1
|
Xi Y, Li J, Wu Z, Ma Y, Li J, Yang Z, Wang F, Yang D, Jiang Y, Yi Q, Huang S. Yorkie negatively regulates the Crustin expression during molting in Chinese mitten crab, Eriocheir sinensis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 161:105242. [PMID: 39128619 DOI: 10.1016/j.dci.2024.105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 08/13/2024]
Abstract
Molting is a key biological process of crustaceans, which is mainly regulated by 20-hydroxyecdyone (20E). The molting cycle could be divided into three main stages including pre-molt, post-molt and inter-molt stages. The mechanism of immune regulation during molting process still requires further exploration. Yorkie (Yki) is a pivotal transcription factor in the Hippo signaling pathway, and it plays an essential role in regulating cell growth and immune response. In the present study, a Yki gene was identified from Eriocheir sinensis (designed as EsYki), and the regulatory role of EsYki in controlling the expression of antimicrobial peptide genes throughout the molting process was investigated. The mRNA expression level of EsYki was higher at the pre-molt stage compared to the post-molt stage and inter-molt stage. Following the injection of 20E, there was a notable and consistent rise in the EsYki mRNA expression in haemocytes. The increase was observed from 3 h to 48 h with the maximum level at 12 h. And the phosphorylation of Yki in the haemocytes was also significantly up-regulated at 3 h post 20E injection. Moreover, the levels of EsYki mRNA expression at three molting stages were significantly increased post Aeromonas hydrophila stimulation. The maximum level was detected at post-molt stage following A. hydrophila stimulation, while the lowest level was observed at inter-molt stage. The expression pattern of EsCrus was in contrast to EsCrus. After EsYki mRNA transcripts were inhibited by Yki inhibitor (CA3), the mRNA expression levels of EsCrus1 and EsCrus2 following A. hydrophila stimulation were significantly elevated. Furthermore, the phosphorylation level of NF-κB was also increased following the inhibition of Yki. Collectively, our findings indicated that EsYki could be induced by 20E and has a suppressive effect on the expression of EsCrus via inhibiting NF-κB during molting process. This research contributes to the understanding of the immunological regulation mechanism during molting process in crustaceans.
Collapse
Affiliation(s)
- Yuting Xi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jialin Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zihao Wu
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Yuhan Ma
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Jiaming Li
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Zhichao Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Fengchi Wang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China
| | - Dazuo Yang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China
| | - Yusheng Jiang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China
| | - Qilin Yi
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China.
| | - Shu Huang
- College of Aquaculture and Life Science, Dalian Ocean University, Dalian, 11026, China; Key Laboratory of Marine Bio-Resources Restoration and Habitat Reparation in Liaoning Province, Dalian, 116023, China; Dalian Key Laboratory of Breeding, Reproduction and Aquaculture of Crustaceans, Dalian, 116023, China.
| |
Collapse
|
2
|
Bhattacharya R, Kumari J, Banerjee S, Tripathi J, Parihar SS, Mohan N, Sinha P. Hippo effector, Yorkie, is a tumor suppressor in select Drosophila squamous epithelia. Proc Natl Acad Sci U S A 2024; 121:e2319666121. [PMID: 39288176 PMCID: PMC11441523 DOI: 10.1073/pnas.2319666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
Mammalian Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) and Drosophila Yorkie (Yki) are transcription cofactors of the highly conserved Hippo signaling pathway. It has been long assumed that the YAP/TAZ/Yki signaling drives cell proliferation during organ growth. However, its instructive role in regulating developmentally programmed organ growth, if any, remains elusive. Out-of-context gain of YAP/TAZ/Yki signaling often turns oncogenic. Paradoxically, mechanically strained, and differentiated squamous epithelia display developmentally programmed constitutive nuclear YAP/TAZ/Yki signaling. The unknown, therefore, is how a growth-promoting YAP/TAZ/Yki signaling restricts proliferation in differentiated squamous epithelia. Here, we show that reminiscent of a tumor suppressor, Yki negatively regulates the cell growth-promoting PI3K/Akt/TOR signaling in the squamous epithelia of Drosophila tubular organs. Thus, downregulation of Yki signaling in the squamous epithelium of the adult male accessory gland (MAG) up-regulates PI3K/Akt/TOR signaling, inducing cell hypertrophy, exit from their cell cycle arrest, and, finally, culminating in squamous cell carcinoma (SCC). Thus, blocking PI3K/Akt/TOR signaling arrests Yki loss-induced MAG-SCC. Further, MAG-SCCs, like other lethal carcinomas, secrete a cachectin, Impl2-the Drosophila homolog of mammalian IGFBP7-inducing cachexia and shortening the lifespan of adult males. Moreover, in the squamous epithelium of other tubular organs, like the dorsal trunk of larval tracheal airways or adult Malpighian tubules, downregulation of Yki signaling triggers PI3K/Akt/TOR-induced cell hypertrophy. Our results reveal that Yki signaling plays an instructive, antiproliferative role in the squamous epithelia of tubular organs.
