | - Yaobing Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Nanomaterials, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, Fujian, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350108, Fujian, P. R. China
| |
Collapse
|
37
|
Aitchison CM, Gonzalez-Carrero S, Yao S, Benkert M, Ding Z, Young NP, Willner B, Moruzzi F, Lin Y, Tian J, Nellist PD, Durrant JR, McCulloch I. Templated 2D Polymer Heterojunctions for Improved Photocatalytic Hydrogen Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2300037. [PMID: 37165538 DOI: 10.1002/adma.202300037] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 03/28/2023] [Indexed: 05/12/2023]
Abstract
2D polymers have emerged as one of the most promising classes of organic photocatalysts for solar fuel production due to their tunability, charge-transport properties, and robustness. They are however difficult to process and so there are limited studies into the formation of heterojunction materials incorporating these components. In this work, a novel templating approach is used to combine an imine-based donor polymer and an acceptor polymer formed through Knoevenagel condensation. Heterojunction formation is shown to be highly dependent on the topological match of the donor and acceptor polymers with the most active templated material found to be between three and nine times more active for photocatalysis than its constituent components. Transient absorption spectroscopy reveals that this improvement is due to faster charge separation and more efficient charge extraction in the templated heterojunction. The templated material shows a very high hydrogen evolution rate of >20 mmol h-1 m-2 with an ascorbic acid hole scavenger but also produces hydrogen in the presence of only water and a cobalt-based redox mediator. This suggests the improved charge-separation interface and reduced trapping accessed through this approach could be suitable for Z-scheme formation.
Collapse
Affiliation(s)
- Catherine M Aitchison
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Soranyel Gonzalez-Carrero
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Shilin Yao
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Max Benkert
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Zhiyuan Ding
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Neil P Young
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - Benjamin Willner
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Floriana Moruzzi
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Yuanbao Lin
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Junfu Tian
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Peter D Nellist
- Department of Materials, University of Oxford, 16 Parks Road, Oxford, OX1 3PH, UK
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Iain McCulloch
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
38
|
Su Y, Li K, Li Z, Tian Y, Liu B, Yue G, Tian Y. Visible light to the second near-infrared light-harvesting donor-acceptor 1-donor-acceptor 2-type terpolymers for boosted photocatalytic hydrogen evolution via dual-sulfone-acceptor engineering. J Colloid Interface Sci 2024; 661:333-344. [PMID: 38301470 DOI: 10.1016/j.jcis.2024.01.202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/02/2023] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Developing visible to near-infrared light-absorbing conjugated polymer photocatalysts is crucial for enhancing solar energy utilization efficiency, as most conjugated organic polymers only absorb light in the visible range. In this work, we firstly developed a novel thiophene S,S-dioxide (TDO) monomer with the stronger electron-withdrawing character, and then prepared a series of donor-acceptor1-donor-acceptor2-type (D-A1-D-A2-type) conjugated terpolymers (THTDB-1-THTDB-5) by statistically adjusting the molar ratio of two sulfone-based acceptor monomers, dibenzothiophene-S,S-dioxide (BTDO, A1) and TDO (A2). These terpolymers demonstrate a gradually expanding absorption range from visible light to the second near-infrared (Vis-to-NIR-II) region with the gradual increase of the TDO contents in the polymer skeleton, showcasing excellent absorption properties and efficient light-capturing capabilities. The optimized D-A1-D-A2 polymer photocatalyst THTDB-4 exhibits a high hydrogen evolution rate of 21.27 mmol g-1 h-1 under visible light without any co-catalyst. The dual-sulfone-acceptor engineering offers a viable approach for developing efficient the longer Vis-to-NIR-II light-harvesting polymer photocatalysts.
