1
|
Magnitov MD, Maresca M, Alonso Saiz N, Teunissen H, Dong J, Sathyan KM, Braccioli L, Guertin MJ, de Wit E. ZNF143 is a transcriptional regulator of nuclear-encoded mitochondrial genes that acts independently of looping and CTCF. Mol Cell 2025; 85:24-41.e11. [PMID: 39708805 PMCID: PMC11687419 DOI: 10.1016/j.molcel.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Gene expression is orchestrated by transcription factors, which function within the context of a three-dimensional genome. Zinc-finger protein 143 (ZNF143/ZFP143) is a transcription factor that has been implicated in both gene activation and chromatin looping. To study the direct consequences of ZNF143/ZFP143 loss, we generated a ZNF143/ZFP143 depletion system in mouse embryonic stem cells. Our results show that ZNF143/ZFP143 degradation has no effect on chromatin looping. Systematic analysis of ZNF143/ZFP143 occupancy data revealed that a commonly used antibody cross-reacts with CTCF, leading to its incorrect association with chromatin loops. Nevertheless, ZNF143/ZFP143 specifically activates nuclear-encoded mitochondrial genes, and its loss leads to severe mitochondrial dysfunction. Using an in vitro embryo model, we find that ZNF143/ZFP143 is an essential regulator of organismal development. Our results establish ZNF143/ZFP143 as a conserved transcriptional regulator of cell proliferation and differentiation by safeguarding mitochondrial activity.
Collapse
Affiliation(s)
- Mikhail D Magnitov
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michela Maresca
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Erasmus University MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Noemí Alonso Saiz
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Kizhakke M Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Luca Braccioli
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
2
|
An S, Hou S, Xu F, Yan H, Zhang W, Xiang J, Chen H, Zhang H, Dong L, Sun X, Huo R, Chen Y, Wang X, Yang Y. WDR36 Regulates Trophectoderm Differentiation During Human Preimplantation Embryonic Development Through Glycolytic Metabolism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412222. [PMID: 39656902 DOI: 10.1002/advs.202412222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/12/2024] [Indexed: 12/17/2024]
Abstract
Mammalian pre-implantation development is a complex process involving sophisticated regulatory dynamics. WD repeat domain 36 (WDR36) is known to play a critical role in mouse early embryonic development, but its regulatory function in human embryogenesis is still elusive due to limited access to human embryos. The human pluripotent stem cell-derived blastocyst-like structure, termed a blastoid, offers an alternative means to study human development in a dish. In this study, after verifying that WDR36 inhibition disrupted polarization in mouse early embryos, it is further demonstrated that WDR36 interference can block human blastoid formation, dominantly hindering the trophectoderm lineage commitment. Both transcriptomics and targeted metabolomics analyses revealed that WDR36 interference downregulated glucose metabolism. WDR36 can interact with glycolytic metabolic protein lactate dehydrogenase A (LDHA), thereby positively regulating glycolysis during the late stage of human blastoid formation. Taken together, the study has established a mechanistic connection between WDR36, glucose metabolism, and cell fate determination during early embryonic lineage commitment, which may provide potential insights into novel therapeutic targets for early adverse pregnancy interventions.
Collapse
Affiliation(s)
- Shiyu An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Shuyue Hou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Feifei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Huanyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Wenyi Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Jinfeng Xiang
- Fourth Clinical Medicine College, Nanjing Medical University, Nanjing, 210004, China
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Institute, Nanjing, 210004, China
| | - Haoran Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Hanwen Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Lingling Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Xiaobin Sun
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
| | - Yun Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Xi Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Department of Prenatal Diagnosis of the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yang Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China
- Innovation Center of Suzhou Nanjing Medical University, Suzhou, Jiangsu, 215000, China
| |
Collapse
|
3
|
Berg MD, Dean M. Membrane progesterone receptors mediate progesterone-stimulated glycogenolysis in the bovine uterine epithelium. Reproduction 2024; 168:e240174. [PMID: 39226129 PMCID: PMC11558801 DOI: 10.1530/rep-24-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
In livestock, the amount of glucose needed by the endometrium and embryo increases during early pregnancy. Yet, how glucose concentrations in the endometrium are regulated remains unclear. The bovine uterine epithelium can store glucose as glycogen, and glycogen content decreases in the luteal phase. Our objective was to elucidate the role of progesterone in glycogen breakdown in immortalized bovine uterine epithelial (BUTE) cells. After 48 h of treatment, progesterone decreased glycogen abundance in BUTE cells (P < 0.001) but did not alter glycogen phosphorylase levels. RU486, a nuclear progesterone receptor (nPR; part of the PAQR family) antagonist, did not block progesterone's effect, suggesting that progesterone acted through membrane progesterone receptors (mPRs). RT-PCR confirmed that BUTE cells express all five mPRs, and immunohistochemistry showed that the bovine uterine epithelium expresses mPRs in vivo. An mPRα agonist (Org OD 02-0) reduced glycogen abundance in BUTE cells (P < 0.001). Progesterone nor Org OD 02-0 affected cAMP concentrations. Progesterone increased phosphorylated AMP-activated protein kinase (pAMPK) levels (P < 0.001), indicating that progesterone increases intracellular AMP concentrations. However, AMPK did not mediate the effect of progesterone. AMP allosterically activates glycogen phosphorylase, and D942 (which increases intracellular AMP concentrations) decreased glycogen abundance in BUTE cells. A glycogen phosphorylase inhibitor partially blocked the effect of progesterone (P < 0.05). Progesterone and Org OD 02-0 had similar effects in Ishikawa cells (P < 0.01), a human cell line that lacks nPRs. In conclusion, progesterone stimulates glycogen breakdown in the uterine epithelium via mPR/AMP signaling. Glucose released from glycogen could support embryonic development or be metabolized by the uterine epithelium.
