1
|
Martínez-López JC, Santos Rodríguez M, Oliver Cuenca V, Silva Testa G, van Eck E, Zhao EW, Lozano ÁE, Álvarez C, Carretero-González J. Dibenzodioxin-Based Polymers of Intrinsic Microporosity with Enhanced Transport Properties for Lithium Ions in Aqueous Media. Macromolecules 2024; 57:9442-9456. [PMID: 39399831 PMCID: PMC11468783 DOI: 10.1021/acs.macromol.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Boosting the transport and selectivity properties of membranes based on polymers of intrinsic microporosity (PIMs) toward one specific working analyte of interest is challenging. In this work, a novel family of PIM membranes, prepared by casting and exhibiting optima mechanical properties and high thermal stability, was synthesized from 4,4'-(2,2,2-trifluoro-1-phenylethane-1,1-diyl) bis(benzene-1,2-diol) and two tetrafluoro-nitrile derivatives. Gas permeability measurements evidenced a CO2/CH4 selectivity up to 170% relative to the reference polymer, PIM-1, in agreement with their calculated fractional free volume and the analysis of the textural properties by N2 and CO2 gas adsorption. Besides, the chemical modification by acid hydrolysis of the PIM membranes favored the permeability for lithium ions (LiCl 2M, 6 × 10-9 cm2·s-1) compared to other alkali metal analogs such as sodium (NaCl 2M, 7.38 × 10-10 cm2·s-1) and potassium (KCl 2M, 1.05 × 10-9 cm2·s-1). Moreover, the complete mitigation of the crossover of redox species with higher molecular sizes than the ions from alkali metal salts was confirmed by using in-line benchtop NMR methods. Additionally, the modified PIM membranes were measured in a symmetric electrochemical flow cell using an aqueous electrolyte by combining lithium ferro/ferricyanide redox compounds and lithium chloride. The electrochemical tests showed low polarization, high-rate capability, and capacity retention values of 99% when cycled at 10 mA·cm-2 for over 50 cycles. Based on these results, these polymers could be used as highly selective and conducting membranes in electrodialysis for lithium separation and lithium-based redox flow batteries and as a protective layer in high-energy density lithium metal batteries.
Collapse
Affiliation(s)
| | - Marta Santos Rodríguez
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Víctor Oliver Cuenca
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Giu Silva Testa
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Ernst van Eck
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Evan Wenbo Zhao
- Magnetic
Resonance Research Center, Institute for Molecules and Materials, Radboud University, Nijmegen, AJ 6525, The Netherlands
| | - Ángel E. Lozano
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Cristina Álvarez
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| | - Javier Carretero-González
- Institute
of Polymer Science and Technology, ICTP, CSIC, C/Juan de la Cierva, 3, Madrid 28006, Spain
| |
Collapse
|
2
|
Yang J, Peng Z, Tang W, Lv P, Wang Q. Enhanced Vanadium Redox Flow Battery Performance with New Amphoteric Ion Exchange Membranes. Macromol Rapid Commun 2024:e2400477. [PMID: 39254528 DOI: 10.1002/marc.202400477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/07/2024] [Indexed: 09/11/2024]
Abstract
Vanadium redox flow batteries (VRFBs) depend on the separator membrane for their efficiency and cycle life. Herein, two amphoteric ion exchange membranes are synthesized, based on sulfonic acid group-grafted poly(p-terphenyl piperidinium), for VRFBs. Using ether-free poly(p-terphenyl piperidine) (PTP) as the polymer matrix, and sodium 2-bromoethanesulphonate (ES) and 1,4-butane sultone (BS) as grafting agents, We achieve quaternization of PTP through an environmentally friendly process without alkaline catalysts. PTP-ES and PTP-BS membranes exhibit low area resistance, high H+ permeability, and significantly reduced vanadium ion permeability, leading to exceptional ion selectivity, which is 3.06 × 106 S min cm-3 and 4.34 × 106 S min cm-3, respectively, three orders of magnitude higher than that of Nafion115 (0.27 × 104 S min cm-3). The VRFB with PTP-BS achieves a self-discharge duration of 190 h, compared to 86 h for Nafion 115. Additionally, under current densities of 40-160 mA cm-2, PTP-BS shows coulombic efficiencies of 98.1-99.1% and energy efficiencies of 92.0-82.1%, outperforming Nafion 115. The VRFB with PTP-BS also demonstrates excellent cycle stability and discharge capacity retention over 300 cycles at 100 mA cm-2. Therefore, the amphoteric PTP-BS membrane shows remarkable performance, offering significant potential for VRFB applications.
Collapse
Affiliation(s)
- Jingshuai Yang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
- Department of Chemistry, Lund University, Lund, SE-221, Sweden
| | - Zhen Peng
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Weiqin Tang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Peiru Lv
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| | - Qian Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110004, China
| |
Collapse
|
3
|
Peng K, Zhang C, Fang J, Cai H, Ling R, Ma Y, Tang G, Zuo P, Yang Z, Xu T. Constructing Microporous Ion Exchange Membranes via Simple Hypercrosslinking for pH-Neutral Aqueous Organic Redox Flow Batteries. Angew Chem Int Ed Engl 2024; 63:e202407372. [PMID: 38895749 DOI: 10.1002/anie.202407372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Ion exchange membranes (IEMs) play a critical role in aqueous organic redox flow batteries (AORFBs). Traditional IEMs that feature microphase-separated microstructures are well-developed and easily available but suffer from the conductivity/selectivity tradeoff. The emerging charged microporous polymer membranes show the potential to overcome this tradeoff, yet their commercialization is still hindered by tedious syntheses and demanding conditions. We herein combine the advantages of these two types of membrane materials via simple in situ hypercrosslinking of conventional IEMs into microporous ones. Such a concept is exemplified by the very cheap commercial quaternized polyphenylene oxide membrane. The hypercrosslinking treatment turns poor-performance membranes into high-performance ones, as demonstrated by the above 10-fold selectivity enhancement and much-improved conductivities that more than doubled. This turn is also confirmed by the effective and stable pH-neutral AORFB with decreased membrane resistance and at least an order of magnitude lower capacity loss rate. This battery shows advantages over other reported AORFBs in terms of a low capacity loss rate (0.0017 % per cycle) at high current density. This work provides an economically feasible method for designing AORFB-oriented membranes with microporosity.