Collapse
Affiliation(s)
- Yuanle Su
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Keming Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Zhanfeng Li
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yanting Tian
- College of Physics, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Baoyou Liu
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Gang Yue
- Ningxia Hui Autonomous Region Screen Display Organic Materials Engineering Technology Research Center, Ningxia Sinostar Display Material Co., Ltd, Yinchuan 750003, PR China
| | - Yue Tian
- Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, PR China.
| |
Collapse
|
39
|
Zhang Y, Li S, Hu X, Fang Y, Duan R, Chen Q. W-N heteroatom-interface in melon carbon nitride/N-doped tungsten oxide Z-Scheme photocatalyst toward improved photocatalytic hydrogen generation activity. J Colloid Interface Sci 2024; 659:94-104. [PMID: 38159493 DOI: 10.1016/j.jcis.2023.12.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
The construction of heterointerface in photocatalyst is an efficient approach to boost the separation and utilization efficiency of charge carriers, which is challenging and crucial in photocatalysis. Here, the construction of melon-structured carbon nitride/N-doped WO3 (MCN/NWx) heterojunction photocatalyst was achieved by a method of prealcoholysis combined with thermal polymerization, where N-doping of WO3 was achieved in-situ in the formation of heterojunction. The promoted charge separation efficiency was realized through the charge transfer from the conduction band of N-doped WO3 to the valence band of the MCN. Density functional theory calculation results showed that the formation of the W-N heteroatom-interface led to the increase of density of states at the heterointerface and decrease of the band gap. The MCN/NWx nanocomposite featured a metallic band structure of the nanocomposite photocatalysts, resulting in the enhanced photocatalytic activity. The photocatalytic hydrogen evolution activity of the MCN/NW2 was enhanced about 2.5 times than that of MCN. This research provides a novel insight into the construction of a novel heteroatom-junction that boosts the separation efficiency of charge carriers, and thereby improves the photocatalytic activity.
Collapse
Affiliation(s)
- Yuanrong Zhang
- School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Shuaitao Li
- School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China
| | - Xun Hu
- School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| | - Yanfen Fang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Ran Duan
- Ms Ran Duan, Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing 100190, China
| | - Qifeng Chen
- School of Materials Science & Engineering, University of Jinan, No. 336, West Road of Nan Xinzhuang, Jinan 250022, Shandong, China.
| |
Collapse
|
40
|
Ma F, Wen Y, Fu P, Zhang J, Tang Q, Chen T, Luo W, Zhou Y, Wang J. Engineering 0D/2D Architecture of Ni(OH) 2 Nanoparticles on Covalent Organic Framework Nanosheets for Selective Visible-Light-Driven CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305767. [PMID: 37919097 DOI: 10.1002/smll.202305767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/07/2023] [Indexed: 11/04/2023]
Abstract
Low-dimensional materials serving as photocatalysts favor providing abundant unsaturated active sites and shortening the charge transport distance, but the high surface energy readily causes the aggregation that limits their application. Herein, it is demonstrated that 2D covalent organic framework (COF) TpBD nanosheets are effective in the dispersion and stabilization of 0D Ni(OH)2 . The COF precursor TpBD is synthesized from the Schiff base condensation of 1,3,5-triformylphloroglucinol (Tp) and benzidine (BD) and exfoliated into 2D nanosheets named BDNs via ultrasonication. The formation of highly dispersive 0D Ni(OH)2 on BDNs is reached under a mild weak basic condition, enabling robust active sites for CO2 adsorption/activation and rapid interface cascaded electron transport channels for the accumulation of long-lived photo-generated charges. The champion catalyst 30%Ni-BDNs effectively catalyze the CO2 to CO conversion under visible-light irradiation, offering a high CO evolution rate of 158.4 mmol g-1 h-1 and turnover frequency of 51 h-1 . By contrast, the counterpart photocatalyst, the bulk TpBD stabilized Ni(OH)2 , affords a much lower CO evolution rate and selectivity. This work demonstrates a new avenue to simultaneously construct efficient active sites and electron transport channels by coupling 0D metal hydroxides and 2D COF nanosheets for CO2 photoreduction.
Collapse
Affiliation(s)
- Fangpei Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ying Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Ping Fu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Junjun Zhang
- School of Environmental and Chemical Engineering, Shanghai University, 99 Hangda Road, Shanghai, 200444, China
- Department of Chemical Engineering, Sichuan University, Chengdu, 610065, China
| | - Qingping Tang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Tao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Wen Luo
- School of Environmental and Chemical Engineering, Shanghai University, 99 Hangda Road, Shanghai, 200444, China
| | - Yu Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Jun Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
41
|
Aitchison CM, McCulloch I. Organic Photovoltaic Materials for Solar Fuel Applications: A Perfect Match? CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1781-1792. [PMID: 38435046 PMCID: PMC10902810 DOI: 10.1021/acs.chemmater.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
This work discusses the use of donor and acceptor materials from organic photovoltaics in solar fuel applications. These two routes to solar energy conversion have many shared materials design parameters, and in recent years there has been increasing overlap of the molecules and polymers used in each. Here, we examine whether this is a good approach, where knowledge can be translated, and where further consideration to molecular design is required.
