1
|
Albuquerque PBSD, Ramos LFS, Dantas MIJDS, Othmar FDS, Galúcio JM, Costa KSD, Costa MJF, Rodrigues NER, Lima LRAD, Sette-de-Souza PH. Combining in silico and in vitro approaches for understanding the mechanism of action of the galactomannan extracted from Cassia grandis seeds against colorectal cancer. Int J Biol Macromol 2025; 284:137909. [PMID: 39577517 DOI: 10.1016/j.ijbiomac.2024.137909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
This study aimed to investigate the antitumor activity of galactomannan extracted from Cassia grandis seeds (GCg) against colorectal cancer cells using both experimental and computational approaches. Galactomannan was extracted from C. grandis seeds and prepared into solutions with varying concentrations. The cytotoxicity of these solutions was tested on HT-29 and HCT-116 colorectal cancer cell lines using the MTT assay. Additionally, computational evaluations, including molecular docking and molecular dynamics simulations, were performed to explore the potential binding interactions of GCg with cyclin-dependent kinase 2 (CDK2). The experimental results demonstrated that GCg significantly inhibited the proliferation of HT-29 cells, especially at concentrations of 5 mg/mL. On the other hand, no concentration inhibited >30 % of HCT-116 cells. Computational analysis revealed that GCg could bind to the ATP-binding site of CDK2, promoting the inactive DFG-out conformation, similar to the known inhibitor K03861. This interaction suggests a mechanism through which GCg may exert its anticancer effects. GCg exhibits significant cytotoxic activity against HT-29 colorectal adenocarcinoma cells, likely through the inhibition of CDK2; however, its efficacy against HCT-116 cells is limited, possibly due to structural differences in the molecular targets. To the best of the authors' knowledge, no studies have explored the applications of GCg in cancers, particularly colorectal ones. Further studies are needed to explore the antimetastatic effects and potential clinical applications of GCg in colorectal cancer treatment.
Collapse
Affiliation(s)
- Priscilla Barbosa Sales de Albuquerque
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil; Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada - UPE Santo Amaro, Brasil; Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA) - Universidade de Pernambuco, Garanhuns, PE, Brasil.
| | - Letícia Francine Silva Ramos
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil
| | | | - Filipe de Santana Othmar
- Laboratório de Bioprospecção e Etnofarmacotoxicologia Aplicada (LABEA) - Universidade de Pernambuco, Garanhuns, PE, Brasil
| | - João Marcos Galúcio
- Instituto de Biodiversidade e Florestas - Universidade Federal do Oeste do Pará, Brasil
| | - Kauê Santana da Costa
- Instituto de Biodiversidade e Florestas - Universidade Federal do Oeste do Pará, Brasil
| | - Moan Jéfter Fernandes Costa
- Programa de Pós-Graduação em Biologia Celular e Molecular Aplicada - UPE Santo Amaro, Brasil; Laboratório Multiusuário de Biotecnologia do Sertão Pernambucano (BIOSPE) - Universidade de Pernambuco, Arcoverde, PE, Brasil
| | | | - Luiza Rayanna Amorim de Lima
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil
| | - Pedro Henrique Sette-de-Souza
- Programa de Pós-Graduação em Saúde e Desenvolvimento Socioambiental - Universidade de Pernambuco, Garanhuns, PE, Brasil; Laboratório Multiusuário de Biotecnologia do Sertão Pernambucano (BIOSPE) - Universidade de Pernambuco, Arcoverde, PE, Brasil
| |
Collapse
|
2
|
Nair G, Saraswathy GR, Gayam PKR, Aranjani JM, Krishna Murthy TP, Subeesh V. Trailblazing real-world-data to confront hepatocellular carcinoma - disinterring repurposable drugs by amalgamating avant-garde stratagems. J Biomol Struct Dyn 2024:1-15. [PMID: 39687947 DOI: 10.1080/07391102.2024.2438361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/23/2024] [Indexed: 12/18/2024]
Abstract
Drug repurposing is preferred over de-novo drug discovery to unveil the therapeutic applications of existing drug candidates before investing considerable resources in unexplored novel chemical entities. This study demonstrated multifaceted stratagems to reconnoiter promising repurposable candidates against Hepatocellular Carcinoma (HCC) by amalgamating Real-World-Data (RWD) with bioinformatics algorithms corroborated with in-silico and in-vitro studies. At the outset, the RWD from the Food and Drug Administration Adverse Event Reporting System (FAERS) was explored to navigate signals to retrieve repurposable drugs that are inversely associated with HCC via Disproportionality Analysis. Further, transcriptomic analysis was used to capture the potential targets of HCC. Following this, the interactions between repurposable drugs and HCC targets were virtually demonstrated via molecular docking and Molecular Dynamics Simulations (MDS). Furthermore, additional cytotoxicity and gene expression experiments were conducted to corroborate the results. Overall, 64 drugs with Drug Event >5 were shortlisted as prospective repurposable drugs as per the RWD obtained from FAERS. The transcriptomic analysis highlighted significant upregulation of Cyclin A2 (CCNA2) in HCC, which activates Cyclin Dependent Kinase 2 (CDK2). Further, in-silico studies identified Losartan and Allopurinol, with docking scores of -7.11 and -6.219, respectively, as potential repurposable drugs. The selected drugs underwent further scrutiny through in-vitro studies. The treatment of HepG2 cells with Allopurinol resulted in significant downregulation of CCNA2/CDK2 expression with an elevation in reactive oxygen species levels, uncovering Allopurinol's anticancer mechanism through cellular apoptosis. This study suggests the importance of RWD in drug repurposing and the potential of Allopurinol as a repurposable drug against HCC.
Collapse
Affiliation(s)
- Gouri Nair
- Department of Pharmacology, Faculty of Pharmacy, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Ganesan Rajalekshmi Saraswathy
- Pharmacological Modelling and Simulation Centre, M. S. Ramaiah University of Applied Sciences, Bangalore, Karnataka, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| | - T P Krishna Murthy
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Viswam Subeesh
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India
| |
Collapse
|
3
|
Yu B, Zeng W, Zhou Y, Li N, Liang Z. Characterization and Bioactive Metabolite Profiling of Streptomyces sp. Y009: A Mangrove-Derived Actinomycetia with Anticancer and Antioxidant Potential. Microorganisms 2024; 12:2300. [PMID: 39597689 PMCID: PMC11596135 DOI: 10.3390/microorganisms12112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Microorganisms from poorly explored environments are promising sources for the development of novel drugs. In our continuous efforts to screen for mangrove actinomycetes that produce metabolites with potential pharmaceutical applications, Streptomyces sp. Y009 was isolated from mangrove sediments in Guangxi, China. The phenotypic, physiological, biochemical, and phylogenetic characteristics of this strain were investigated. Analysis of phylogenetic and 16S rRNA gene sequences showed that it had the highest sequence similarity to Streptomyces thermolilacinus NBRC 14274 (98.95%). Further, the Y009 extract exhibited antioxidant activity, as indicated by DPPH and superoxide dismutase assays. The extract showed broad-spectrum and potent anticancer potential against six human cancer cell lines, with IC50 values ranging from 5.61 to 72.15 μg/mL. Furthermore, the selectivity index (SI) demonstrated that the Y009 extract exhibited less toxicity toward normal cell lines in comparison to the lung cancer cell line (A549) and hepatoma cell line (HepG2). GC-MS analysis revealed that the extract contained some biologically important secondary metabolites, mainly cyclic dipeptides and esters, which might be responsible for the antioxidant and anticancer properties. 3-Isobutylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione (28.32%) was the major chemical compound available in the extract. The effect on cancer cells was then confirmed using nuclear staining and in silico docking. This study suggests that further exploration of the bioactive compounds of the newly isolated strain may be a promising approach for the development of novel chemopreventive drugs.
Collapse
Affiliation(s)
| | | | | | - Nan Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (B.Y.)
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning 530004, China; (B.Y.)
| |
Collapse
|
4
|
Shen S, Zhuang H. Homoharringtonine in the treatment of acute myeloid leukemia: A review. Medicine (Baltimore) 2024; 103:e40380. [PMID: 39496012 PMCID: PMC11537654 DOI: 10.1097/md.0000000000040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/16/2024] [Indexed: 11/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a hematological malignancy characterized by the accumulation of immature myeloid precursor cells. Over half of AML patients fail to achieve long-term disease-free survival under existing therapy, and the overall prognosis is poor, necessitating the urgent development of novel therapeutic approaches. The plant alkaloid homoharringtonine (HHT), which has anticancer properties, was first identified more than 40 years ago. It works in a novel method of action that prevents the early elongation phase of protein synthesis. HHT has been widely utilized in the treatment of AML, with strong therapeutic effects, few toxic side effects, and the ability to enhance AML patients' prognoses. In AML, HHT can induce cell apoptosis through multiple pathways, exerting synergistic antitumor effects, according to clinical and pharmacological research. About its modes of action, some findings have been made recently. This paper reviews the development of research on the mechanisms of HHT in treating AML to offer insights for further research and clinical therapy.
Collapse
Affiliation(s)
- Siyu Shen
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Haifeng Zhuang
- Department of Clinical Hematology and Transfusion, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
5
|
Ali GME, Ewida MA, Elmetwali AM, Ewida HA, George RF, Mahmoud WR, Ismail NSM, Ahmed MS, Georgey HH. Discovery of pyrazole-based analogs as CDK2 inhibitors with apoptotic-inducing activity: design, synthesis and molecular dynamics study. RSC Adv 2024; 14:34537-34555. [PMID: 39479486 PMCID: PMC11520566 DOI: 10.1039/d4ra06500j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
The discovery of novel CDK2 inhibitors is crucial for developing targeted anticancer therapies. Thus, in this study, we aimed to design, synthesize, and evaluate a series of novel pyrazole derivatives (2a-g, 7a-d, 8a and b, 9, and 10) for their potential as CDK2/cyclin A2 enzyme inhibitors. The newly synthesized compounds were screened in vitro at 50 μM for CDK2 inhibition, followed by IC50 profiling of the most promising candidates. Compounds 4, 7a, 7d, and 9 exhibited the strongest inhibition, with IC50 values of 3.82, 2.0, 1.47, and 0.96 μM, respectively. To assess their anti-proliferative effects, all target compounds were further screened against a panel of 60 National Cancer Institute (NCI) cell lines representing various carcinoma types. Among them, compound 4 demonstrated exceptional anti-proliferative activity with a mean growth inhibition (GI) of 96.47% across the panel, while compound 9 showed a mean GI of 65.90%. Additionally, compounds 2b and 7c exhibited notable inhibition against MCF7 breast cancer cells, with GI rates of 86.1% and 79.41%, respectively. Compound 4 was selected for further five-dose concentration evaluations, displaying a full-panel GI50 value of 3.81 μM, with a subpanel range of 2.36-9.17 μM. Western blot analysis of compounds 4 and 9 in HCT-116 cell lines confirmed their inhibitory effects on CDK2. Furthermore, compound 4 induced significant cell cycle arrest at the G1 phase and promoted apoptosis. In silico molecular docking studies revealed that compounds 4, 7a, 7d, and 9 adopt a similar binding mode as AT7519 (I) within the CDK2 binding site. Molecular dynamics simulations further validated the stability of these compounds within the catalytic domain of CDK2. ADME/TOPKAT analyses indicated their favorable pharmacokinetic profiles, which were confirmed by their low toxicity in normal cell lines. Based on these findings, it was concluded that the synthesized pyrazole derivatives, particularly compound 4, show potent CDK2 inhibition and significant anticancer activity, with promising drug-like properties and minimal toxicity. This positions them as strong candidates for further development as CDK2-targeting anticancer agents.