Collapse
Affiliation(s)
- Malia D Berg
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew Dean
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
4
|
Basanta S, Stadtmauer DJ, Maziarz JD, McDonough-Goldstein CE, Cole AG, Dagdas G, Wagner GP, Pavličev M. Hallmarks of uterine receptivity predate placental mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621939. [PMID: 39574771 PMCID: PMC11580939 DOI: 10.1101/2024.11.04.621939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Embryo implantation requires tightly coordinated signaling between the blastocyst and the endometrium, and is crucial for the establishment of a uteroplacental unit that persists until term in eutherian mammals. In contrast, marsupials, with a unique life cycle and short gestation, make only brief fetal-maternal contact and lack implantation. To better understand the evolutionary link between eutherian implantation and its ancestral equivalent in marsupials, we compare single-cell transcriptomes from the receptive and non-receptive endometrium of the mouse and guinea pig with that of the opossum, a marsupial. We identify substantial differences between rodent peri-implantation endometrium and opossum placental attachment, including differences in the diversity and abundance of stromal and epithelial cells which parallel the difference between histotrophic and hemotrophic provisioning strategies. We also identify a window of conserved epithelial gene expression between the opossum shelled blastocyst stage and rodent peri-implantation, including IHH and LIF . We find strong conservation of blastocyst proteases, steroid synthetases, Wnt and BMP signals between eutherians and the opossum despite its lack of implantation. Finally, we show that the signaling repertoire of the maternal uterine epithelium during implantation displays substantial overlap with that of the post-implantation placental trophoblast, suggesting that the fetal trophoblast can compensate for the loss of endometrial epithelium in eutherian invasive placentation. Together, our results suggest that eutherian implantation primarily involved the re-wiring of maternal signaling networks, some of which were already present in the therian ancestor, and points towards an essential role of maternal innovations in the evolution of invasive placentation.
Collapse
Affiliation(s)
- Silvia Basanta
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Daniel J. Stadtmauer
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Jamie D. Maziarz
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | - Caitlin E. McDonough-Goldstein
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Integrative Biology, University of Wisconsin-Madison, WI, USA
| | - Alison G. Cole
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Gülay Dagdas
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
| | - Günter P. Wagner
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Mihaela Pavličev
- Department of Evolutionary Biology, University of Vienna, Vienna, Austria
- Complexity Science Hub Vienna, Vienna, Austria
| |
Collapse
|
5
|
Hutchinson AM, Appeltant R, Burdon T, Bao Q, Bargaje R, Bodnar A, Chambers S, Comizzoli P, Cook L, Endo Y, Harman B, Hayashi K, Hildebrandt T, Korody ML, Lakshmipathy U, Loring JF, Munger C, Ng AHM, Novak B, Onuma M, Ord S, Paris M, Pask AJ, Pelegri F, Pera M, Phelan R, Rosental B, Ryder OA, Sukparangsi W, Sullivan G, Tay NL, Traylor-Knowles N, Walker S, Weberling A, Whitworth DJ, Williams SA, Wojtusik J, Wu J, Ying QL, Zwaka TP, Kohler TN. Advancing stem cell technologies for conservation of wildlife biodiversity. Development 2024; 151:dev203116. [PMID: 39382939 PMCID: PMC11491813 DOI: 10.1242/dev.203116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Wildlife biodiversity is essential for healthy, resilient and sustainable ecosystems. For biologists, this diversity also represents a treasure trove of genetic, molecular and developmental mechanisms that deepen our understanding of the origins and rules of life. However, the rapid decline in biodiversity reported recently foreshadows a potentially catastrophic collapse of many important ecosystems and the associated irreversible loss of many forms of life on our planet. Immediate action by conservationists of all stripes is required to avert this disaster. In this Spotlight, we draw together insights and proposals discussed at a recent workshop hosted by Revive & Restore, which gathered experts to discuss how stem cell technologies can support traditional conservation techniques and help protect animal biodiversity. We discuss reprogramming, in vitro gametogenesis, disease modelling and embryo modelling, and we highlight the prospects for leveraging stem cell technologies beyond mammalian species.
Collapse
Affiliation(s)
| | - Ruth Appeltant
- Gamete Research Centre, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Burdon
- The Roslin Institute, RDSVS, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Qiuye Bao
- IMCB-ESCAR, A*STAR, 61 Biopolis Drive, Proteos, 138673Singapore
| | | | - Andrea Bodnar
- Gloucester Marine Genomics Institute, 417 Main St, Gloucester, MA 01930, USA
| | - Stuart Chambers
- Brightfield Therapeutics, South San Francisco, CA 94080, USA
| | - Pierre Comizzoli
- Smithsonian National Zoo and Conservation Biology Institute, 3001 Connecticut Ave., NW Washington, DC 20008, USA
| | - Laura Cook
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, USA
| | - Yoshinori Endo
- University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | - Bob Harman
- Vet-Stem Inc. & Personalized Stem Cells, Inc., 14261 Danielson Street, Poway, CA 92064, USA
| | | | - Thomas Hildebrandt
- Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Marisa L. Korody
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Uma Lakshmipathy
- Thermo Fisher Scientific, 168 Third Avenue, Waltham, MA 02451, USA
| | - Jeanne F. Loring
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Clara Munger
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Alex H. M. Ng
- GC Therapeutics, 610 Main St., North Cambridge, MA 02139, USA
| | - Ben Novak
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Manabu Onuma
- National Institute for Environmental Studies, 16-2 Onogawa, City of Tsukuba, Ibaraki 305-8506, Japan
| | - Sara Ord
- Colossal Biosciences, 1401 Lavaca St, Unit #155 Austin, TX 78701, USA
| | - Monique Paris
- IBREAM (Institute for Breeding Rare and Endangered African Mammals), Edinburgh EH3 6AT, UK
| | | | - Francisco Pelegri
- University of Wisconsin-Madison, 500 Lincoln Dr, Madison, WI 53706, USA
| | - Martin Pera
- Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Ryan Phelan