Collapse
Affiliation(s)
- Catherine M. Aitchison
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| | - Iain McCulloch
- Department of Chemistry, University
of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United
Kingdom
| |
Collapse
|
42
|
Hou Y, Zhou P, Liu F, Lu Y, Tan H, Li Z, Tong M, Ni J. Efficient Photosynthesis of Hydrogen Peroxide by Cyano-Containing Covalent Organic Frameworks from Water, Air and Sunlight. Angew Chem Int Ed Engl 2024; 63:e202318562. [PMID: 38151472 DOI: 10.1002/anie.202318562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/21/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023]
Abstract
The insufficient exciton (e- -h+ pair) separation/transfer and sluggish two-electron water oxidation are two main factors limiting the H2 O2 photosynthetic efficiency of covalent organic frameworks (COFs) photocatalysts. Herein, we present an alternative strategy to simultaneously facilitate exciton separation/transfer and reduce the energy barrier of two-electron water oxidation in COFs via a dicyano functionalization. The in situ characterization and theoretical calculations reveal that the dicyano functionalization improves the amount of charge transfer channels between donor and acceptor units from two in COF-0CN without cyano functionalization to three in COF-1CN with mono-cyano functionalization and four in COF-2CN with dicyano functionalization, leading to the highest separation/transfer efficiency in COF-2CN. More importantly, the dicyano group activates the neighbouring C atom to produce the key *OH intermediate for effectively reducing the energy barrier of rate-determining two-electron water oxidation in H2 O2 photosynthesis. The simultaneously enhanced exciton separation/transfer and two-electron water oxidation in COF-2CN result in high H2 O2 yield (1601 μmol g-1 h-1 ) from water and oxygen without using sacrificial reagent under visible-light irradiation. COF-2CN can effectively yield H2 O2 in water with wide pH range, in different real water samples, in scaled-up reactor under natural sunlight irradiation, and in continuous-flow reactor for consecutively producing H2 O2 solution for water decontamination.
Collapse
Affiliation(s)
- Yanghui Hou
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Peng Zhou
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, P. R. China
| | - Fuyang Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Yanyu Lu
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Hao Tan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhengmao Li
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| | - Jinren Ni
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, P. R. China
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), Peking University, Beijing, 100871, P. R. China
- State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
43
|
Samajdar S, Golda A S, Lakhera SK, Ghosh S. Recent progress in chromium removal from wastewater using covalent organic frameworks - A review. CHEMOSPHERE 2024; 350:141028. [PMID: 38142883 DOI: 10.1016/j.chemosphere.2023.141028] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/03/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Covalent organic frameworks (COFs) offer a pivotal solution to urgently address heavy metal removal from wastewater due to their exceptional attributes such as high adsorption capacity, tunable porosity, controllable energy band structures, superior photocatalytic performance, and high stability-reusability. Despite these advantages, COFs encounter certain challenges, including inefficient utilization of visible light, rapid recombination of photogenerated carriers, and limited access to active sites due to close stacking. To enhance the photocatalytic and adsorptive performance of COF-based catalysts, various modification strategies have been reported, with a particular focus on molecular design, structural regulation, and heterostructure engineering. This review comprehensively explores recent advancements in COF-based photocatalytic and adsorptive materials for chromium removal from wastewater, addressing kinetics, mechanisms, and key influencing factors. Additionally, it sheds light on the influence of chemical composition and functional groups of COFs on the efficiency of hexavalent chromium [Cr (VI)] removal.