Collapse
Affiliation(s)
- Ghada M E Ali
- Central Administration of Drug Control, EDA P.O. Box: 29 Cairo Egypt
| | - Menna A Ewida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Amira M Elmetwali
- Central Administration of Drug Control, EDA P.O. Box: 29 Cairo Egypt
| | - Heba A Ewida
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
- Pharmaceutical Sciences Department, School of Pharmacy, Texas Tech University Health Science Center Amarillo Texas USA
| | - Riham F George
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Walaa R Mahmoud
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Nasser S M Ismail
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain-Shams University Cairo 11566 Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Mahmoud S Ahmed
- Pharmaceutical Sciences Department, School of Pharmacy, Texas Tech University Health Science Center Amarillo Texas USA
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University 11786 Cairo Egypt
| |
Collapse
|
6
|
Ye WL, Huang L, Yang XQ, Wan S, Gan WJ, Yang Y, He XS, Liu F, Guo X, Liu YX, Hu G, Li XM, Shi WY, He K, Wu YY, Wu WX, Lu JH, Song Y, Qu CJ, Wu H. TRIM21 induces selective autophagic degradation of c-Myc and sensitizes regorafenib therapy in colorectal cancer. Proc Natl Acad Sci U S A 2024; 121:e2406936121. [PMID: 39388269 PMCID: PMC11494295 DOI: 10.1073/pnas.2406936121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
Kirsten rat sarcoma virus (KRAS) mutation is associated with malignant tumor transformation and drug resistance. However, the development of clinically effective targeted therapies for KRAS-mutant cancer has proven to be a formidable challenge. Here, we report that tripartite motif-containing protein 21 (TRIM21) functions as a target of extracellular signal-regulated kinase 2 (ERK2) in KRAS-mutant colorectal cancer (CRC), contributing to regorafenib therapy resistance. Mechanistically, TRIM21 directly interacts with and ubiquitinates v-myc avian myelocytomatosis viral oncogene homolog (c-Myc) at lysine 148 (K148) via K63-linkage, enabling c-Myc to be targeted to the autophagy machinery for degradation, ultimately resulting in the downregulation of enolase 2 expression and inhibition of glycolysis. However, mutant KRAS (KRAS/MT)-driven mitogen-activated protein kinase (MAPK) signaling leads to the phosphorylation of TRIM21 (p-TRIM21) at Threonine 396 (T396) by ERK2, disrupting the interaction between TRIM21 and c-Myc and thereby preventing c-Myc from targeting autophagy for degradation. This enhances glycolysis and contributes to regorafenib resistance. Clinically, high p-TRIM21 (T396) is associated with an unfavorable prognosis. Targeting TRIM21 to disrupt KRAS/MT-driven phosphorylation using the antidepressant vilazodone shows potential for enhancing the efficacy of regorafenib in treating KRAS-mutant CRC in preclinical models. These findings are instrumental for KRAS-mutant CRC treatment aiming at activating TRIM21-mediated selective autophagic degradation of c-Myc.
Collapse
Affiliation(s)
- Wen-Long Ye
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Long Huang
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Xiao-Qin Yang
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Shan Wan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Wen-Juan Gan
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yun Yang
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiao-Shun He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Feng Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xin Guo
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yi-Xuan Liu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Guang Hu
- Department of Bioinformatics, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Xiu-Ming Li
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wei-Yi Shi
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Kuang He
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
| | - Yue-Yue Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Wen-Xin Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Jun-Hou Lu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| | - Yu Song
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Chen-Jiang Qu
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
| | - Hua Wu
- Department of Pathology, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
- Department of Pathology, The Fourth Affiliated Hospital of Soochow University, Soochow University, Suzhou215000, China
- Department of General Surgery, The Affiliated Zhangjiagang Hospital of Soochow University, Soochow University, Suzhou215600, China
- Cancer Institute, Suzhou Medical College of Soochow University, Soochow University, Suzhou215123, China
| |
Collapse
|
7
|
Ma W, Hu J, Chen Z, Ai Y, Zhang Y, Dong K, Meng X, Liu L. The Development and Application of KinomePro-DL: A Deep Learning Based Online Small Molecule Kinome Selectivity Profiling Prediction Platform. J Chem Inf Model 2024; 64:7273-7290. [PMID: 39320984 DOI: 10.1021/acs.jcim.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Characterizing the kinome selectivity profiles of kinase inhibitors is essential in the early stages of novel small-molecule drug discovery. This characterization is critical for interpreting potential adverse events caused by off-target polypharmacology effects and provides unique pharmacological insights for drug repurposing development of existing kinase inhibitor drugs. However, experimental profiling of whole kinome selectivity is still time-consuming and resource-demanding. Here, we report a deep learning classification model using an in-house built data set of inhibitors against 191 well-representative kinases constructed based on a novel strategy by systematically cleaning and integrating six public data sets. This model, a multitask deep neural network, predicts the kinome selectivity profiles of compounds with novel structures. The model demonstrates excellent predictive performance, with auROC, prc-AUC, Accuracy, and Binary_cross_entropy of 0.95, 0.92, 0.90, and 0.37, respectively. It also performs well in a priori testing for inhibitors targeting different categories of proteins from internal compound collections, significantly improving over similar models on data sets from practical application scenarios. Integrated to subsequent machine learning-enhanced virtual screening workflow, novel CDK2 kinase inhibitors with potent kinase inhibitory activity and excellent kinome selectivity profiles are successfully identified. Additionally, we developed a free online web server, KinomePro-DL, to predict the kinome selectivity profiles and kinome-wide polypharmacology effects of small molecules (available on kinomepro-dl.pharmablock.com). Uniquely, our model allows users to quickly fine-tune it with their own training data sets, enhancing both prediction accuracy and robustness.
Collapse
Affiliation(s)
- Wei Ma
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Jiaqi Hu
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Zhuangzhi Chen
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Yaoqin Ai
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Yihang Zhang
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Keke Dong
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Xiangfei Meng
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| | - Liu Liu
- Drug Research Business Unit, PharmaBlock Sciences (Nanjing), Inc., 81 Huasheng Road, Jiangbei New Area, Nanjing, Jiangsu 210032, China
| |
Collapse
|
8
|
Saadan N, Ahmed WU, Kadi AA, Al-Mutairi MS, Al-Wabli RI, Rahman AFMM. Synthesis and Evaluation of Thiazolyl-indole-2-carboxamide Derivatives as Potent Multitarget Anticancer Agents. ACS OMEGA 2024; 9:41944-41967. [PMID: 39398118 PMCID: PMC11465279 DOI: 10.1021/acsomega.4c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a complex disease driven by the dysregulation of multiple signaling pathways and cellular processes. The development of compounds capable of exerting multitarget actions against these key pathways involved in cancer progression is a promising therapeutic approach. Here, a series of novel (E/Z)-N-(4-(2-(2-(substituted)hydrazineyl)-2-oxoethyl)thiazol-2-yl)-1H-indole-2-carboxamide derivatives (6a-6z) were designed, synthesized, and evaluated for their biological activity. Compounds 6e, 6i, 6q, 6v, 7a, and 7b exhibited exceptional cytotoxicity against various cancer cell lines, particularly 6i (IC50 = 6.10 ± 0.4 μM against MCF-7 cell lines) and 6v (IC50 = 6.49 ± 0.3 μM against MCF-7 cell lines). These potent compounds inhibited key protein kinases like EGFR, HER2, VEGFR-2, and CDK2, induced cell cycle arrest at the G2/M phase, and promoted apoptosis. Docking studies revealed improved binding affinity of 6i and 6v with target proteins compared to reference drugs. These findings highlight the promising potential of 6i and 6v as multitarget cancer therapeutics deserving further development.
Collapse
Affiliation(s)
- Njood
M. Saadan
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Wahid U. Ahmed
- School
of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Adnan A. Kadi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha S. Al-Mutairi
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Reem I. Al-Wabli
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - A. F. M. Motiur Rahman
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
9
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
10
|
Zakaria MF, Kato H, Sonoda S, Kato K, Uehara N, Kyumoto-Nakamura Y, Sharifa MM, Yu L, Dai L, Yamaza H, Kajioka S, Nishimura F, Yamaza T. NaV1.1 contributes to the cell cycle of human mesenchymal stem cells by regulating AKT and CDK2. J Cell Sci 2024; 137:jcs261732. [PMID: 39258309 PMCID: PMC11491812 DOI: 10.1242/jcs.261732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 08/28/2024] [Indexed: 09/12/2024] Open
Abstract
Non-excitable cells express sodium voltage-gated channel alpha subunit 1 gene and protein (known as SCN1A and NaV1.1, respectively); however, the functions of NaV1.1 are unclear. In this study, we investigated the role of SCN1A and NaV1.1 in human mesenchymal stem cells (MSCs). We found that SCN1A was expressed in MSCs, and abundant expression of NaV1.1 was observed in the endoplasmic reticulum; however, this expression was not found to be related to Na+ currents. SCN1A-silencing reduced MSC proliferation and delayed the cell cycle in the S phase. SCN1A silencing also suppressed the protein levels of CDK2 and AKT (herein referring to total AKT), despite similar mRNA expression, and inhibited AKT phosphorylation in MSCs. A cycloheximide-chase assay showed that SCN1A-silencing induced CDK2 but not AKT protein degradation in MSCs. A proteolysis inhibition assay using epoxomicin, bafilomycin A1 and NH4Cl revealed that both the ubiquitin-proteasome system and the autophagy and endo-lysosome system were irrelevant to CDK2 and AKT protein reduction in SCN1A-silenced MSCs. The AKT inhibitor LY294002 did not affect the degradation and nuclear localization of CDK2 in MSCs. Likewise, the AKT activator SC79 did not attenuate the SCN1A-silencing effects on CDK2 in MSCs. These results suggest that NaV1.1 contributes to the cell cycle of MSCs by regulating the post-translational control of AKT and CDK2.