- Revive & Restore, 1505 Bridgeway, Suite 203, Sausalito, CA 94965, USA
| | - Benyamin Rosental
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Sciences, Center for Regenerative Medicine and Stem Cells, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Oliver A. Ryder
- San Diego Zoo Wildlife Alliance, 2920 Zoo Dr, San Diego, CA 92101, USA
| | - Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, 169 Long-Had Bangsaen Rd, Saen Suk, Chon Buri District, Chon Buri 20131, Thailand
| | - Gareth Sullivan
- Department of Pediatric Research, Oslo University Hospital, P.O. Box 4950 Nydalen, N-0424 Oslo, Norway
- School of Medicine, University of St Andrews, North Haugh, St Andrews KY16 9TF, UK
| | | | - Nikki Traylor-Knowles
- Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami,4600, Rickenbacker Cswy, Key Biscayne, FL 33149, USA
| | - Shawn Walker
- ViaGen Pets & Equine, PO Box 1119, Cedar Park, TX 78613, USA
| | | | - Deanne J. Whitworth
- University of Queensland, Sir Fred Schonell Drive, Brisbane, Queensland, 4072, Australia
| | | | - Jessye Wojtusik
- Omaha's Henry Doorly Zoo & Aquarium, 3701 S 10th St, Omaha, NE 68107, USA
| | - Jun Wu
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Qi-Long Ying
- Keck School of Medicine of University of Southern California, 1975 Zonal Ave, Los Angeles, CA 90033, USA
| | - Thomas P. Zwaka
- Department of Cell, Developmental, and Regenerative Biology, and Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Timo N. Kohler
- Department of Biochemistry, University of Cambridge, Hopkins Building, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
6
|
Cao D, Bergmann J, Zhong L, Hemalatha A, Dingare C, Jensen T, Cox AL, Greco V, Steventon B, Sozen B. Selective utilization of glucose metabolism guides mammalian gastrulation. Nature 2024; 634:919-928. [PMID: 39415005 PMCID: PMC11499262 DOI: 10.1038/s41586-024-08044-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/12/2024] [Indexed: 10/18/2024]
Abstract
The prevailing dogma for morphological patterning in developing organisms argues that the combined inputs of transcription factor networks and signalling morphogens alone generate spatially and temporally distinct expression patterns. However, metabolism has also emerged as a critical developmental regulator1-10, independent of its functions in energy production and growth. The mechanistic role of nutrient utilization in instructing cellular programmes to shape the in vivo developing mammalian embryo remains unknown. Here we reveal two spatially resolved, cell-type- and stage-specific waves of glucose metabolism during mammalian gastrulation by using single-cell-resolution quantitative imaging of developing mouse embryos, stem cell models and embryo-derived tissue explants. We identify that the first spatiotemporal wave of glucose metabolism occurs through the hexosamine biosynthetic pathway to drive fate acquisition in the epiblast, and the second wave uses glycolysis to guide mesoderm migration and lateral expansion. Furthermore, we demonstrate that glucose exerts its influence on these developmental processes through cellular signalling pathways, with distinct mechanisms connecting glucose with the ERK activity in each wave. Our findings underscore that-in synergy with genetic mechanisms and morphogenic gradients-compartmentalized cellular metabolism is integral in guiding cell fate and specialized functions during development. This study challenges the view of the generic and housekeeping nature of cellular metabolism, offering valuable insights into its roles in various developmental contexts.
Collapse
Affiliation(s)
- Dominica Cao
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Jenna Bergmann
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Liangwen Zhong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Anupama Hemalatha
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Chaitanya Dingare
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, UK
| | - Tyler Jensen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- MD-PhD Program, Yale University, New Haven, CT, USA
| | - Andy L Cox
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA
- Yale Stem Cell Center, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin Steventon
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, UK
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University, New Haven, CT, USA.
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Garge RK, Lynch V, Fields R, Casadei S, Best S, Stone J, Snyder M, McGann CD, Shendure J, Starita LM, Hamazaki N, Schweppe DK. The proteomic landscape and temporal dynamics of mammalian gastruloid development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.609098. [PMID: 39282277 PMCID: PMC11398484 DOI: 10.1101/2024.09.05.609098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Gastrulation is the highly coordinated process by which the early embryo breaks symmetry, establishes germ layers and a body plan, and sets the stage for organogenesis. As early mammalian development is challenging to study in vivo, stem cell-derived models have emerged as powerful surrogates, e.g. human and mouse gastruloids. However, although single cell RNA-seq (scRNA-seq) and high-resolution imaging have been extensively applied to characterize such in vitro embryo models, a paucity of measurements of protein dynamics and regulation leaves a major gap in our understanding. Here, we sought to address this by applying quantitative proteomics to human and mouse gastruloids at four key stages of their differentiation (naïve ESCs, primed ESCs, early gastruloids, late gastruloids). To the resulting data, we perform network analysis to map the dynamics of expression of macromolecular protein complexes and biochemical pathways, including identifying cooperative proteins that associate with them. With matched RNA-seq and phosphosite data from these same stages, we investigate pathway-, stage- and species-specific aspects of translational and post-translational regulation, e.g. finding peri-gastrulation stages of human and mice to be discordant with respect to the mitochondrial transcriptome vs. proteome, and nominating novel kinase-substrate relationships based on phosphosite dynamics. Finally, we leverage correlated dynamics to identify conserved protein networks centered around congenital disease genes. Altogether, our data (https://gastruloid.brotmanbaty.org/) and analyses showcase the potential of intersecting in vitro embryo models and proteomics to advance our understanding of early mammalian development in ways not possible through transcriptomics alone.