Collapse
Affiliation(s)
- Soumita Samajdar
- CSIR - Central Glass and Ceramic Research Institute Raja S. C, Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiny Golda A
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Sandeep Kumar Lakhera
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Chengalpattu 603203, Tamilnadu, India.
| | - Srabanti Ghosh
- CSIR - Central Glass and Ceramic Research Institute Raja S. C, Mullick Road, Jadavpur, Kolkata 700032, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
44
|
Fu G, Yang D, Xu S, Li S, Zhao Y, Yang H, Wu D, Petkov PS, Lan ZA, Wang X, Zhang T. Construction of Thiadiazole-Bridged sp 2-Carbon-Conjugated Covalent Organic Frameworks with Diminished Excitation Binding Energy Toward Superior Photocatalysis. J Am Chem Soc 2024; 146:1318-1325. [PMID: 38181378 DOI: 10.1021/jacs.3c08755] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Sp2-carbon-conjugated covalent organic frameworks (sp2c-COFs) have emerged as promising platforms for phototo-chemical energy conversion due to their tailorable optoelectronic properties, in-plane π-conjugations, and robust structures. However, the development of sp2c-COFs in photocatalysis is still highly hindered by their limited linkage chemistry. Herein, we report a novel thiadiazole-bridged sp2c-COF (sp2c-COF-ST) synthesized by thiadiazole-mediated aldol-type polycondensation. The resultant sp2c-COF-ST demonstrates high chemical stability under strong acids and bases (12 M HCl or 12 M NaOH). The electro-deficient thiadiazole together with fully conjugated and planar skeleton endows sp2c-COF-ST with superior photoelectrochemical performance and charge-carrier separation and migration ability. As a result, when employed as a photocathode, sp2c-COF-ST exhibits a significant photocurrent up to ∼14.5 μA cm-2 at 0.3 V vs reversible hydrogen electrode (RHE) under visible-light irradiation (>420 nm), which is much higher than those analogous COFs with partial imine linkages (mix-COF-SNT ∼ 9.5 μA cm-2) and full imine linkages (imi-COF-SNNT ∼ 4.9 μA cm-2), emphasizing the importance of the structure-property relationships. Further temperature-dependent photoluminescence spectra and density functional theory calculations demonstrate that the sp2c-COF-ST has smaller exciton binding energy as well as effective mass in comparison to mix-COF-SNT and imi-COF-SNNT, which suggests that the sp2c-conjugated skeleton enhances the exciton dissociation and carrier migration under light irradiation. This work highlights the design and preparation of thiadiazole-bridged sp2c-COFs with promising photocatalytic performance.
Collapse
Affiliation(s)
- Guangen Fu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Denghui Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shunqi Xu
- Center for Advancing Electronics Dresden (CFAED) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden 01062, Germany
| | - Shengxu Li
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Yuxiang Zhao
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Haoyong Yang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Daheng Wu
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Petko Stoev Petkov
- Faculty of Chemistry and Pharmacy, University of Sofia, Sofia 1164, Bulgaria
| | - Zhi-An Lan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Tao Zhang
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
45
|
Xing F, Liu S, Li J, Wang C, Jin S, Jin H, Li J. Modulate the Strong Exciton Effect by Na + Coordination-Induced Trap States: Efficient Photocatalytic H 2O 2 Production. ACS APPLIED MATERIALS & INTERFACES 2024; 16:860-868. [PMID: 38151338 DOI: 10.1021/acsami.3c16110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Due to the strong Coulomb interaction, in most polymer photocatalysts, electron-hole pairs exist in the form of excitons rather than free charge carriers. The giant excitonic effect is a key obstacle to generating free charge carriers. Therefore, effectively regulating the exciton effect is the first step to achieving optimized carrier separation. Here, we used C-ring/g-C3N4 as the prototypical model system to design a photocatalyst with a Na-coordination-induced trap state. We demonstrate that the excitons can be effectively dissociated into charge carriers by combining with the trap state formed by Na doping sites. Encouragingly, signals from the dissociation of excitons into carriers were observed by ultrafast transient spectroscopy. Benefiting from the enhanced exciton dissociation, Na-C/CN displayed a H2O2 production rate of 17.4 mmol·L-1·h-1 with an apparent quantum efficiency up to 26.9% at 380 nm, which is much higher than many other g-C3N4-based photocatalysts. This work explains the effect of cation doping on the exciton-carrier behavior in polymers. Also, it provides a new way to regulate the exciton effect.