Collapse
Affiliation(s)
- Mohammed Fouad Zakaria
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
- Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Soichiro Sonoda
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Kenichi Kato
- Department of Nursing, Fukuoka School of Health Sciences, Fukuoka 814-0005, Japan
| | - Norihisa Uehara
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Yukari Kyumoto-Nakamura
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Mohammed Majd Sharifa
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Liting Yu
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Lisha Dai
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Haruyoshi Yamaza
- Department of Pediatric Dentistry, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| | - Shunichi Kajioka
- Department of Pharmacy in Fukuoka, International University of Health and Welfare, Okawa 831-8501, Japan
| | - Fusanori Nishimura
- Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Takayoshi Yamaza
- Department of Molecular Cell Biology and Oral Anatomy, Kyushu University Graduate School of Dental Science, Fukuoka 812-8582, Japan
| |
Collapse
|
11
|
Wu M, Wang W, Mao X, Wu Y, Jin Y, Liu T, Lu Y, Dai H, Zeng S, Huang W, Wang Y, Yao X, Che J, Ying M, Dong X. Discovery of a potent CDKs/FLT3 PROTAC with enhanced differentiation and proliferation inhibition for AML. Eur J Med Chem 2024; 275:116539. [PMID: 38878515 DOI: 10.1016/j.ejmech.2024.116539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 05/26/2024] [Indexed: 07/12/2024]
Abstract
AML is an aggressive malignancy of immature myeloid progenitor cells. Discovering effective treatments for AML through cell differentiation and anti-proliferation remains a significant challenge. Building on previous studies on CDK2 PROTACs with differentiation-inducing properties, this research aims to enhance CDKs degradation through structural optimization to facilitate the differentiation and inhibit the proliferation of AML cells. Compound C3, featuring a 4-methylpiperidine ring linker, effectively degraded CDK2 with a DC50 value of 18.73 ± 10.78 nM, and stimulated 72.77 ± 3.51 % cell differentiation at 6.25 nM in HL-60 cells. Moreover, C3 exhibited potent anti-proliferative activity against various AML cell types. Degradation selectivity analysis indicated that C3 could be endowed with efficient degradation of CDK2/4/6/9 and FLT3, especially FLT3-ITD in MV4-11 cells. These findings propose that C3 combined targeting CDK2/4/6/9 and FLT3 with enhanced differentiation and proliferation inhibition, which holds promise as a potential treatment for AML.
Collapse
Affiliation(s)
- Mingfei Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Wei Wang
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences; Zhejiang University, Cancer Center; Zhejiang University School of Medicine Children'sHospital, Division of Hematology-Oncology, Hangzhou, 310058, PR China
| | - Xinfei Mao
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences; Zhejiang University, Cancer Center; Zhejiang University School of Medicine Children'sHospital, Division of Hematology-Oncology, Hangzhou, 310058, PR China
| | - Yiquan Wu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yuyuan Jin
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Tao Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yan Lu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China
| | - Shenxin Zeng
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Wenhai Huang
- Key Laboratory of Neuropsychiatric Drug Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, 310058, PR China
| | - Yuwei Wang
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Xiaojun Yao
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macau, 999078, PR China
| | - Jinxin Che
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| | - Meidan Ying
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences; Zhejiang University, Cancer Center; Zhejiang University School of Medicine Children'sHospital, Division of Hematology-Oncology, Hangzhou, 310058, PR China.
| | - Xiaowu Dong
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, PR China.
| |
Collapse
|
12
|
Zeng Q, Jiang T, Wang J. Role of LMO7 in cancer (Review). Oncol Rep 2024; 52:117. [PMID: 38994754 PMCID: PMC11267500 DOI: 10.3892/or.2024.8776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Cancer constitutes a multifaceted ailment characterized by the dysregulation of numerous genes and pathways. Among these, LIM domain only 7 (LMO7) has emerged as a significant player in various cancer types, garnering substantial attention for its involvement in tumorigenesis and cancer progression. This review endeavors to furnish a comprehensive discourse on the functional intricacies and mechanisms of LMO7 in cancer, with a particular emphasis on its potential as both a therapeutic target and prognostic indicator. It delves into the molecular attributes of LMO7, its implications in cancer etiology and the underlying mechanisms propelling its oncogenic properties. Furthermore, it underscores the extant challenges and forthcoming prospects in targeting LMO7 for combating cancer.
Collapse
Affiliation(s)
- Qun Zeng
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Tingting Jiang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
- Department of Clinical Laboratory, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, P.R. China
| | - Jing Wang
- Hunan Key Laboratory of The Research and Development of Novel Pharmaceutical Preparations, The Hunan Provincial University Key Laboratory of The Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, Hunan 410000, P.R. China
| |
Collapse
|
13
|
Yao D, Xin F, He X. RNF26-mediated ubiquitination of TRIM21 promotes bladder cancer progression. Am J Cancer Res 2024; 14:4082-4095. [PMID: 39267687 PMCID: PMC11387874 DOI: 10.62347/tecq5002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
RNF26 is an important E3 ubiquitin ligase that has been associated with poor prognosis in bladder cancer. However, the underlying mechanisms of RNF26 in bladder cancer tumorigenesis are not fully understood. In the present study, we found that RNF26 expression level was significantly upregulated in the bladder cancer tissues, and higher RNF26 expression is closely associated with poorer prognosis, lower immune cell infiltration, and more sensitive to immune checkpoint blockade drugs and chemotherapy drugs, including cisplatin, VEGFR-targeting drugs and MET-targeting drugs. RNF26 knockdown in UMUC3 and T24 cell lines inhibited cell growth, colony formation and migratory capacity. Meanwhile, RNF26 overexpression had the opposite effects. Mechanistically, RNF26 exerts its oncogenic function by binding to TRIM21 and promoting its ubiquitination and subsequent degradation. Moreover, we revealed ZHX3 as a downstream target of RNF26/TRIM21 pathway in bladder cancer. Taken together, we identified a novel RNF26/TRIM21/ZHX3 axis that promotes bladder cancer progression. Thus, the RNF26/TRIM21/ZHX3 axis constitutes a potential efficacy predictive marker and may serve as a therapeutic target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Dongwei Yao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Soochow University Changzhou 213000, Jiangsu, China
- Department of Urology, The Second People's Hospital of Lianyungang Lianyungang 222023, Jiangsu, China
| | - Feng Xin
- Department of Urology, The Second People's Hospital of Lianyungang Lianyungang 222023, Jiangsu, China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Soochow University Changzhou 213000, Jiangsu, China
| |
Collapse
|
14
|
Zhang J, Wang Y, Zhang J, Wang X, Liu J, Huo M, Hu T, Ma T, Zhang D, Li Y, Guo C, Yang Y, Zhang M, Yuan B, Qin H, Teng X, Gao T, Hao X, Yu H, Huang W, Xu B, Wang Y. The feedback loop between MTA1 and MTA3/TRIM21 modulates stemness of breast cancer in response to estrogen. Cell Death Dis 2024; 15:597. [PMID: 39154024 PMCID: PMC11330498 DOI: 10.1038/s41419-024-06942-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024]
Abstract
The metastasis-associated protein (MTA) family plays a crucial role in the development of breast cancer, a common malignancy with a high incidence rate among women. However, the mechanism by which each member of the MTA family contributes to breast cancer progression is poorly understood. In this study, we aimed to investigate the roles of MTA1, MTA3, and tripartite motif-containing 21 (TRIM21) in the proliferation, invasion, epithelial-mesenchymal transition (EMT), and stem cell-like properties of breast cancer cells in vivo and in vitro. The molecular mechanisms of the feedback loop between MTA1 and MTA3/TRIM21 regulated by estrogen were explored using Chromatin immunoprecipitation (ChIP), luciferase reporter, immunoprecipitation (IP), and ubiquitination assays. These findings demonstrated that MTA1 acts as a driver to promote the progression of breast cancer by repressing the transcription of tumor suppressor genes, including TRIM21 and MTA3. Conversely, MTA3 inhibited MTA1 transcription and TRIM21 regulated MTA1 protein stability in breast cancer. Estrogen disrupted the balance between MTA1 and MTA3, as well as between MTA1 and TRIM21, thereby affecting stemness and the EMT processes in breast cancer. These findings suggest that MTA1 plays a vital role in stem cell fate and the hierarchical regulatory network of EMT through negative feedback loops with MTA3 or TRIM21 in response to estrogen, supporting MTA1, MTA3, and TRIM21 as potential prognostic biomarkers and MTA1 as a treatment target for future breast cancer therapies.
Collapse
Affiliation(s)
- Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinuo Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiaxiang Liu
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miaomiao Huo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Hu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianyu Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Die Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chang Guo
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunkai Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Baowen Yuan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hao Qin
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Teng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Tianyang Gao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Xinhui Hao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hefen Yu
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wei Huang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| | - Binghe Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Yan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Zhang W, Liu Y, Jang H, Nussinov R. Slower CDK4 and faster CDK2 activation in the cell cycle. Structure 2024; 32:1269-1280.e2. [PMID: 38703777 PMCID: PMC11316634 DOI: 10.1016/j.str.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 05/06/2024]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the shorter G1/S phase transition. We consider available experimental cellular and structural data including cyclin-E's high-level burst, sustained duration of elevated cyclin-D expression, and explicit solvent molecular dynamics simulations of the inactive monomeric and complexed states, to establish the conformational tendencies along the landscape of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. We provide the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses a compelling cell cycle regulation question and illuminates the distinct activation speeds between the G1 and the G1/S phases, which are crucial for function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
16
|
Ning J, Spielvogel CP, Haberl D, Trachtova K, Stoiber S, Rasul S, Bystry V, Wasinger G, Baltzer P, Gurnhofer E, Timelthaler G, Schlederer M, Papp L, Schachner H, Helbich T, Hartenbach M, Grubmüller B, Shariat SF, Hacker M, Haug A, Kenner L. A novel assessment of whole-mount Gleason grading in prostate cancer to identify candidates for radical prostatectomy: a machine learning-based multiomics study. Theranostics 2024; 14:4570-4581. [PMID: 39239512 PMCID: PMC11373617 DOI: 10.7150/thno.96921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/10/2024] [Indexed: 09/07/2024] Open
Abstract
Purpose: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. Materials and Methods: A total of 146 patients with PCa recruited in a pilot study of a prospective clinical trial (NCT02659527) were retrospectively included in the side study, all of whom underwent 68Ga-PSMA-11 integrated positron emission tomography (PET) / magnetic resonance (MR) before radical prostatectomy (RP) between May 2014 and April 2020. To establish a multiomics ML model, we quantified PET radiomics features, pathway-level genomics features from whole exome sequencing, and pathomics features derived from immunohistochemical staining of 11 biomarkers. Based on the multiomics dataset, five ML models were established and validated using 100-fold Monte Carlo cross-validation. Results: Among five ML models, the random forest (RF) model performed best in terms of the area under the curve (AUC). Compared to bxGG assessment alone, the RF model was superior in terms of AUC (0.87 vs 0.75), specificity (0.72 vs 0.61), positive predictive value (0.79 vs 0.75), and accuracy (0.78 vs 0.77) and showed slightly decreased sensitivity (0.83 vs 0.89) and negative predictive value (0.80 vs 0.81). Among the feature categories, bxGG was identified as the most important feature, followed by pathomics, clinical, radiomics and genomics features. The three important individual features were bxGG, PSA staining and one intensity-related radiomics feature. Conclusion: The findings demonstrate a superior assessment of the developed multiomics-based ML model in whole-mount GG compared to the current clinical baseline of bxGG. This enables personalized patient management by identifying high-risk PCa patients for RP.