Collapse
Affiliation(s)
- Riddhiman K. Garge
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Valerie Lynch
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Rose Fields
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Silvia Casadei
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Sabrina Best
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Jeremy Stone
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Matthew Snyder
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Chris D. McGann
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Lea M. Starita
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
- Seattle Hub for Synthetic Biology, Seattle, Washington, USA
| | - Devin K. Schweppe
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
- Brotman Baty Institute for Precision Medicine, Seattle, Washington, USA
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Pan B, Qin J, Du K, Zhang L, Jia G, Ye J, Liang Q, Yang Q, Zhou G. Integrated ultrasensitive metabolomics and single-cell transcriptomics identify crucial regulators of sheep oocyte maturation and early embryo development in vitro. J Adv Res 2024:S2090-1232(24)00381-3. [PMID: 39233000 DOI: 10.1016/j.jare.2024.08.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024] Open
Abstract
INTRODUCTION Developmental competence of oocytes matured in vitro is limited due to a lack of complete understanding of metabolism and metabolic gene expression during oocyte maturation and embryo development. Conventional metabolic analysis requires a large number of samples and is not efficiently applicable in oocytes and early embryos, thereby posing challenges in identifying key metabolites and regulating their in vitro culture system. OBJECTIVES To enhance the developmental competence of sheep oocytes, this study aimed to identify and supplement essential metabolites that were deficient in the culture systems. METHODS The metabolic characteristics of oocytes and embryos were determined using ultrasensitive metabolomics analysis on trace samples and single-cell RNA-seq. By conducting integrated analyses of metabolites in cells (oocytes and embryos) and their developmental microenvironment (follicular fluid, oviductal fluid, and in vitro culture systems), we identified key missing metabolites in the in vitro culture systems. In order to assess the impact of these key missing metabolites on oocyte development competence, we performed in vitro culture experiments. Furthermore, omics analyses were employed to elucidate the underlying mechanisms. RESULTS Our findings demonstrated that betaine, carnitine and creatine were the key missing metabolites in vitro culture systems and supplementation of betaine and L-carnitine significantly improved the blastocyst formation rate (67.48% and 48.61%). Through in vitro culture experiments and omics analyses, we have discovered that L-carnitine had the potential to promote fatty acid oxidation, reduce lipid content and lipid peroxidation level, and regulate spindle morphological grade through fatty acid degradation pathway. Additionally, betaine may participate in methylation modification and osmotic pressure regulation, thereby potentially improving oocyte maturation and early embryo development in sheep. CONCLUSION Together, these analyses identified key metabolites that promote ovine oocyte maturation and early embryo development, while also providing a new viewpoint to improve clinical applications such as oocyte maturation or embryo culture.
Collapse
Affiliation(s)
- Bo Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - JianPeng Qin
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - KunLin Du
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - LuYao Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - GongXue Jia
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China
| | - JiangFeng Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China
| | - QiuXia Liang
- College of Life Science, Sichuan Agricultural University, Sichuan, Ya'an 625014, PR China
| | - QiEn Yang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Qinghai Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Qinghai, Xining 810001, PR China.
| | - GuangBin Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multiomics, Ministry of Agriculture and Rural Affairs, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Sichuan, Chengdu 611130, PR China.
| |
Collapse
|
9
|
Traut M, Kowalczyk-Zieba I, Boruszewska D, Jaworska J, Gąsiorowska S, Lukaszuk K, Ropka-Molik K, Piórkowska K, Szmatoła T, Woclawek-Potocka I. Deregulation of oxidative phosphorylation pathways in embryos derived in vitro from prepubertal and pubertal heifers based on whole-transcriptome sequencing. BMC Genomics 2024; 25:632. [PMID: 38914933 PMCID: PMC11197288 DOI: 10.1186/s12864-024-10532-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Although, oocytes from prepubertal donors are known to be less developmentally competent than those from adult donors it does not restrain their ability to produce full-term pregnancies. The transcriptomic profile of embryos could be used as a predictor for embryo's individual developmental competence. The aim of the study was to compare transcriptomic profile of blastocysts derived from prepubertal and pubertal heifers oocytes. Bovine cumulus-oocyte complexes (COCs) were obtained by ovum pick- up method from prepubertal and pubertal heifers. After in vitro maturation COCs were fertilized and cultured to the blastocyst stage. Total RNA was isolated from both groups of blastocysts and RNA-seq was performed. Gene ontology analysis was performed by DAVID (Database for Annotation, Visualization and Integrated Discovery). RESULTS A higher average blastocyst rate was obtained in the pubertal than in the pre-pubertal group. There were no differences in the quality of blastocysts between the examined groups. We identified 436 differentially expressed genes (DEGs) between blastocysts derived from researched groups, of which 247 DEGs were downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes, and 189 DEGs were upregulated. The genes involved in mitochondrial function, including oxidative phosphorylation (OXPHOS) were found to be different in studied groups using Kyoto Encyclopedia of Genes (KEGG) pathway analysis and 8 of those DEGs were upregulated and 1 was downregulated in blastocysts derived from pubertal compared to prepubertal heifers oocytes. DEGs associated with mitochondrial function were found: ATP synthases (ATP5MF-ATP synthase membrane subunit f, ATP5PD- ATP synthase peripheral stalk subunit d, ATP12A- ATPase H+/K + transporting non-gastric alpha2 subunit), NADH dehydrogenases (NDUFS3- NADH: ubiquinone oxidoreductase subunit core subunit S3, NDUFA13- NADH: ubiquinone oxidoreductase subunit A13, NDUFA3- NADH: ubiquinone oxidoreductase subunit A3), cytochrome c oxidase (COX17), cytochrome c somatic (CYCS) and ubiquinol cytochrome c reductase core protein 1 (UQCRC1). We found lower number of apoptotic cells in blastocysts derived from oocytes collected from prepubertal than those obtained from pubertal donors. CONCLUSIONS Despite decreased expression of genes associated with OXPHOS pathway in blastocysts from prepubertal heifers oocytes, the increased level of ATP12A together with the lower number of apoptotic cells in these blastocysts might support their survival after transfer.