Collapse
Affiliation(s)
- Fangyuan Xing
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shiqiao Liu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Junyan Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Chengzhi Wang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shaohua Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Haibo Jin
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jingbo Li
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
46
|
Xu J, Liu W, Jiang L, Jing X, Liu LL, Li Z. Calix[4]arene-Derived 2D Covalent Organic Framework with an Electron Donor-Acceptor Structure: A Visible-Light-Driven Photocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304989. [PMID: 37626453 DOI: 10.1002/smll.202304989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/13/2023] [Indexed: 08/27/2023]
Abstract
The calixarenes are ideal building blocks for constructing photocatalytic covalent organic frameworks (COFs), owing to their electron-rich and bowl-shaped π cavities that endow them with electron-donating and adsorption properties. However, the synthesis and structural confirmation of COFs based on calixarenes are still challenging due to their structural flexibility and conformational diversity. In this study, a calix[4]arene-derived 2D COF is synthesized using 5,11,17,23-tetrakis(p-formyl)-25,26,27,28-tetrahydroxycalix[4]arene (CHO-C4A) as the electron donor and 4,7-bis(4-aminophenyl)-2,1,3-benzothiadiazole (BTD) as the acceptor. The powder X-ray diffraction data and theoretical simulation of crystal structure indicate that COF-C4A-BTD exhibits high crystallinity and features a non-interpenetrating undulating 2D layered structure with AA-stacking. The density functional theory theoretical calculation, transient-state photocurrent tests, and electrochemical impedance spectroscopy confirm the intramolecular charge transfer behavior of COF-C4A-BTD with a donor-acceptor structure, leading to its superior visible-light-driven photocatalytic activity. COF-C4A-BTD exhibits a narrow band gap of 1.99 eV and a conduction band energy of -0.37 V versus normal hydrogen electrode. The appropriate energy band structure can facilitate the participation of ·O2- and h+ . COF-C4A-BTD demonstrates high efficacy in removing organic pollutants, such as bisphenol A, rhodamine B, and methylene blue, with removal rates of 66%, 85%, and 99% respectively.
Collapse
Affiliation(s)
- Jialin Xu
- School of Environmental and Material Engineering, Yantai University, No.30 Qiangquan Road, Yantai, Shandong, 264005, China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, No.100 Lianhua Street, Zhengzhou, 450001, China
| | - Lisha Jiang
- School of Environmental and Material Engineering, Yantai University, No.30 Qiangquan Road, Yantai, Shandong, 264005, China
| | - Xiaofei Jing
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, No.5268 Renmin Street, Changchun, 130024, China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, No.30 Qiangquan Road, Yantai, Shandong, 264005, China
| | - Zhongyue Li
- School of Environmental and Material Engineering, Yantai University, No.30 Qiangquan Road, Yantai, Shandong, 264005, China
| |
Collapse
|
47
|
Zhang Z, Xu Y. Hydrothermal Synthesis of Highly Crystalline Zwitterionic Vinylene-Linked Covalent Organic Frameworks with Exceptional Photocatalytic Properties. J Am Chem Soc 2023; 145:25222-25232. [PMID: 37856866 DOI: 10.1021/jacs.3c08220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Ionic covalent organic frameworks (COFs) featuring both crystallinity and ionic characteristics have attracted tremendous attention in recent years. Compared with single anion- or cation-containing ionic COFs, zwitterionic COFs possess unique functionalities beyond single ionic COFs such as tunable charge density and superhydrophilic and highly ion-conductive characteristics, endowing them with huge potential in various applications. However, it remains a considerable challenge to directly synthesize robust, highly crystalline zwitterionic COFs from the original building blocks. Herein, we report a green hydrothermal synthesis strategy to prepare highly crystalline zwitterionic vinylene-linked COFs (ZVCOFs) from the predesigned zwitterionic building block by utilizing 4-dimethylaminopyridine (DMAP) as the high-efficiency catalyst for the first time. Detailed theoretical calculations and experiments revealed that both the high catalytic activity of DMAP and the unique role of water contributed to the formation of highly crystalline ZVCOFs. It was found that the participation of water could not only remarkably reduce the activation energy barrier and thus enhance the reaction reversibility but also enable the hydration of zwitterionic sites and facilitate ordered layered arrangement, which are favorable for the ZVCOF crystallization. Benefiting from the highly π-conjugated structure and hydrophilic characteristic, the obtained ZVCOFs achieved an ultrahigh sacrificial photocatalytic hydrogen evolution rate of 2052 μmol h-1 under visible light irradiation with an apparent quantum yield up to 47.1% at 420 nm, superior to nearly all COF-based photocatalysts ever reported. Moreover, the ZVCOFs could be deposited on a support as a photocatalytic film device, which demonstrated a remarkable photocatalytic performance of 402.1 mmol h-1 m-2 for hydrogen evolution.