Collapse
Affiliation(s)
- Jing Ning
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Clemens P Spielvogel
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - David Haberl
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Karolina Trachtova
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Stefan Stoiber
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Sazan Rasul
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Vojtech Bystry
- Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic
| | - Gabriel Wasinger
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Pascal Baltzer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria
| | - Elisabeth Gurnhofer
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Michaela Schlederer
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Laszlo Papp
- Center for Medical Physics and Biomedical Engineering, Vienna, Austria
| | - Helga Schachner
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Thomas Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Hartenbach
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Bernhard Grubmüller
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Working Group of Diagnostic Imaging in Urology, Austrian Society of Urology, Vienna, Austria
| | - Shahrokh F Shariat
- Department of Urology, Medical University of Vienna, Vienna, Austria
- Karl Landsteiner Institute of Urology and Andrology, Vienna, Austria
- Department of Urology, University of Texas Southwestern, Dallas, Texas
- Division of Medical Oncology, Department of Urology, Weill Medical College of Cornell University, New York, New York
- Department of Urology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Alexander Haug
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Christian Doppler Laboratory for Applied Metabolomics, 1090 Vienna, Austria
- Clinical Institute of Pathology, Department for Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- Comprehensive Cancer Center, Medical University Vienna, Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Styria, Austria
| |
Collapse
|
17
|
Singh A, Ravendranathan N, Frisbee JC, Singh KK. Complex Interplay between DNA Damage and Autophagy in Disease and Therapy. Biomolecules 2024; 14:922. [PMID: 39199310 PMCID: PMC11352539 DOI: 10.3390/biom14080922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/19/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Cancer, a multifactorial disease characterized by uncontrolled cellular proliferation, remains a global health challenge with significant morbidity and mortality. Genomic and molecular aberrations, coupled with environmental factors, contribute to its heterogeneity and complexity. Chemotherapeutic agents like doxorubicin (Dox) have shown efficacy against various cancers but are hindered by dose-dependent cytotoxicity, particularly on vital organs like the heart and brain. Autophagy, a cellular process involved in self-degradation and recycling, emerges as a promising therapeutic target in cancer therapy and neurodegenerative diseases. Dysregulation of autophagy contributes to cancer progression and drug resistance, while its modulation holds the potential to enhance treatment outcomes and mitigate adverse effects. Additionally, emerging evidence suggests a potential link between autophagy, DNA damage, and caretaker breast cancer genes BRCA1/2, highlighting the interplay between DNA repair mechanisms and cellular homeostasis. This review explores the intricate relationship between cancer, Dox-induced cytotoxicity, autophagy modulation, and the potential implications of autophagy in DNA damage repair pathways, particularly in the context of BRCA1/2 mutations.
Collapse
Affiliation(s)
- Aman Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Naresh Ravendranathan
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Jefferson C. Frisbee
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
| | - Krishna K. Singh
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, University of Western Ontario, 1151 Richmond Street North, London, ON N6A 5C1, Canada; (A.S.); (N.R.); (J.C.F.)
- Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
18
|
Xi C, Zhang G, Sun N, Liu M, Ju N, Shen C, Song H, Luo Q, Qiu Z. Repurposing homoharringtonine for thyroid cancer treatment through TIMP1/FAK/PI3K/AKT signaling pathway. iScience 2024; 27:109829. [PMID: 38770133 PMCID: PMC11103377 DOI: 10.1016/j.isci.2024.109829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/12/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
Homoharringtonine (HHT), an alkaloid isolated from Cephalotaxus, is an effective anti-leukemia agent and exhibits inhibitory effects in various solid tumors. However, the impacts of HHT treatment on thyroid cancer (TC) remain unclear. Our findings demonstrated that HHT exhibited remarkable anti-TC activity that involved inhibiting cell proliferation, invasion, and migration, as well as inducing apoptosis. Proteomics analysis revealed that the expression of the tissue inhibitor of metalloproteinase 1 (TIMP1) was downregulated in TC cells after HHT treatment. TIMP1 overexpression promoted TC progression and partially reversed the anti-TC effects of HHT, while TIMP1 downregulation inhibited TC progression and enhanced the anti-TC effects of HHT. Furthermore, TIMP1 re-expression attenuated the enhancement of anti-TC effects of HHT induced by TIMP1 knockdown. Mechanistically, HHT exerted anti-TC effects by downregulating TIMP1 expression and then inactivating the FAK/PI3K/AKT signaling pathway. Taken together, our study demonstrated that HHT could inhibit TC progression by inhibiting the TIMP1/FAK/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Chuang Xi
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Guoqiang Zhang
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nan Sun
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Mengyue Liu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Nianting Ju
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Chentian Shen
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Hongjun Song
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Zhongling Qiu
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| |
Collapse
|
19
|
Zhang W, Liu Y, Jang H, Nussinov R. CDK2 and CDK4: Cell Cycle Functions Evolve Distinct, Catalysis-Competent Conformations, Offering Drug Targets. JACS AU 2024; 4:1911-1927. [PMID: 38818077 PMCID: PMC11134382 DOI: 10.1021/jacsau.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Cyclin-dependent kinases (CDKs), particularly CDK4 and CDK2, are crucial for cell cycle progression from the Gap 1 (G1) to the Synthesis (S) phase by phosphorylating targets such as the Retinoblastoma Protein (Rb). CDK4, paired with cyclin-D, operates in the long G1 phase, while CDK2 with cyclin-E, manages the brief G1-to-S transition, enabling DNA replication. Aberrant CDK signaling leads to uncontrolled cell proliferation, which is a hallmark of cancer. Exactly how they accomplish their catalytic phosphorylation actions with distinct efficiencies poses the fundamental, albeit overlooked question. Here we combined available experimental data and modeling of the active complexes to establish their conformational functional landscapes to explain how the two cyclin/CDK complexes differentially populate their catalytically competent states for cell cycle progression. Our premise is that CDK catalytic efficiencies could be more important for cell cycle progression than the cyclin-CDK biochemical binding specificity and that efficiency is likely the prime determinant of cell cycle progression. We observe that CDK4 is more dynamic than CDK2 in the ATP binding site, the regulatory spine, and the interaction with its cyclin partner. The N-terminus of cyclin-D acts as an allosteric regulator of the activation loop and the ATP-binding site in CDK4. Integrated with a suite of experimental data, we suggest that the CDK4 complex is less capable of remaining in the active catalytically competent conformation, and may have a lower catalytic efficiency than CDK2, befitting their cell cycle time scales, and point to critical residues and motifs that drive their differences. Our mechanistic landscape may apply broadly to kinases, and we propose two drug design strategies: (i) allosteric Inhibition by conformational stabilization for targeting allosteric CDK4 regulation by cyclin-D, and (ii) dynamic entropy-optimized targeting which leverages the dynamic, entropic aspects of CDK4 to optimize drug binding efficacy.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
20
|
Liu Y, Sun Y, Yang J, Wu D, Yu S, Liu J, Hu T, Luo J, Zhou H. DNMT1-targeting remodeling global DNA hypomethylation for enhanced tumor suppression and circumvented toxicity in oral squamous cell carcinoma. Mol Cancer 2024; 23:104. [PMID: 38755637 PMCID: PMC11097543 DOI: 10.1186/s12943-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/03/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND The faithful maintenance of DNA methylation homeostasis indispensably requires DNA methyltransferase 1 (DNMT1) in cancer progression. We previously identified DNMT1 as a potential candidate target for oral squamous cell carcinoma (OSCC). However, how the DNMT1- associated global DNA methylation is exploited to regulate OSCC remains unclear. METHODS The shRNA-specific DNMT1 knockdown was employed to target DNMT1 on oral cancer cells in vitro, as was the use of DNMT1 inhibitors. A xenografted OSCC mouse model was established to determine the effect on tumor suppression. High-throughput microarrays of DNA methylation, bulk and single-cell RNA sequencing analysis, multiplex immunohistochemistry, functional sphere formation and protein immunoblotting were utilized to explore the molecular mechanism involved. Analysis of human samples revealed associations between DNMT1 expression, global DNA methylation and collaborative molecular signaling with oral malignant transformation. RESULTS We investigated DNMT1 expression boosted steadily during oral malignant transformation in human samples, and its inhibition considerably minimized the tumorigenicity in vitro and in a xenografted OSCC model. DNMT1 overexpression was accompanied by the accumulation of cancer-specific DNA hypomethylation during oral carcinogenesis; conversely, DNMT1 knockdown caused atypically extensive genome-wide DNA hypomethylation in cancer cells and xenografted tumors. This novel DNMT1-remodeled DNA hypomethylation pattern hampered the dual activation of PI3K-AKT and CDK2-Rb and inactivated GSK3β collaboratively. When treating OSCC mice, targeting DNMT1 achieved greater anticancer efficacy than the PI3K inhibitor, and reduced the toxicity of blood glucose changes caused by the PI3K inhibitor or combination of PI3K and CDK inhibitors as well as adverse insulin feedback. CONCLUSIONS Targeting DNMT1 remodels a novel global DNA hypomethylation pattern to facilitate anticancer efficacy and minimize potential toxic effects via balanced signaling synergia. Our study suggests DNMT1 is a crucial gatekeeper regarding OSCC destiny and treatment outcome.
Collapse
Affiliation(s)
- Yangfan Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
- School of Stomatology, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Jin Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Deyang Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuang Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjiang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jingjing Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
21
|
Zhang C, Wang L, Qin L, Luo Y, Wen Z, Vignon AS, Zheng C, Zhu X, Chu H, Deng S, Hong L, Zhang J, Yang H, Zhang J, Ma Y, Wu G, Sun C, Liu X, Pu L. Overexpression of GPX2 gene regulates the development of porcine preadipocytes and skeletal muscle cells through MAPK signaling pathway. PLoS One 2024; 19:e0298827. [PMID: 38722949 PMCID: PMC11081289 DOI: 10.1371/journal.pone.0298827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 01/30/2024] [Indexed: 05/13/2024] Open
Abstract
Glutathione peroxidase 2 (GPX2) is a selenium-dependent enzyme and protects cells against oxidative damage. Recently, GPX2 has been identified as a candidate gene for backfat and feed efficiency in pigs. However, it is unclear whether GPX2 regulates the development of porcine preadipocytes and skeletal muscle cells. In this study, adenoviral gene transfer was used to overexpress GPX2. Our findings suggest that overexpression of GPX2 gene inhibited proliferation of porcine preadipocytes. And the process is accompanied by the reduction of the p-p38. GPX2 inhibited adipogenic differentiation and promoted lipid degradation, while ERK1/2 was reduced and p-p38 was increased. Proliferation of porcine skeletal muscle cells was induced after GPX2 overexpression, was accompanied by activation in JNK, ERK1/2, and p-p38. Overexpression methods confirmed that GPX2 has a promoting function in myoblastic differentiation. ERK1/2 pathway was activated and p38 was suppressed during the process. This study lays a foundation for the functional study of GPX2 and provides theoretical support for promoting subcutaneous fat reduction and muscle growth.