Collapse
Affiliation(s)
- Milena Traut
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Dorota Boruszewska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Joanna Jaworska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Sandra Gąsiorowska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland
| | - Krzysztof Lukaszuk
- Department of Obstetrics and Gynecology Nursing, Medical University of Gdansk, Gdansk, 80-210, Poland
- Invicta Research and Development Center, Sopot, 81-740, Poland
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
| | - Tomasz Szmatoła
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1 St, Balice, 32-083, Poland
- Center for Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, Krakow, 30-248, Poland
| | - Izabela Woclawek-Potocka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, 10-747, Poland.
| |
Collapse
|
10
|
Leese HJ, Sturmey RG. Determinants of thermal homeostasis in the preimplantation embryo: a role for the embryo's central heating system? J Assist Reprod Genet 2024; 41:1475-1480. [PMID: 38717600 PMCID: PMC11224206 DOI: 10.1007/s10815-024-03130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/26/2024] [Indexed: 07/05/2024] Open
Abstract
A number of factors may impinge on thermal homeostasis in the early embryo. The most obvious is the ambient temperature in which development occurs. Physiologically, the temperature in the lumen of the female tract is typically lower than the core body temperature, yet rises at ovulation in the human, while in an IVF setting, embryos are usually maintained at core body temperature. However, internal cellular developmental processes may modulate thermal control within the embryo itself, especially those occurring in the mitochondria which generate intracellular heat through proton leak and provide the embryo with its own 'central heating system'. Moreover, mitochondrial movements may serve to buffer high local intracellular temperatures. It is also notable that the preimplantation stages of development would generate proportionally little heat within their mitochondria until the blastocyst stage as mitochondrial metabolism is comparatively low during the cleavage stages. Despite these data, the specific notion of thermal control of preimplantation development has received remarkably scant consideration. This opinion paper illustrates the lack of reliable quantitative data on these markers and identifies a major research agenda which needs to be addressed with urgency in view of laboratory conditions in which embryos are maintained as well as climate change-derived heat stress which has a negative effect on numerous clinical markers of early human embryo development.
Collapse
Affiliation(s)
- Henry J Leese
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK
| | - Roger G Sturmey
- Biomedical Institute for Multimorbidity, Hull York Medical School, University of Hull, Hull, HU6 7RX, UK.
| |
Collapse
|
11
|
Ye J, Xu Y, Ren Q, Liu L, Sun Q. Nutrient deprivation induces mouse embryonic diapause mediated by Gator1 and Tsc2. Development 2024; 151:dev202091. [PMID: 38603796 DOI: 10.1242/dev.202091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 02/20/2024] [Indexed: 04/13/2024]
Abstract
Embryonic diapause is a special reproductive phenomenon in mammals that helps embryos to survive various harsh stresses. However, the mechanisms of embryonic diapause induced by the maternal environment is still unclear. Here, we uncovered that nutrient deficiency in uterine fluid was essential for the induction of mouse embryonic diapause, shown by a decreased concentration of arginine, leucine, isoleucine, lysine, glucose and lactate in the uterine fluid of mice suffering from maternal starvation or ovariectomy. Moreover, mouse blastocysts cultured in a medium with reduced levels of these six components could mimic diapaused blastocysts. Our mechanistic study indicated that amino acid starvation-dependent Gator1 activation and carbohydrate starvation-dependent Tsc2 activation inhibited mTORC1, leading to induction of embryonic diapause. Our study elucidates the essential environmental factors in diapause induction.
Collapse
Affiliation(s)
- Jiajia Ye
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuting Xu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Ren
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lu Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
12
|
Li P, Gao S, Qu W, Li Y, Liu Z. Chemo-Selective Single-Cell Metabolomics Reveals the Spatiotemporal Behavior of Exogenous Pollutants During Xenopus Laevis Embryogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305401. [PMID: 38115758 PMCID: PMC10916618 DOI: 10.1002/advs.202305401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/20/2023] [Indexed: 12/21/2023]
Abstract
In-depth profiling of embryogenesis-associated endogenous and exogenous metabolic changes can reveal potential bio-effects resulting from human-made chemicals and underlying mechanisms. Due to the lack of potent tools for monitoring spatiotemporal distribution and bio-transformation behavior of dynamic metabolites at single-cell resolution, however, how and to what extent environmental chemicals may influence or interfere embryogenesis largely remain unclear. Herein, a zero-sample-loss micro-biopsy-based mass spectrometric platform is presented for quantitative, chemo-selective, high-coverage, and minimal-destructive profiling of development-associated cis-diol metabolites, which are critical for signal transduction and epigenome regulation, at both cellular level and tissue level of Xenopus laevis. Using this platform, three extraordinary findings that are otherwise hard to achieve are revealed: 1) there are characteristically different cis-diol metabolic signatures among oocytes, anterior and posterior part of tailbud-stage embryos; 2) halogenated cis-diols heavily accumulate at the posterior part of tailbud-stage embryos of Xenopus laevis; 3) dimethachlon, a kind of exogenous fungicide that is widely used as pesticide, may be bio-transformed and accumulated in vertebrate animals in environment. Thus, this study opens a new avenue to simultaneously monitoring intercellular and intraembryonic heterogeneity of endogenous and exogenous metabolites, providing new insights into metabolic remolding during embryogenesis and putting a warning on potential environmental risk.
Collapse
Affiliation(s)
- Pengfei Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Song Gao
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Wanting Qu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Ying Li
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life ScienceSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjingJiangsu210023China
| |
Collapse
|
13
|
Hu B, Jin H, Shi Y, Yu H, Wu X, Wang S, Zhang K. Single-cell RNA-Seq reveals the earliest lineage specification and X chromosome dosage compensation in bovine preimplantation embryos. FASEB J 2024; 38:e23492. [PMID: 38363564 DOI: 10.1096/fj.202302035rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
Lineage specification and X chromosome dosage compensation are two crucial biological processes that occur during preimplantation embryonic development. Although extensively studied in mice, the timing and regulation of these processes remain elusive in other species, including humans. Previous studies have suggested conserved principles of human and bovine early development. This study aims to provide fundamental insights into these programs and the regulation using a bovine embryo model by employing single-cell transcriptomics and genome editing approaches. The study analyzes the transcriptomes of 286 individual cells and reveals that bovine trophectoderm/inner cell mass transcriptomes diverge at the early blastocyst stage, after cavitation but before blastocyst expansion. The study also identifies transcriptomic markers and provides the timing of lineage specification events in the bovine embryo. Importantly, we find that SOX2 is required for the first cell decision program in bovine embryos. Moreover, the study shows the occurrence of X chromosome dosage compensation from morula to late blastocyst and reveals that this compensation results from downregulation of X-linked genes in female embryonic cells. The transcriptional atlas generated by this study is expected to be widely useful in improving our understanding of mammalian early embryo development.