Collapse
Affiliation(s)
- Rachita Bhattacharya
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jaya Kumari
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Shweta Banerjee
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Jyoti Tripathi
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Saurabh Singh Parihar
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Nitin Mohan
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| | - Pradip Sinha
- Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Uttar Pradesh208016, India
| |
Collapse
|
3
|
Ma P, Zhang Y, Yin Y, Wang S, Chen S, Liang X, Li Z, Deng H. Gut microbiota metabolite tyramine ameliorates high-fat diet-induced insulin resistance via increased Ca 2+ signaling. EMBO J 2024; 43:3466-3493. [PMID: 38965418 PMCID: PMC11329785 DOI: 10.1038/s44318-024-00162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/06/2024] Open
Abstract
The gut microbiota and their metabolites are closely linked to obesity-related diseases, such as type 2 diabetes, but their causal relationship and underlying mechanisms remain largely elusive. Here, we found that dysbiosis-induced tyramine (TA) suppresses high-fat diet (HFD)-mediated insulin resistance in both Drosophila and mice. In Drosophila, HFD increases cytosolic Ca2+ signaling in enterocytes, which, in turn, suppresses intestinal lipid levels. 16 S rRNA sequencing and metabolomics revealed that HFD leads to increased prevalence of tyrosine decarboxylase (Tdc)-expressing bacteria and resulting tyramine production. Tyramine acts on the tyramine receptor, TyrR1, to promote cytosolic Ca2+ signaling and activation of the CRTC-CREB complex to transcriptionally suppress dietary lipid digestion and lipogenesis in enterocytes, while promoting mitochondrial biogenesis. Furthermore, the tyramine-induced cytosolic Ca2+ signaling is sufficient to suppress HFD-induced obesity and insulin resistance in Drosophila. In mice, tyramine intake also improves glucose tolerance and insulin sensitivity under HFD. These results indicate that dysbiosis-induced tyramine suppresses insulin resistance in both flies and mice under HFD, suggesting a potential therapeutic strategy for related metabolic disorders, such as diabetes.
Collapse
Affiliation(s)
- Peng Ma
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Yao Zhang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Youjie Yin
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Saifei Wang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Shuxin Chen
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Xueping Liang
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Zhifang Li
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China
| | - Hansong Deng
- Yangzhi Rehabilitation Hospital, Sunshine Rehabilitation Center, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 20092, Shanghai, China.
| |
Collapse
|
4
|
Sears JC, Broadie K. Use-Dependent, Untapped Dual Kinase Signaling Localized in Brain Learning Circuitry. J Neurosci 2024; 44:e1126232024. [PMID: 38267256 PMCID: PMC10957217 DOI: 10.1523/jneurosci.1126-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
Imaging brain learning and memory circuit kinase signaling is a monumental challenge. The separation of phases-based activity reporter of kinase (SPARK) biosensors allow circuit-localized studies of multiple interactive kinases in vivo, including protein kinase A (PKA) and extracellular signal-regulated kinase (ERK) signaling. In the precisely-mapped Drosophila brain learning/memory circuit, we find PKA and ERK signaling differentially enriched in distinct Kenyon cell connectivity nodes. We discover that potentiating normal circuit activity induces circuit-localized PKA and ERK signaling, expanding kinase function within new presynaptic and postsynaptic domains. Activity-induced PKA signaling shows extensive overlap with previously selective ERK signaling nodes, while activity-induced ERK signaling arises in new connectivity nodes. We find targeted synaptic transmission blockade in Kenyon cells elevates circuit-localized ERK induction in Kenyon cells with normally high baseline ERK signaling, suggesting lateral and feedback inhibition. We discover overexpression of the pathway-linking Meng-Po (human SBK1) serine/threonine kinase to improve learning acquisition and memory consolidation results in dramatically heightened PKA and ERK signaling in separable Kenyon cell circuit connectivity nodes, revealing both synchronized and untapped signaling potential. Finally, we find that a mechanically-induced epileptic seizure model (easily shocked "bang-sensitive" mutants) has strongly elevated, circuit-localized PKA and ERK signaling. Both sexes were used in all experiments, except for the hemizygous male-only seizure model. Hyperexcitable, learning-enhanced, and epileptic seizure models have comparably elevated interactive kinase signaling, suggesting a common basis of use-dependent induction. We conclude that PKA and ERK signaling modulation is locally coordinated in use-dependent spatial circuit dynamics underlying seizure susceptibility linked to learning/memory potential.