Collapse
Affiliation(s)
- Chunguang Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Lei Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Lei Qin
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Yunyan Luo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Zuochen Wen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Akpaca Samson Vignon
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Chunting Zheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Xueli Zhu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Han Chu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Shifan Deng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| | - Hua Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
| | - Jianbo Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Yuhong Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Guofang Wu
- State Key Laboratory of Plateau Ecology and Agriculture, Department of Animal Science and Veterinary Medicine, Qinghai University, Xining, China
| | - Chao Sun
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| | - Xin Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300392, China
- Tianjin modern Tianjiao Agricultural Technology Co, LTD, Tianjin Key Laboratory of Green Ecological Feed, Tianjin, China
| |
Collapse
|
22
|
Strachowska M, Robaszkiewicz A. Characteristics of anticancer activity of CBP/p300 inhibitors - Features of their classes, intracellular targets and future perspectives of their application in cancer treatment. Pharmacol Ther 2024; 257:108636. [PMID: 38521246 DOI: 10.1016/j.pharmthera.2024.108636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/25/2024]
Abstract
Due to the contribution of highly homologous acetyltransferases CBP and p300 to transcription elevation of oncogenes and other cancer promoting factors, these enzymes emerge as possible epigenetic targets of anticancer therapy. Extensive efforts in search for small molecule inhibitors led to development of compounds targeting histone acetyltransferase catalytic domain or chromatin-interacting bromodomain of CBP/p300, as well as dual BET and CBP/p300 inhibitors. The promising anticancer efficacy in in vitro and mice models led CCS1477 and NEO2734 to clinical trials. However, none of the described inhibitors is perfectly specific to CBP/p300 since they share similarity of a key functional domains with other enzymes, which are critically associated with cancer progression and their antagonists demonstrate remarkable clinical efficacy in cancer therapy. Therefore, we revise the possible and clinically relevant off-targets of CBP/p300 inhibitors that can be blocked simultaneously with CBP/p300 thereby improving the anticancer potential of CBP/p300 inhibitors and pharmacokinetic predicting data such as absorption, distribution, metabolism, excretion (ADME) and toxicity.
Collapse
Affiliation(s)
- Magdalena Strachowska
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; University of Lodz, Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, Banacha 12 /16, 90-237 Lodz, Poland.
| | - Agnieszka Robaszkiewicz
- University of Lodz, Faculty of Biology and Environmental Protection, Department of General Biophysics, Pomorska 141/143, 90-236 Lodz, Poland; Johns Hopkins University School of Medicine, Institute of Fundamental and Basic Research, 600 5(th) Street South, Saint Petersburg FL33701, United States of America.
| |
Collapse
|
23
|
Odeh DM, Allam HA, Baselious F, Mahmoud WR, Odeh MM, Ibrahim HS, Abdel-Aziz HA, Mohammed ER. Design, synthesis, and biological evaluation of dinaciclib and CAN508 hybrids as CDK inhibitors. Drug Dev Res 2024; 85:e22193. [PMID: 38685605 DOI: 10.1002/ddr.22193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
The scaffolds of two known CDK inhibitors (CAN508 and dinaciclib) were the starting point for synthesizing two series of pyarazolo[1,5-a]pyrimidines to obtain potent inhibitors with proper selectivity. The study presented four promising compounds; 10d, 10e, 16a, and 16c based on cytotoxic studies. Compound 16a revealed superior activity in the preliminary anticancer screening with GI % = 79.02-99.13 against 15 cancer cell lines at 10 μM from NCI full panel 60 cancer cell lines and was then selected for further investigation. Furthermore, the four compounds revealed good safety profile toward the normal cell lines WI-38. These four compounds were subjected to CDK inhibitory activity against four different isoforms. All of them showed potent inhibition against CDK5/P25 and CDK9/CYCLINT. Compound 10d revealed the best activity against CDK5/P25 (IC50 = 0.063 µM) with proper selectivity index against CDK1 and CDK2. Compound 16c exhibited the highest inhibitory activity against CDK9/CYCLINT (IC50 = 0.074 µM) with good selectivity index against other isoforms. Finally, docking simulations were performed for compounds 10e and 16c accompanied by molecular dynamic simulations to understand their behavior in the active site of the two CDKs with respect to both CAN508 and dinaciclib.
Collapse
Affiliation(s)
- Dana M Odeh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Fady Baselious
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohanad M Odeh
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Hany S Ibrahim
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Cairo, Dokki, Egypt
| | - Eman R Mohammed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Luo L, Luo JZ, Song XX, Wang CY, Tang DM, Sun WT, Fan CW, Li MS, Wang HS. Alkaloids from Corydalis saxicola and their antiproliferative activity against cancer cells. Fitoterapia 2024; 173:105791. [PMID: 38159614 DOI: 10.1016/j.fitote.2023.105791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Eight undescribed alkaloids named corydalisine D-K (1-7), including one isoquinoline benzopyranone alkaloid (1), one benzocyclopentanone alkaloid (2), four benzofuranone alkaloids (3, 4, and 5a/5b) and two protoberberine alkaloids (6 and 7), along with fourteen known ones, were isolated from the Corydalis saxicola. Their structures, including absolute configurations, were unambiguously identified using spectroscopic techniques, single-crystal X-ray diffraction and electron circular dichroism calculation. Compounds 2, 14 and 21 exhibit antiproliferative activity against five cancer cell lines. The aporphine alkaloid demethylsonodione (compound 14), which exhibited the best activity (IC50 = 3.68 ± 0.25 μM), was subjected to further investigation to determine its mechanism of action against the T24 cell line. The molecular mechanism was related to the arrest of cell cycle S-phase, inhibition of CDK2 expression, accumulation of reactive oxygen species (ROS), induction of cell apoptosis, inhibition of cell migration, and activation of p38 MAPK signaling pathway. The results indicated that 14 could be used as a potential candidate agent for further development of anti-bladder transitional cell carcinoma.
Collapse
Affiliation(s)
- Li Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jia-Zi Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China; Research Center for the Prevention and Treatment of Drug Resistant Microbial Infecting, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Xi-Xi Song
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cai-Yi Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China
| | - De-Ming Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Wen-Tao Sun
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Cai-Wen Fan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Mei-Shan Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| | - Heng-Shan Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China.
| |
Collapse
|
25
|
Sayed EM, Bakhite EA, Hassanien R, Farhan N, Aly HF, Morsy SG, Hassan NA. Novel tetrahydroisoquinolines as DHFR and CDK2 inhibitors: synthesis, characterization, anticancer activity and antioxidant properties. BMC Chem 2024; 18:34. [PMID: 38365746 PMCID: PMC10873978 DOI: 10.1186/s13065-024-01139-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/07/2024] [Indexed: 02/18/2024] Open
Abstract
In this study, we synthesized new 5,6,7,8-tetrahydroisoquinolines and 6,7,8,9-tetrahydrothieno[2,3-c]isoquinolines based on 4-(N,N-dimethylamino)phenyl moiety as expected anticancer and/or antioxidant agents. The structure of all synthesized compounds were confirmed by spectral date (FT-IR, 1H NMR, 13C NMR) and elemental analysis. We evaluated the anticancer activity of these compounds toward two cell lines: A459 cell line (lung cancer cells) and MCF7 cell line (breast cancer cells). All tested compounds showed moderate to strong anti-cancer activity towards the two cell lines. Compound 7e exhibited the most potent cytotoxic activity against A549 cell line (IC50: 0.155 µM) while compound 8d showed the most potent one against MCF7 cell line (IC50: 0.170 µM) in comparison with doxorubicin. In addition, we examined the effect of compounds 7e and 8d regarding the growth of A549 and MCF7 cell lines, employing flow cytometry and Annexin V-FITC apoptotic assay. Our results showed that compound 7e caused cell cycle arrest at the G2/M phase with a 79-fold increase in apoptosis of A459 cell line. Moreover, compound 8d caused cell cycle arrest at the S phase with a 69-fold increase in apoptosis of MCF7 cell line. Furthermore, we studied the activity of these compounds as enzyme inhibitors against several enzymes. Our findings by docking and experimental studies that compound 7e is a potent CDK2 inhibitor with IC50 of 0.149 µM, compared to the Roscovitine control drug with IC50 of 0.380 µM. We also found that compound 8d is a significant DHFR inhibitor with an IC50 of 0.199 µM, compared to Methotrexate control drug with IC50 of 0.131 µM. Evaluation of the antioxidant properties of ten compounds was also studied in comparison with Vitamin C. Compounds 1, 3, 6, 7c and 8e have higher antioxidant activity than Vitamin C which mean that these compounds can used as potent antioxidant drugs.
Collapse
Affiliation(s)
- Eman M Sayed
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt.
| | - Etify A Bakhite
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt.
| | - Reda Hassanien
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Nasser Farhan
- Department of Chemistry, Faculty of Science, New Valley University, El-Kharja, 72511, Egypt
| | - Hanan F Aly
- Department of Therapeutic Chemistry, National Research Centre, El-Behooth St., Dokki, Cairo, 12622, Egypt
| | - Salma G Morsy
- Department of Cancer Biology, Cancer Immunology and Virology Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Nivin A Hassan
- Department Cancer Biology, Pharmacology and Experimental Oncology Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| |
Collapse
|
26
|
Zheng M, Zhang XY, Chen W, Xia F, Yang H, Yuan K, Yang P. Molecules inducing specific cyclin-dependent kinase degradation and their possible use in cancer therapy. Future Med Chem 2024; 16:369-388. [PMID: 38288571 DOI: 10.4155/fmc-2023-0259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/12/2024] [Indexed: 02/07/2024] Open
Abstract
Cyclin-dependent kinases (CDKs) play an important role in the regulation of cell proliferation, and many CDK inhibitors were developed. However, pan-CDK inhibitors failed to be approved due to intolerant toxicity or low efficacy and the use of selective CDK4/6 inhibitors is limited by resistance. Protein degraders have the potential to increase selectivity, efficacy and overcome resistance, which provides a novel strategy for regulating CDKs. In this review, we summarized the function of CDKs in regulating the cell cycle and transcription, and introduced the representative CDK inhibitors. Then we made a detailed introduction about four types of CDKs degraders, including their action mechanisms, research status and application prospects, which could help the development of novel CDKs degraders.