Collapse
Affiliation(s)
- Zhao Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
48
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
49
|
Wang S, Wu T, Wu S, Guo J, He T, Wu Y, Yuan W, Zhang Z, Hua Y, Zhao Y. Cobaloxime-Integrated Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution Coupled with Alcohol Oxidation. Angew Chem Int Ed Engl 2023; 62:e202311082. [PMID: 37698088 DOI: 10.1002/anie.202311082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
We report an azide-functionalized cobaloxime proton-reduction catalyst covalently tethered into the Wurster-type covalent organic frameworks (COFs). The cobaloxime-modified COF photocatalysts exhibit enhanced photocatalytic activity for hydrogen evolution reaction (HER) in alcohol-containing solution with no presence of a typical sacrificial agent. The best performing cobaloxime-modified COF hybrid catalyzes hydrogen production with an average HER rate up to 38 μmol h-1 in ethanol/phosphate buffer solution under 4 h illumination. Ultrafast transient optical spectroscopy characterizations and charge carrier analysis reveal that the alcohol contents functioning as hole scavengers could be oxidized by the photogenerated holes of COFs to form aldehydes and protons. The consumption of the photogenerated holes thus suppresses exciton recombination of COFs and improves the ratio of free electrons that were effectively utilized to drive catalytic reaction for HER. This work demonstrates a great potential of COF-catalyzed HER using alcohol solvents as hole scavengers and provides an example toward realizing the accessibility to the scope of reaction conditions and a greener route for energy conversion.
Collapse
Affiliation(s)
- Shihuai Wang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Tai Wu
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, China
| | - Shuyang Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Jingjing Guo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ting He
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yinglong Wu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Wei Yuan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Zhengyang Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Yong Hua
- Yunnan Key Laboratory for Micro/Nano Materials & Technology, School of Materials and Energy, Yunnan University, Kunming, 650091, Yunnan, China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
50
|
Qin N, Mao A, Li L, Lin C, Zhai L, Liu J, Zou J, Cui CX, Mi L. Rational Design of Vinylene-Linked Covalent Organic Frameworks for Modulating Photocatalytic H 2 Evolution. CHEMSUSCHEM 2023; 16:e202300872. [PMID: 37466030 DOI: 10.1002/cssc.202300872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 07/20/2023]
Abstract
Vinylene-linked covalent organic frameworks (COFs) have attracted enormous attention for photocatalytic H2 evolution from water because of their fully conjugated structures, high chemical stabilities, and enhanced charge-carrier mobilities. In this work, two novel vinylene-linked COFs with tuned cyano contents were successfully synthesized and then employed as photocatalysts for H2 generation. Notably, the photocatalytic H2 production rate of the COF with the higher cyano content reached 73 μmol h-1 under visible light irradiation, which is 2.4 times higher than that with the lower content (30 μmol h-1 ). Both the experimental and computational results demonstrated that the rational design incorporating cyano groups into COF skeletons could precisely tune the corresponding energy levels, expand the visible-light absorption, and improve the photoinduced charge separation. This work not only provides a simple method for modulating the photocatalytic activities of COFs at the molecular level, but also affords interesting insights into the relationship between their structures and photocatalytic performance.
Collapse
Affiliation(s)
- Na Qin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Aojie Mao
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Linqiang Li
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Chao Lin
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Lipeng Zhai
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Jing Liu
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| | - Junhua Zou
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330029, P.R. China
| | - Cheng-Xing Cui
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, 453003, P. R. China
| | - Liwei Mi
- Henan Key Laboratory of Functional Salt Materials, Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou, 450007, P. R. China
| |
Collapse
|