Collapse
Affiliation(s)
- Bingjie Hu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hao Jin
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yan Shi
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haotian Yu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaotong Wu
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shaohua Wang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kun Zhang
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Gou R, Zhang X. Glycolysis: A fork in the path of normal and pathological pregnancy. FASEB J 2023; 37:e23263. [PMID: 37889786 DOI: 10.1096/fj.202301230r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/17/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023]
Abstract
Glucose metabolism is vital to the survival of living organisms. Since the discovery of the Warburg effect in the 1920s, glycolysis has become a major research area in the field of metabolism. Glycolysis has been extensively studied in the field of cancer and is considered as a promising therapeutic target. However, research on the role of glycolysis in pregnancy is limited. Recent evidence suggests that blastocysts, trophoblasts, decidua, and tumors all acquire metabolic energy at specific stages in a highly similar manner. Glycolysis, carefully controlled throughout pregnancy, maintains a dynamic and coordinated state, so as to maintain the homeostasis of the maternal-fetal interface and ensure normal gestation. In the present review, we investigate metabolic remodeling and the selective propensity of the embryo and placenta for glycolysis. We then address dysregulated glycolysis that occurs in the cellular interactive network at the maternal-fetal interface in miscarriage, preeclampsia, fetal growth restriction, and gestational diabetes mellitus. We provide new insights into the field of maternal-fetal medicine from a metabolic perspective, thus revealing the mystery of human pregnancy.
Collapse
Affiliation(s)
- Rui Gou
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| | - Xiaohong Zhang
- Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing, P.R. China
| |
Collapse
|
15
|
Pérez-Sánchez M, Pardiñas ML, Díez-Juan A, Quiñonero A, Domínguez F, Martin A, Vidal C, Beltrán D, Mifsud A, Mercader A, Pellicer A, Cobo A, de Los Santos MJ. The effect of vitrification on blastocyst mitochondrial DNA dynamics and gene expression profiles. J Assist Reprod Genet 2023; 40:2577-2589. [PMID: 37801195 PMCID: PMC10643482 DOI: 10.1007/s10815-023-02952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
PURPOSE Does vitrification/warming affect the mitochondrial DNA (mtDNA) content and the gene expression profile of blastocysts? METHODS Prospective cohort study in which 89 blastocysts were obtained from 50 patients between July 2017 and August 2018. mtDNA was measured in a total of 71 aneuploid blastocysts by means of real-time polymerase chain reaction (RT-PCR). Transcriptomic analysis was performed by RNA sequencing (RNA-seq) in an additional 8 aneuploid blastocysts cultured for 0 h after warming, and 10 aneuploid blastocysts cultured for 4-5 h after warming. RESULTS A significant decrease in mtDNA content just during the first hour after the warming process in blastocysts was found (P < 0.05). However, mtDNA content experimented a significantly increased along the later culture hours achieving the original mtDNA levels before vitrification after 4-5 h of culture (P < 0.05). Gene expression analysis and functional enrichment analysis revealed that such recovery was accompanied by upregulation of pathways associated with embryo developmental capacity and uterine embryo development. Interestingly, the significant increase in mtDNA content observed in blastocysts just after warming also coincided with the differential expression of several cellular stress response-related pathways, such as apoptosis, DNA damage, humoral immune responses, and cancer. CONCLUSION To our knowledge, this is the first study demonstrating in humans, a modulation in blastocysts mtDNA content in response to vitrification and warming. These results will be useful in understanding which pathways and mechanisms may be activated in human blastocysts following vitrification and warming before a transfer.
Collapse
Affiliation(s)
- Marta Pérez-Sánchez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Maria Luisa Pardiñas
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Antonio Díez-Juan
- Department of Research, Igenomix, Parque Tecnológico, Rda. de Narcís Monturiol, nº11, B, 46980, Paterna, Valencia, Spain
| | - Alicia Quiñonero
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Francisco Domínguez
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Angel Martin
- IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Avenida Fernando Abril Martorell, 106 - Torre A, Planta 1ª, 46026, Valencia, Spain
| | - Carmina Vidal
- Department of Gynaecology, IVIRMA Global, Plaça de La Policía Local, 3, Valencia, 46015, Spain
| | - Diana Beltrán
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mifsud
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Amparo Mercader
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | - Antonio Pellicer
- Department of Gynaecology, IVIRMA Global, Largo Ildebrando Pizzetti, 1, Rome, 00197, Italy
| | - Ana Cobo
- IVF Laboratory, IVIRMA Global, Plaça de La Policía Local, 3, 46015, Valencia, Spain
| | | |
Collapse
|
16
|
Chen Z, Dean M. Endometrial Glucose Metabolism During Early Pregnancy. REPRODUCTION AND FERTILITY 2023; 4:RAF-23-0016. [PMID: 37934727 PMCID: PMC10762551 DOI: 10.1530/raf-23-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 11/07/2023] [Indexed: 11/09/2023] Open
Abstract
Approximately 50% of human pregnancies humans fail, most before or during implantation. One factor contributing to pregnancy loss is abnormal glucose metabolism in the endometrium. Glucose contributes to preimplantation embryo development, uterine receptivity, and attachment of the embryo. Across multiple species, the epithelium stores glucose as the macromolecule glycogen at estrus. This reserve is mobilized during the preimplantation period. Glucose from circulation or glycogenolysis can be secreted into the uterine lumen for use by the embryo or metabolized via glycolysis, producing ATP for the cell. The resulting pyruvate could be converted to lactate, another important nutrient for the embryo. Fructose is an important nutrient for early embryos, and the epithelium and placenta can convert glucose to fructose via the polyol pathway. The epithelium also uses glucose to glycosylate proteins, which regulates embryo attachment. In some species, decidualization of the stroma is critical to successful implantation. Formation of the decidua requires increased glucose metabolism via the pentose phosphate pathway and glycolysis. After decidualization, the cells switch to aerobic glycolysis to produce ATP. Paradoxically, the decidua also stores large amounts of glucose as glycogen. Too little glucose or an inability to take up glucose impairs embryo development and decidualization. Conversely, too much glucose inhibits these same processes. This likely contributes to the reduced pregnancy rates associated with conditions like obesity and diabetes. Collectively, precise control of glucose metabolism is important for several endometrial processes required to establish a successful pregnancy. The factors regulating these metabolic processes remain poorly understood.