Collapse
Affiliation(s)
- Mingming Zheng
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiao-Yu Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Weijiao Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Fei Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Huanaoyu Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Kai Yuan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Peng Yang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
- Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing, 211198, China
| |
Collapse
|
27
|
Li Z, Duan Y, Yan S, Zhang Y, Wu Y. The miR-302/367 cluster: Aging, inflammation, and cancer. Cell Biochem Funct 2023; 41:752-766. [PMID: 37555645 DOI: 10.1002/cbf.3836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/10/2023]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs that occupy a significant role in biological processes as important regulators of intracellular homeostasis. First, we will discuss the biological genesis and functions of the miR-302/367 cluster, including miR-302a, miR-302b, miR-302c, miR-302d, and miR-367, as well as their roles in physiologically healthy tissues. The second section of this study reviews the progress of the miR-302/367 cluster in the treatment of cancer, inflammation, and diseases associated with aging. This cluster's aberrant expression in cells and/or tissues exhibits similar or different effects in various diseases through molecular mechanisms such as proliferation, apoptosis, cycling, drug resistance, and invasion. This article also discusses the upstream and downstream regulatory networks of miR-302/367 clusters and their related mechanisms. Particularly because studies on the upstream regulatory molecules of miR-302/367 clusters, which include age-related macular degeneration, myocardial infarction, and cancer, have become more prevalent in recent years. MiR-302/367 cluster can be an important therapeutic target and the use of miRNAs in combination with other molecular markers may improve diagnostic or therapeutic capabilities, providing unique insights and a more dynamic view of various diseases. It is noted that miRNAs can be an important bio-diagnostic target and offer a promising method for illness diagnosis, prevention, and treatment.
Collapse
Affiliation(s)
- Zhou Li
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yan Duan
- Department of Stomatology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi Province, China
| | - Shaofu Yan
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yao Zhang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
| | - Yunxia Wu
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Medical University School and Hospital of Stomatology, Taiyuan, Shanxi Province, China
- Department of Stomatology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
28
|
Gong J, Liu Y, Wang W, He R, Xia Q, Chen L, Zhao C, Gao Y, Shi Y, Bai Y, Liao Y, Zhang Q, Zhu F, Wang M, Li X, Qin R. TRIM21-Promoted FSP1 Plasma Membrane Translocation Confers Ferroptosis Resistance in Human Cancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302318. [PMID: 37587773 PMCID: PMC10582465 DOI: 10.1002/advs.202302318] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/21/2023] [Indexed: 08/18/2023]
Abstract
Ferroptosis, an iron-dependent form of regulated cell death driven by excessive accumulation of lipid peroxides, has become a promising strategy in cancer treatment. Cancer cells exploit antioxidant proteins, including Ferroptosis Suppressor Protein 1 (FSP1), to prevent ferroptosis. In this study, it is found that the E3 ubiquitin ligase TRIM21 bound to FSP1 and mediated its ubiquitination on K322 and K366 residues via K63 linkage, which is essential for its membrane translocation and ferroptosis suppression ability. It is further verified the protective role of the TRIM21-FSP1 axis in RSL3-induced ferroptosis in cancer cells and a subcutaneous tumor model. Moreover, TRIM21 is highly expressed in multiple gastrointestinal (GI) tumors, and its expression is further stimulated upon ferroptosis induction in cancer cells and the KPC mouse model. In summary, This study identifies TRIM21 as a negative regulator of ferroptosis through K63 ubiquitination of FSP1, which can serve as a therapeutic target to enhance the chemosensitivity of tumors based on ferroptosis induction.
Collapse
Affiliation(s)
- Jun Gong
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yuhui Liu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Wenjia Wang
- Institute of Integrated Traditional Chinese and Western MedicineAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Ruizhi He
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Qilong Xia
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Lin Chen
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Chunle Zhao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yang Gao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yongkang Shi
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yu Bai
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Yangwei Liao
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Qi Zhang
- Department of Plastic and Cosmetic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Feng Zhu
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Min Wang
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Xu Li
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| | - Renyi Qin
- Department of Biliary‐Pancreatic SurgeryAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesAffiliated Tongji HospitalTongji Medical CollegeHuazhong University of Science and Technology1095 Jiefang AveWuhanHubei430030China
| |
Collapse
|
29
|
Wang X, Shi W, Wang X, Lu JJ, He P, Zhang H, Chen X. Nifuroxazide boosts the anticancer efficacy of palbociclib-induced senescence by dual inhibition of STAT3 and CDK2 in triple-negative breast cancer. Cell Death Discov 2023; 9:355. [PMID: 37752122 PMCID: PMC10522654 DOI: 10.1038/s41420-023-01658-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/12/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
Though palbociclib, a cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor has been approved for treating breast cancer, two major clinical challenges remain: (i) Triple-negative breast cancer (TNBC) appears to be more resistant to palbociclib, and (ii) Palbociclib-induced senescence-associated secretory phenotype (SASP) has a pro-tumorigenic function. Here we report that combining palbociclib with the STAT3 inhibitor nifuroxazide uncouples SASP production from senescence-associated cell cycle exit. Moreover, we identified nifuroxazide as a CDK2 inhibitor that synergistically promotes palbociclib-induced growth arrest and senescence in TNBC cells. In vitro, the combination of nifuroxazide with palbociclib further inhibited the TNBC cell proliferation and enhanced palbociclib-induced cell cycle arrest and senescence. The modulation of palbociclib-induced SASP by nifuroxazide was associated with the reduction of phosphorylated-STAT3. Nifuroxazide also blocks SASP-dependent cancer cell migration. Furthermore, thermal shift assay and molecular docking of nifuroxazide with STAT3 and CDK2 revealed that it binds to their active sites and acts as a potent dual inhibitor. In vivo, the combination of nifuroxazide with palbociclib suppressed 4T1 tumor growth and lung metastasis. Our data suggest that nifuroxazide enhances the anticancer effects of palbociclib in TNBC by uncoupling SASP production from senescence-associated cell cycle exit and inhibiting CDK2 to promote tumor senescence.
Collapse
Affiliation(s)
- Xianzhe Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Wei Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Xumei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Ping He
- Department of Pharmacology, School of Pharmacy, Guangxi Medical University, Nanning, Guangxi, China
| | - Hongjie Zhang
- Biological Imaging and Stem Cell Core, Faculty of Health Sciences, University of Macau, Taipa, Macao, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, Macao, China.
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Zheng D, Yang C, Li X, Liu D, Wang Y, Wang X, Zhang X, Tan Y, Zhang Y, Li Y, Xu J. Design, Synthesis, Antitumour Evaluation, and In Silico Studies of Pyrazolo-[1,5- c]quinazolinone Derivatives Targeting Potential Cyclin-Dependent Kinases. Molecules 2023; 28:6606. [PMID: 37764382 PMCID: PMC10536637 DOI: 10.3390/molecules28186606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/14/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
An efficient, straightforward, and metal-free methodology to rapidly access functionalised pyrazolo-[1,5-c]quinazolinones via a [3 + 2] dipolar cycloaddition and regioselective ring expansion process was developed. The synthesised compounds were characterised by methods such as NMR, HRMS, and HPLC. The in vitro antiproliferative activity against A549 cells (non-small cell lung cancer) was significant for compounds 4i, 4m, and 4n with IC50 values of 17.0, 14.2, and 18.1 μM, respectively. In particular, compounds 4t and 4n showed inhibitory activity against CDK9/2. Predicted biological target and molecular modelling studies suggest that the compound 4t may target CDKs for antitumour effects. The synthesised derivatives were considered to have moderate drug-likeness and sufficient safety in silico. In summary, a series of pyrazolo-[1,5-c]quinazolinone derivatives with antitumour activity is reported for the first time. We provide not only a simple and efficient synthetic method but also helpful lead compounds for the further development of novel cyclin-dependent kinase (CDK) inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Youbin Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (D.Z.); (C.Y.); (X.L.)
| | - Junyu Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Key Laboratory for Research and Development of Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China; (D.Z.); (C.Y.); (X.L.)
| |
Collapse
|
31
|
Almansour BS, Binjubair FA, Abdel-Aziz AAM, Al-Rashood ST. Synthesis and In Vitro Anticancer Activity of Novel 4-Aryl-3-(4-methoxyphenyl)-1-phenyl-1 H-pyrazolo[3,4- b]pyridines Arrest Cell Cycle and Induce Cell Apoptosis by Inhibiting CDK2 and/or CDK9. Molecules 2023; 28:6428. [PMID: 37687256 PMCID: PMC10490123 DOI: 10.3390/molecules28176428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/11/2023] [Accepted: 07/17/2023] [Indexed: 09/10/2023] Open
Abstract
Two series of pyrazolo[3,4-b]pyridine derivatives, 9a-h and 14a-h, are synthesized and evaluated for their anti-cancer potency towards Hela, MCF7, and HCT-116 cancer cell lines. Compound 9a showed the highest anticancer activity with IC50 = 2.59 µM against Hela when compared with doxorubicin (IC50 = 2.35 µM). Compound 14g revealed cytotoxicity IC50 = 4.66 and 1.98 µM towards MCF7 and HCT-116 compared to doxorubicin with IC50 = 4.57 and 2.11 µM, respectively. Compound 9a exhibited cell cycle arrest at the S phase for Hela, whereas 14g revealed an arresting cell cycle for MCF7 at G2/M phase and an arresting cell cycle at S phase in HCT-116. In addition, 9a induced a significant level of early and late apoptosis in Hela when compared with the control cells, whereas 14g induced an apoptosis in MCF7 and HCT-116, respectively. Compounds 9a (IC50 = 26.44 ± 3.23 µM) and 14g (IC50 = 21.81 ± 2.96 µM) showed good safety profiles on normal cell line WI-38. Compounds 9a and 14g showed good inhibition activity towards CDK2, with IC50 = 1.630 ± 0.009 and 0.460 ± 0.024 µM, respectively, when compared with ribociclib (IC50 = 0.068 ± 0.004). Furthermore, 9a and 14g showed inhibitory activity towards CDK9 with IC50 = 0.262 ± 0.013 and 0.801 ± 0.041 µM, respectively, related to IC50 of ribociclib = 0.050 ± 0.003. Docking study for 9a and 14g exhibited good fitting in the CDK2 and CDK9 active sites.
Collapse
Affiliation(s)
- Basma S. Almansour
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (B.S.A.); (F.A.B.); (A.A.-M.A.-A.)
| | - Faizah A. Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (B.S.A.); (F.A.B.); (A.A.-M.A.-A.)
| | - Alaa A.-M. Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (B.S.A.); (F.A.B.); (A.A.-M.A.-A.)