Collapse
Affiliation(s)
- James C Sears
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| | - Kendal Broadie
- Vanderbilt Brain Institute, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Departments of Biological Sciences, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Cell and Developmental Biology, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
- Vanderbilt Kennedy Center, Vanderbilt University and Medical Center, Nashville, Tennessee 37235
| |
Collapse
|
5
|
Li Y, Lu T, Dong P, Chen J, Zhao Q, Wang Y, Xiao T, Wu H, Zhao Q, Huang H. A single-cell atlas of Drosophila trachea reveals glycosylation-mediated Notch signaling in cell fate specification. Nat Commun 2024; 15:2019. [PMID: 38448482 PMCID: PMC10917797 DOI: 10.1038/s41467-024-46455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024] Open
Abstract
The Drosophila tracheal system is a favorable model for investigating the program of tubular morphogenesis. This system is established in the embryo by post-mitotic cells, but also undergoes remodeling by adult stem cells. Here, we provide a comprehensive cell atlas of Drosophila trachea using the single-cell RNA-sequencing (scRNA-seq) technique. The atlas documents transcriptional profiles of tracheoblasts within the Drosophila airway, delineating 9 major subtypes. Further evidence gained from in silico as well as genetic investigations highlight a set of transcription factors characterized by their capacity to switch cell fate. Notably, the transcription factors Pebbled, Blistered, Knirps, Spalt and Cut are influenced by Notch signaling and determine tracheal cell identity. Moreover, Notch signaling orchestrates transcriptional activities essential for tracheoblast differentiation and responds to protein glycosylation that is induced by high sugar diet. Therefore, our study yields a single-cell transcriptomic atlas of tracheal development and regeneration, and suggests a glycosylation-responsive Notch signaling in cell fate determination.
Collapse
Affiliation(s)
- Yue Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianfeng Lu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Pengzhen Dong
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Jian Chen
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Qiang Zhao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Yuying Wang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Tianheng Xiao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China
| | - Honggang Wu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| | - Quanyi Zhao
- Division of Cardiovascular Medicine and Cardiovascular Institute, School of Medicine, Stanford University, 300 Pasteur Drive, Falk CVRC, Stanford, CA, 94305, USA.
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 311121, China.
| |
Collapse
|
6
|
Shi J, Xu J, Ma J, He F. tRNA-derived small RNAs are embedded in the gene regulatory network instructing Drosophila metamorphosis. Genome Res 2023; 33:2119-2132. [PMID: 37973194 PMCID: PMC10760521 DOI: 10.1101/gr.278128.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
A class of noncoding RNAs, referred to as tsRNAs, is emerging with a potential to exert a new layer in gene regulation. These RNAs are breakdown products of tRNAs, either through active processing or passive cleavage or both. Since tRNAs are part of the general machinery for translation, their expression levels and activities are tightly controlled, raising the possibility that their breakdown products, tsRNAs, may provide a link between the overall translational status of a cell to specific changes in gene regulatory network. We hypothesize that Drosophila pupation, being a special developmental stage during which there is a global limitation of nutrients, represents a system in which such a link may readily reveal itself. We show that specific tsRNAs indeed show a dynamic accumulation upon entering the pupal stage. We describe experiments to characterize the mode of tsRNA action and, through the use of such gained knowledge, conduct a genome-wide analysis to assess the functions of dynamically expressed tsRNAs. Our results show that the predicted target genes are highly enriched in biological processes specific to this stage of development including metamorphosis. We further show that tsRNA action is required for successful pupation, providing direct support to the hypothesis that tsRNAs accumulated during this stage are critical to the gene expression program at this stage of development.
Collapse
Affiliation(s)
- Junling Shi
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jiaqi Xu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jun Ma
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China;
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China;
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang 310058, China
| |
Collapse
|