Collapse
Affiliation(s)
- Ziting Chen
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Dean
- Department of Animal Science, University of Illinois, Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
17
|
Wei X, Fang X, Yu X, Li H, Guo Y, Qi Y, Sun C, Han D, Liu X, Li N, Hu H. Integrative analysis of single-cell embryo data reveals transcriptome signatures for the human pre-implantation inner cell mass. Dev Biol 2023; 502:39-49. [PMID: 37437860 DOI: 10.1016/j.ydbio.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
As the source of embryonic stem cells (ESCs), inner cell mass (ICM) can form all tissues of the embryo proper, however, its role in early human lineage specification remains controversial. Although a stepwise differentiation model has been proposed suggesting the existence of ICM as a distinct developmental stage, the underlying molecular mechanism remains unclear. In the present study, we perform an integrated analysis on the public human preimplantation embryonic single-cell transcriptomic data and apply a trajectory inference algorithm to measure the cell plasticity. In our results, ICM population can be clearly discriminated on the dimension-reduced graph and confirmed by compelling evidences, thus validating the two-step hypothesis of lineage commitment. According to the branch probabilities and differentiation potential, we determine the precise time points for two lineage segregations. Further analysis on gene expression dynamics and regulatory network indicates that transcription factors including GSC, PRDM1, and SPIC may underlie the decisions of ICM fate. In addition, new human ICM marker genes, such as EPHA4 and CCR8 are discovered and validated by immunofluorescence. Given the potential clinical applications of ESCs, our analysis provides a further understanding of human ICM cells and facilitates the exploration of more unique characteristics in early human development.
Collapse
Affiliation(s)
- Xinshu Wei
- School of Medicine, South China University of Technology, Guangzhou, China; Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Xiang Fang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, China
| | - Xiu Yu
- School of Medicine, Jiaying University, Meizhou, 514015, China; Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hong Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yuyang Guo
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Yifei Qi
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Chuanbo Sun
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Dingding Han
- Department of Clinical Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200062, China
| | - Xiaonan Liu
- Department of Assisted Reproductive Technology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China
| | - Na Li
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China.
| | - Hao Hu
- Laboratory of Medical Systems Biology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, 510623, China; Provincial Key Laboratory of Research in Structure Birth Defect Disease and Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China; Third Affiliatied Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
18
|
Cao D, Zhong L, Hemalatha A, Bergmann J, Cox AL, Greco V, Sozen B. A Spatiotemporal Compartmentalization of Glucose Metabolism Guides Mammalian Gastrulation Progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543780. [PMID: 37333168 PMCID: PMC10274656 DOI: 10.1101/2023.06.06.543780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Gastrulation is considered the sine qua non of embryogenesis, establishing a multidimensional structure and the spatial coordinates upon which all later developmental events transpire. At this time, the embryo adopts a heavy reliance on glucose metabolism to support rapidly accelerating changes in morphology, proliferation, and differentiation. However, it is currently unknown how this conserved metabolic shift maps onto the three-dimensional landscape of the growing embryo and whether it is spatially linked to the orchestrated cellular and molecular processes necessary for gastrulation. Here we identify that glucose is utilised during mouse gastrulation via distinct metabolic pathways to instruct local and global embryonic morphogenesis, in a cell type and stage-specific manner. Through detailed mechanistic studies and quantitative live imaging of mouse embryos, in parallel with tractable in vitro stem cell differentiation models and embryo-derived tissue explants, we discover that cell fate acquisition and the epithelial-to-mesenchymal transition (EMT) relies on the Hexosamine Biosynthetic Pathway (HBP) branch of glucose metabolism, while newly-formed mesoderm requires glycolysis for correct migration and lateral expansion. This regional and tissue-specific difference in glucose metabolism is coordinated with Fibroblast Growth Factor (FGF) activity, demonstrating that reciprocal crosstalk between metabolism and growth factor signalling is a prerequisite for gastrulation progression. We expect these studies to provide important insights into the function of metabolism in other developmental contexts and may help uncover mechanisms that underpin embryonic lethality, cancer, and congenital disease.
Collapse
Affiliation(s)
- Dominica Cao
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
| | - Liangwen Zhong
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
| | - Anupama Hemalatha
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
| | - Jenna Bergmann
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
| | - Andy L. Cox
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
- Yale Stem Cell Center, Yale University, New Haven, CT 06520
| | - Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06520
- Yale Stem Cell Center, Yale University, New Haven, CT 06520
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06520
| |
Collapse
|
19
|
Ju J, Wu X, Mao W, Zhang C, Ge W, Wang Y, Ma S, Zhu Y. The growth toxicity and neurotoxicity mechanism of waterborne TBOEP to nematodes: Insights from transcriptomic and metabolomic profiles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106401. [PMID: 36736151 DOI: 10.1016/j.aquatox.2023.106401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 12/29/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Tris(2-butoxy) ethyl phosphate (TBOEP) is a typical organophosphorus flame retardant (OPFR), which has been detected in natural water bodies and drinking water and has reached a certain concentration. As a new type of organic pollutant, the environmental health risk of TBOEP needs to be assessed urgently. Here, Caenorhabditis elegans were exposed to 0, 50, 500, and 5000 ng/L TBOEP in water for 72 h. The results showed that TBOEP exposure caused concentration-dependent inhibition to the growth of nematodes, while exposure to 5000 ng/L TBOEP significantly inhibited the locomotor behavior of nematodes. Transcriptomic and metabolomic analysis showed that the disturbances in neurotransmitter transmission and amino acid, carbohydrate, and lipid metabolism were the reason for the neurotoxicity and growth toxicity of TBOEP to nematodes. These results provide basic data and a theoretical basis for evaluating the environmental health risks of organophosphorus flame retardants.