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (B.S.A.); (F.A.B.); (A.A.-M.A.-A.)
| |
Collapse
|
32
|
Zhang W, Liu Y, Jang H, Nussinov R. Cell cycle progression mechanisms: slower cyclin-D/CDK4 activation and faster cyclin-E/CDK2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553605. [PMID: 37790340 PMCID: PMC10542123 DOI: 10.1101/2023.08.16.553605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Dysregulation of cyclin-dependent kinases (CDKs) impacts cell proliferation, driving cancer. Here, we ask why the cyclin-D/CDK4 complex governs cell cycle progression through the longer G1 phase, whereas cyclin-E/CDK2 regulates the short G1/S phase transition. We consider the experimentally established high-level bursting of cyclin-E, and sustained duration of elevated cyclin-D expression in the cell, available experimental cellular and structural data, and comprehensive explicit solvent molecular dynamics simulations to provide the mechanistic foundation of the distinct activation scenarios of cyclin-D/CDK4 and cyclin-E/CDK2 in the G1 phase and G1/S transition of the cell cycle, respectively. These lead us to propose slower activation of cyclin-D/CDK4 and rapid activation of cyclin-E/CDK2. Importantly, we determine the mechanisms through which this occurs, offering innovative CDK4 drug design considerations. Our insightful mechanistic work addresses the compelling cell cycle regulation question and illuminates the distinct activation speeds in the G1 versus G1/S phases, which are crucial for cell function.
Collapse
Affiliation(s)
- Wengang Zhang
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, U.S.A
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, U.S.A
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Shahab M, Zheng G, Khan A, Wei D, Novikov AS. Machine Learning-Based Virtual Screening and Molecular Simulation Approaches Identified Novel Potential Inhibitors for Cancer Therapy. Biomedicines 2023; 11:2251. [PMID: 37626747 PMCID: PMC10452548 DOI: 10.3390/biomedicines11082251] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Cyclin-dependent kinase 2 (CDK2) is a promising target for cancer treatment, developing new effective CDK2 inhibitors is of great significance in anticancer therapy. The involvement of CDK2 in tumorigenesis has been debated, but recent evidence suggests that specifically inhibiting CDK2 could be beneficial in treating certain tumors. This approach remains attractive in the development of anticancer drugs. Several small-molecule inhibitors targeting CDK2 have reached clinical trials, but a selective inhibitor for CDK2 is yet to be discovered. In this study, we conducted machine learning-based drug designing to search for a drug candidate for CDK2. Machine learning models, including k-NN, SVM, RF, and GNB, were created to detect active and inactive inhibitors for a CDK2 drug target. The models were assessed using 10-fold cross-validation to ensure their accuracy and reliability. These methods are highly suitable for classifying compounds as either active or inactive through the virtual screening of extensive compound libraries. Subsequently, machine learning techniques were employed to analyze the test dataset obtained from the zinc database. A total of 25 compounds with 98% accuracy were predicted as active against CDK2. These compounds were docked into CDK2's active site. Finally, three compounds were selected based on good docking score, and, along with a reference compound, underwent MD simulation. The Gaussian naïve Bayes model yielded superior results compared to other models. The top three hits exhibited enhanced stability and compactness compared to the reference compound. In conclusion, our study provides valuable insights for identifying and refining lead compounds as CDK2 inhibitors.
Collapse
Affiliation(s)
- Muhammad Shahab
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Guojun Zheng
- State Key Laboratories of Chemical Resources Engineering, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Abbas Khan
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.W.)
| | - Dongqing Wei
- Department of Bioinformatics and Biological Statistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; (A.K.); (D.W.)
| | - Alexander S. Novikov
- Institute of Chemistry, Saint Petersburg State University, Saint Petersburg 199034, Russia
- Research Institute of Chemistry, Peoples’ Friendship University of Russia (RUDN University), Moscow 117198, Russia
| |
Collapse
|
34
|
Cao J, Tao X, Shi B, Wang J, Ma R, Zhao J, Tian J, Huang Q, Yu J, Wang L. NKD1 targeting PCM1 regulates the therapeutic effects of homoharringtonine on colorectal cancer. Mol Biol Rep 2023; 50:6543-6556. [PMID: 37338734 DOI: 10.1007/s11033-023-08572-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the most common primary malignancy. Recently, antineoplastic attributes of homoharringtonine (HHT) have attracted lots of attention. This study investigated the molecular target and underlying mechanism of HHT in the CRC process by using a cellular and animal models. METHODS This study first detected the effects of HHT on the proliferation, cell cycle and apoptosis ability of CRC cells using CCK-8, Edu staining, flow cytometry and Western blotting assay. In vitro recovery experiment and in vivo tumorigenesis experiment were used to detect the targeted interaction between HHT and NKD1. After that, the downstream target and mechanism of action of HHT targeting NKD1 was determined using quantitative proteomics combined with co-immunoprecipitation/immunofluorescence assay. RESULTS HHT suppressed CRC cells proliferation by inducing cell cycle arrest and apoptosis in vitro and vivo. HHT inhibited NKD1 expression in a concentration and time dependent manner. NKD1 was overexpressed in CRC and its depletion enhanced the therapeutic sensitivity of HHT on CRC, which indicating that NKD1 plays an important role in the development of CRC as the drug delivery target of HHT. Furthermore, proteomic analysis revealed that PCM1 participated the process of NKD1-regulated cell proliferation and cell cycle. NKD1 interacted with PCM1 and promoted PCM1 degradation through the ubiquitin-proteasome pathway. The overexpression of PCM1 effectively reversed the inhibition of siNKD1 on cell cycle. CONCLUSIONS The present findings revealed that HHT blocked NKD1 expression to participate in inhibiting cell proliferation and inducing cell apoptosis, ultimately leading to obstruction of CRC development through NKD1/PCM1 dependent mechanism. Our research provide evidence for clinical application of NKD1-targeted therapy in improving HHT sensitivity for CRC treatment.
Collapse
Affiliation(s)
- Jia Cao
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Xiang Tao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Bin Shi
- Department of Emergency, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jia Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jufen Zhao
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jinhai Tian
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Qi Huang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Jingjing Yu
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Libin Wang
- Department of Beijing National Biochip Research Center Sub-Center in Ningxia, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
- College of Clinical Medicine, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
35
|
Faber EB, Sun L, Tang J, Roberts E, Ganeshkumar S, Wang N, Rasmussen D, Majumdar A, Hirsch LE, John K, Yang A, Khalid H, Hawkinson JE, Levinson NM, Chennathukuzhi V, Harki DA, Schönbrunn E, Georg GI. Development of allosteric and selective CDK2 inhibitors for contraception with negative cooperativity to cyclin binding. Nat Commun 2023; 14:3213. [PMID: 37270540 PMCID: PMC10239507 DOI: 10.1038/s41467-023-38732-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 05/12/2023] [Indexed: 06/05/2023] Open
Abstract
Compared to most ATP-site kinase inhibitors, small molecules that target an allosteric pocket have the potential for improved selectivity due to the often observed lower structural similarity at these distal sites. Despite their promise, relatively few examples of structurally confirmed, high-affinity allosteric kinase inhibitors exist. Cyclin-dependent kinase 2 (CDK2) is a target for many therapeutic indications, including non-hormonal contraception. However, an inhibitor against this kinase with exquisite selectivity has not reached the market because of the structural similarity between CDKs. In this paper, we describe the development and mechanism of action of type III inhibitors that bind CDK2 with nanomolar affinity. Notably, these anthranilic acid inhibitors exhibit a strong negative cooperative relationship with cyclin binding, which remains an underexplored mechanism for CDK2 inhibition. Furthermore, the binding profile of these compounds in both biophysical and cellular assays demonstrate the promise of this series for further development into a therapeutic selective for CDK2 over highly similar kinases like CDK1. The potential of these inhibitors as contraceptive agents is seen by incubation with spermatocyte chromosome spreads from mouse testicular explants, where they recapitulate Cdk2-/- and Spdya-/- phenotypes.
Collapse
Affiliation(s)
- Erik B Faber
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Medical Scientist Training Program, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Luxin Sun
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Jian Tang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Emily Roberts
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sornakala Ganeshkumar
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Nan Wang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Damien Rasmussen
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Abir Majumdar
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Laura E Hirsch
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Kristen John
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - An Yang
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Hira Khalid
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Jon E Hawkinson
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Nicholas M Levinson
- Department of Pharmacology, University of Minnesota Medical School-Twin Cities, Minneapolis, MN, USA
| | - Vargheese Chennathukuzhi
- Department of Molecular and Integrative Physiology, Institute for Reproductive and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS, USA
| | - Daniel A Harki
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL, USA
| | - Gunda I Georg
- Department of Medicinal Chemistry, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA.
- Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy-Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
36
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Bai Y, Liu Z, Li Y, Zhao H, Lai C, Zhao S, Chen K, Luo C, Yang X, Wang F. Structural Mass Spectrometry Probes the Inhibitor-Induced Allosteric Activation of CDK12/CDK13-Cyclin K Dissociation. J Am Chem Soc 2023; 145:11477-11481. [PMID: 37207290 DOI: 10.1021/jacs.3c01697] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rational design and development of effective inhibitors for cyclin-dependent kinases 12 and 13 (CDK12 and CDK13) are largely dependent on the understanding of the dynamic inhibition conformations but are difficult to be achieved by conventional characterization tools. Herein, we integrate the structural mass spectrometry (MS) methods of lysine reactivity profiling (LRP) and native MS (nMS) to systematically interrogate both the dynamic molecular interactions and overall protein assembly of CDK12/CDK13-cyclin K (CycK) complexes under the modulation of small molecule inhibitors. The essential structure insights, including inhibitor binding pocket, binding strength, interfacial molecular details, and dynamic conformation changes, can be derived from the complementary results of LRP and nMS. We find the inhibitor SR-4835 binding can greatly destabilize the CDK12/CDK13-CycK interactions in an unusual allosteric activation way, thereby providing a novel alternative for the kinase activity inhibition. Our results underscore the great potential of LRP combination with nMS for the evaluation and rational design of effective kinase inhibitors at the molecular level.
Collapse
Affiliation(s)
- Yu Bai
- School of Pharmacy, China Medical University, Shenyang 110122, China
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanqing Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Can Lai
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Zhao
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kaixian Chen
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cheng Luo
- Drug Discovery and Design Center, the Center for Chemical Biology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Zhang X, Yu X, Yu Z, Fan C, Li Y, Li H, Shen Y, Sun Z, Zhang S. Network pharmacology and bioinformatics to identify molecular mechanisms and therapeutic targets of Ruyi Jinhuang Powder in the treatment of monkeypox. Medicine (Baltimore) 2023; 102:e33576. [PMID: 37115075 PMCID: PMC10145999 DOI: 10.1097/md.0000000000033576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Monkeypox outbreaks across the globe has aroused widespread concern. Ruyi Jinhuang Powder (RJP), a common formula in Chinese medicine, is used to treat pox-like illnesses. This study aimed to identify the molecular mechanisms and therapeutic targets of RJP for the treatment of monkeypox using network pharmacology and bioinformatics techniques. The bioactive substances and potential targets of each component of RJP were retrieved from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). The differentially expressed genes (DEGs) of the monkeypox virus (MPXV) were identified from the GSE24125 by GEO2R. Key signaling pathways, bioactive components, and potential targets were obtained by bioinformatics analysis, including gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), disease ontology (DO), and protein-protein interactions (PPI) analyses. Finally, molecular docking was used to predict the interaction between active compounds and core targets. A total of 158 active ingredients and 17 drug-disease-shared targets of RJP were screened. Bioinformatics indicated that wogonin and quercetin might be potential drug candidates. Potential therapeutic targets were identified. Immune-related mechanisms that exerted antiviral effects included signaling pathways like TNF, age-rage, and c-type lectin receptor pathways. Our results illustrated the good therapeutic effect of RJP on monkeypox in terms of biological activity, potential targets, and molecular mechanism. This also offered a promising strategy to reveal the scientific basis and therapeutic mechanism of herbal formulas used to treat the disease.