Collapse
Affiliation(s)
- Jingjuan Ju
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xinyue Wu
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Weiya Mao
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Chenran Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Wenjie Ge
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yiran Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Siyang Ma
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ya Zhu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
20
|
Wang S, Sun ST, Zhang XY, Ding HR, Yuan Y, He JJ, Wang MS, Yang B, Li YB. The Evolution of Single-Cell RNA Sequencing Technology and Application: Progress and Perspectives. Int J Mol Sci 2023; 24:ijms24032943. [PMID: 36769267 PMCID: PMC9918030 DOI: 10.3390/ijms24032943] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/01/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
As an emerging sequencing technology, single-cell RNA sequencing (scRNA-Seq) has become a powerful tool for describing cell subpopulation classification and cell heterogeneity by achieving high-throughput and multidimensional analysis of individual cells and circumventing the shortcomings of traditional sequencing for detecting the average transcript level of cell populations. It has been applied to life science and medicine research fields such as tracking dynamic cell differentiation, revealing sensitive effector cells, and key molecular events of diseases. This review focuses on the recent technological innovations in scRNA-Seq, highlighting the latest research results with scRNA-Seq as the core technology in frontier research areas such as embryology, histology, oncology, and immunology. In addition, this review outlines the prospects for its innovative application in traditional Chinese medicine (TCM) research and discusses the key issues currently being addressed by scRNA-Seq and its great potential for exploring disease diagnostic targets and uncovering drug therapeutic targets in combination with multiomics technologies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bin Yang
- Correspondence: (B.Y.); (Y.-B.L.)
| | - Yu-Bo Li
- Correspondence: (B.Y.); (Y.-B.L.)
| |
Collapse
|
21
|
Shi H, Pan M, Jia E, Lu W, Zhou Y, Sheng Y, Zhao X, Cai L, Ge Q. A comprehensive characterization of cell-free RNA in spent blastocyst medium and quality prediction for blastocyst. Clin Sci (Lond) 2023; 137:129-0. [PMID: 36597876 DOI: 10.1042/cs20220495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/16/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
The rate of pregnancy can be affected by many factors in assisted reproductive technology (ART), and one of which is the quality of embryos. Therefore, selecting the embryos with high potential is crucial for the outcome. Fifteen spent blastocyst medium (SBM) samples were collected from 14 patients who received in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI), seven from high-grade embryos and eight from low-grade embryos. Cell-free RNA (cf-RNA) profile of SBM samples were analyzed by RNA sequencing in the present study. It was found that a large amount of cf-RNA were released into SBM, including protein-coding genes (68.9%) and long noncoding RNAs (lncRNAs) (17.26%). Furthermore, a high correlation was observed between blastocyst genes and SBM genes. And the cf-mRNAs of SBM were highly fragmented, and coding sequence (CDS) and untranslated (UTR) regions were released equally. Two hundred and thirty-two differentially expressed genes were identified in high-grade SBM (hSBM) and low-grade SBM (lSBM), which could be potential biomarker in distinguishing the embryos with different quality as an alternative or supplementary approach for subjective morphology criteria. Hence, cf-RNAs sequencing revealed the characterization of circulating transcriptomes of embryos with different quality. Based on the results, the genes related to blastocyst quality were screened, including the genes closely related to translation, immune-signaling pathway, and amino acid metabolism. Overall, the present study showed the types of SBM cf-RNAs, and the integrated analysis of cf-RNAs profiling with morphology grading displayed its potential in predicting blastocyst quality. The present study provided valuable scientific basis for noninvasive embryo selection in ART by RNA-profiling analysis.
Collapse
Affiliation(s)
- Huajuan Shi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Min Pan
- School of Medicine, Southeast University, Nanjing 210097, China
| | - Erteng Jia
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Wenxiang Lu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Ying Zhou
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Yuqi Sheng
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Xiangwei Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Lingbo Cai
- Clinical Center of Reproductive Medicine, State Key Laboratory of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Qinyu Ge
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, People's Republic of China
| |
Collapse
|
22
|
Pladevall-Morera D, Zylicz JJ. Chromatin as a sensor of metabolic changes during early development. Front Cell Dev Biol 2022; 10:1014498. [PMID: 36299478 PMCID: PMC9588933 DOI: 10.3389/fcell.2022.1014498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular metabolism is a complex network of biochemical reactions fueling development with energy and biomass; however, it can also shape the cellular epigenome. Indeed, some intermediates of metabolic reactions exert a non-canonical function by acting as co-factors, substrates or inhibitors of chromatin modifying enzymes. Therefore, fluctuating availability of such molecules has the potential to regulate the epigenetic landscape. Thanks to this functional coupling, chromatin can act as a sensor of metabolic changes and thus impact cell fate. Growing evidence suggest that both metabolic and epigenetic reprogramming are crucial for ensuring a successful embryo development from the zygote until gastrulation. In this review, we provide an overview of the complex relationship between metabolism and epigenetics in regulating the early stages of mammalian embryo development. We report on recent breakthroughs in uncovering the non-canonical functions of metabolism especially when re-localized to the nucleus. In addition, we identify the challenges and outline future perspectives to advance the novel field of epi-metabolomics especially in the context of early development.
Collapse
Affiliation(s)
| | - Jan J. Zylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|