Collapse
Affiliation(s)
- Xi Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinping Yu
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Zhichao Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chengcheng Fan
- College of Rehabilitation, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yueming Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huan Li
- College of First Clinical Medical, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yingkai Shen
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zijin Sun
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing, China
| | - Shuo Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
39
|
Klein M. Targeting Protein-Protein Interactions to Inhibit Cyclin-Dependent Kinases. Pharmaceuticals (Basel) 2023; 16:ph16040519. [PMID: 37111276 PMCID: PMC10144709 DOI: 10.3390/ph16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play diverse and critical roles in normal cells and may be exploited as targets in cancer therapeutic strategies. CDK4 inhibitors are currently approved for treatment in advanced breast cancer. This success has led to continued pursuit of targeting other CDKs. One challenge has been in the development of inhibitors that are highly selective for individual CDKs as the ATP-binding site is highly conserved across this family of proteins. Protein-protein interactions (PPI) tend to have less conservation amongst different proteins, even within protein families, making targeting PPI an attractive approach to improving drug selectivity. However, PPI can be challenging to target due to structural and physicochemical features of these interactions. A review of the literature specific to studies focused on targeting PPI involving CDKs 2, 4, 5, and 9 was conducted and is presented here. Promising lead molecules to target select CDKs have been discovered. None of the lead molecules discovered have led to FDA approval; however, the studies covered in this review lay the foundation for further discovery and develop of PPI inhibitors for CDKs.
Collapse
Affiliation(s)
- Mark Klein
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Healthcare System, Minneapolis, MN 55417, USA
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
40
|
Tambo CS, Tripathi S, Perera BGK, Maly DJ, Bridges AJ, Kiss G, Rubin SM. Biolayer Interferometry Assay for Cyclin-Dependent Kinase-Cyclin Association Reveals Diverse Effects of Cdk2 Inhibitors on Cyclin Binding Kinetics. ACS Chem Biol 2023; 18:431-440. [PMID: 36724382 PMCID: PMC10029018 DOI: 10.1021/acschembio.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cyclin-dependent kinases (CDKs) are key mediators of cell proliferation and have been a subject of oncology drug discovery efforts for over two decades. Several CDK and activator cyclin family members have been implicated in regulating the cell division cycle. While it is thought that there are canonical CDK-cyclin pairing preferences, the extent of selectivity is unclear, and increasing evidence suggests that the cell-cycle CDKs can be activated by a pool of available cyclins. The molecular details of CDK-cyclin specificity are not completely understood despite their importance for understanding cancer cell cycles and for pharmacological inhibition of cancer proliferation. We report here a biolayer interferometry assay that allows for facile quantification of CDK binding interactions with their cyclin activators. We applied this assay to measure the impact of Cdk2 inhibitors on Cyclin A (CycA) association and dissociation kinetics. We found that Type I inhibitors increase the affinity between Cdk2 and CycA by virtue of a slowed cyclin dissociation rate. In contrast, Type II inhibitors and other small-molecule Cdk2 binders have distinct effects on the CycA association and dissociation processes to decrease affinity. We propose that the differential impact of small molecules on the cyclin binding kinetics arises from the plasticity of the Cdk2 active site as the kinase transitions between active, intermediate, and inactive states.
Collapse
Affiliation(s)
- Carrie S Tambo
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - B Gayani K Perera
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
- Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States
| | | | - Gert Kiss
- Type6 Therapeutics Inc., Santa Clara, California 95051, United States
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|
41
|
Faber EB, Wang N, John K, Sun L, Wong HL, Burban D, Francis R, Tian D, Hong KH, Yang A, Wang L, Elsaid M, Khalid H, Levinson NM, Schönbrunn E, Hawkinson JE, Georg GI. Screening through Lead Optimization of High Affinity, Allosteric Cyclin-Dependent Kinase 2 (CDK2) Inhibitors as Male Contraceptives That Reduce Sperm Counts in Mice. J Med Chem 2023; 66:1928-1940. [PMID: 36701569 PMCID: PMC11556300 DOI: 10.1021/acs.jmedchem.2c01731] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Although cyclin-dependent kinase 2 (CDK2) is a validated target for both cancer and contraception, developing a CDK2 inhibitor with exquisite selectivity has been challenging due to the structural similarity of the ATP-binding site, where most kinase inhibitors bind. We previously discovered an allosteric pocket in CDK2 with the potential to bind a selective compound and then discovered and structurally confirmed an anthranilic acid scaffold that binds this pocket with high affinity. These allosteric inhibitors are selective for CDK2 over structurally similar CDK1 and show contraceptive potential. Herein, we describe the screening and optimization that led to compounds like EF-4-177 with nanomolar affinity for CDK2. EF-4-177 is metabolically stable, orally bioavailable, and significantly disrupts spermatogenesis, demonstrating this series' therapeutic potential. This work details the discovery of the highest affinity allosteric CDK inhibitors reported and shows promise for this series to yield an efficacious and selective allosteric CDK2 inhibitor.
Collapse
Affiliation(s)
- Erik B. Faber
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
- Medical Scientist Training Program, University of Minnesota Medical School – Twin Cities, Minneapolis, MN 55455
| | - Nan Wang
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Kristen John
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Luxin Sun
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL 33612
| | - Henry L. Wong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - David Burban
- Department of Pharmacology, University of Minnesota Medical School – Twin Cities, Minneapolis, MN 55455
| | - Rawle Francis
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Defeng Tian
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Kwon H. Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - An Yang
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Liming Wang
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Mazen Elsaid
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Hira Khalid
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Nicholas M. Levinson
- Department of Pharmacology, University of Minnesota Medical School – Twin Cities, Minneapolis, MN 55455
| | - Ernst Schönbrunn
- Drug Discovery Department, Moffitt Cancer Center, Tampa, FL 33612
| | - Jon E. Hawkinson
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| | - Gunda I. Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, University of Minnesota College of Pharmacy – Twin Cities, Minneapolis, MN 55414
| |
Collapse
|
42
|
Arsenijevic T, Coulonval K, Raspé E, Demols A, Roger PP, Van Laethem JL. CDK4/6 Inhibitors in Pancreatobiliary Cancers: Opportunities and Challenges. Cancers (Basel) 2023; 15:968. [PMID: 36765923 PMCID: PMC9913743 DOI: 10.3390/cancers15030968] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Existing treatment strategies for pancreatobiliary malignancies are limited. Nowadays, surgery is the only path to cure these types of cancer, but only a small number of patients present with resectable tumors at the time of diagnosis. The notoriously poor prognosis, lack of diverse treatment options associated with pancreaticobiliary cancers, and their resistance to current therapies reflect the urge for the development of novel therapeutic targets. Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors have emerged as an attractive therapeutic strategy in a number of cancers since their approval for treatment in patients with ER+/HER- breast cancer in combination with antiestrogens. In this article, we discuss the therapeutic potential of CDK4/6 inhibitors in pancreatobiliary cancers, notably cholangiocarcinoma and pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Katia Coulonval
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Eric Raspé
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Anne Demols
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| | - Pierre P. Roger
- Institute of Interdisciplinary Research (Iribhm), ULB-Cancer Research Center (U-crc), Université Libre de Bruxelles, Campus Erasme, Route de Lennik 808, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, HUB Bordet Erasme Hospital, Université Libre de Bruxelles, Route de Lennik 808, 1070 Brussels, Belgium
| |
Collapse
|
43
|
Chen X, Cao M, Wang P, Chu S, Li M, Hou P, Zheng J, Li Z, Bai J. The emerging roles of TRIM21 in coordinating cancer metabolism, immunity and cancer treatment. Front Immunol 2022; 13:968755. [PMID: 36159815 PMCID: PMC9506679 DOI: 10.3389/fimmu.2022.968755] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Tripartite motif containing-21 (TRIM21), an E3 ubiquitin ligase, was initially found to be involved in antiviral responses and autoimmune diseases. Recently studies have reported that TRIM21 plays a dual role in cancer promoting and suppressing in the occurrence and development of various cancers. Despite the fact that TRIM21 has effects on multiple metabolic processes, inflammatory responses and the efficacy of tumor therapy, there has been no systematic review of these topics. Herein, we discuss the emerging role and function of TRIM21 in cancer metabolism, immunity, especially the immune response to inflammation associated with tumorigenesis, and also the cancer treatment, hoping to shine a light on the great potential of targeting TRIM21 as a therapeutic target.
Collapse
Affiliation(s)
- Xintian Chen
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Menghan Cao
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pengfei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Sufang Chu
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Minle Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Pingfu Hou
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Zhongwei Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| | - Jin Bai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jin Bai, ; Zhongwei Li, ; Junnian Zheng,
| |
Collapse
|
44
|
Applications of the Novel Quantitative Pharmacophore Activity Relationship Method QPhAR in Virtual Screening and Lead-Optimisation. Pharmaceuticals (Basel) 2022; 15:ph15091122. [PMID: 36145343 PMCID: PMC9504690 DOI: 10.3390/ph15091122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022] Open
Abstract
Pharmacophores are an established concept for the modelling of ligand–receptor interactions based on the abstract representations of stereoelectronic molecular features. They became widely popular as filters for the fast virtual screening of large compound libraries. A lot of effort has been put into the development of sophisticated algorithms and strategies to increase the computational efficiency of the screening process. However, hardly any focus has been put on the development of automated procedures that optimise pharmacophores towards higher discriminatory power, which still has to be done manually by a human expert. In the age of machine learning, the researcher has become the decision-maker at the top level, outsourcing analysis tasks and recurrent work to advanced algorithms and automation workflows. Here, we propose an algorithm for the automated selection of features driving pharmacophore model quality using SAR information extracted from validated QPhAR models. By integrating the developed method into an end-to-end workflow, we present a fully automated method that is able to derive best-quality pharmacophores from a given input dataset. Finally, we show how the QPhAR-generated models can be used to guide the researcher with insights regarding (un-)favourable interactions for compounds of interest.
Collapse
|