Collapse
Affiliation(s)
- Kang Peng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chao Zhang
- Suqian Time Energy Storage Technology Co., Ltd., Suqian, 223800, P. R. China
| | - Junkai Fang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongyun Cai
- Suqian Time Energy Storage Technology Co., Ltd., Suqian, 223800, P. R. China
| | - Rene Ling
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yunxin Ma
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Gonggen Tang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
4
|
Hu Y, Hu T, Zhang Y, Huang H, Pei Y, Yang Y, Wu Y, Hu H, Liang G, Cheng HM. Initiating a composite membrane with a localized high iodine concentration layer based on adduct chemistry to enable highly reversible zinc-iodine flow batteries. Chem Sci 2024:d4sc04206a. [PMID: 39149215 PMCID: PMC11322898 DOI: 10.1039/d4sc04206a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The issue of polyiodide crossover at an iodine cathode significantly diminishes the efficiency and practicality of aqueous zinc-iodine flow batteries (ZIFBs). To address this challenge, we have introduced a localized high iodine concentration (LHIC) coating layer onto a porous polyolefin membrane, which featured strong chemical adsorption by exploiting adduct chemistry between the iodine species and a series of low-cost oxides, e.g., MgO, CeO2, ZrO2, TiO2, and Al2O3. Leveraging the LHIC based on the potent iodine adsorption capability, the as-fabricated MgO-LHIC composite membrane effectively mitigates iodine crossover via Donnan repulsion and concentration gradient effects. At a high volumetric capacity of 17.8 Ah L-1, ZIFBs utilizing a MgO-LHIC composite membrane exhibited improved coulombic efficiency (CE) and energy efficiency (EE) of 96.3% and 68.6%, respectively, along with long-term cycling stability of 170 cycles. These results significantly outperform those of ZIFBs based on a blank polyolefin membrane (78.2%/61.9% after 60 cycles) and the widely used commercial Nafion N117 (67.8%/53.0% after 23 cycles). Even under high-temperature conditions (60 °C), the LHIC-based battery still demonstrates superior CE/EE of 95.1%/67.5% compared to those of the blank polyolefin membrane (CE/EE: 61.1%/46.8%). Our pioneering research showcases enormous prospects for developing high-efficiency and low-cost composite membranes based on adduct chemistry for large-scale energy storage applications.
Collapse
Affiliation(s)
- Yichan Hu
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology Shenzhen 518055 China
- School of Materials Science and Engineering, Hunan University Changsha 410000 China
| | - Tao Hu
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
| | - Yuanwei Zhang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS) Shenzhen 518055 China
| | - Haichao Huang
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS) Shenzhen 518055 China
| | - Yixian Pei
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS) Shenzhen 518055 China
| | - Yihan Yang
- School of Physics and Electronics, Hunan University Changsha 410000 China
| | - Yudong Wu
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
| | - Haibo Hu
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
| | - Guojin Liang
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology Shenzhen 518055 China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS) Shenzhen 518055 China
| | - Hui-Ming Cheng
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology Shenzhen 518055 China
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS) Shenzhen 518055 China
| |
Collapse
|
5
|
Lei YJ, Zhao L, Lai WH, Huang Z, Sun B, Jaumaux P, Sun K, Wang YX, Wang G. Electrochemical coupling in subnanometer pores/channels for rechargeable batteries. Chem Soc Rev 2024; 53:3829-3895. [PMID: 38436202 DOI: 10.1039/d3cs01043k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Subnanometer pores/channels (SNPCs) play crucial roles in regulating electrochemical redox reactions for rechargeable batteries. The delicately designed and tailored porous structure of SNPCs not only provides ample space for ion storage but also facilitates efficient ion diffusion within the electrodes in batteries, which can greatly improve the electrochemical performance. However, due to current technological limitations, it is challenging to synthesize and control the quality, storage, and transport of nanopores at the subnanometer scale, as well as to understand the relationship between SNPCs and performances. In this review, we systematically classify and summarize materials with SNPCs from a structural perspective, dividing them into one-dimensional (1D) SNPCs, two-dimensional (2D) SNPCs, and three-dimensional (3D) SNPCs. We also unveil the unique physicochemical properties of SNPCs and analyse electrochemical couplings in SNPCs for rechargeable batteries, including cathodes, anodes, electrolytes, and functional materials. Finally, we discuss the challenges that SNPCs may face in electrochemical reactions in batteries and propose future research directions.
Collapse
Affiliation(s)
- Yao-Jie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Lingfei Zhao
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Wei-Hong Lai
- Institute for Superconducting & Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, Innovation Campus, Squires Way, North Wollongong, NSW 2500, Australia
| | - Zefu Huang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Pauline Jaumaux
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Kening Sun
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 10081, P. R. China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science (IEMS), University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Liu J, Wu W, Zuo P, Yang Z, Xu T. Ultramicroporous Tröger's Base Framework Membranes for pH-Neutral Aqueous Organic Redox Flow Batteries. ACS Macro Lett 2024; 13:328-334. [PMID: 38436221 DOI: 10.1021/acsmacrolett.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Processable polymers of intrinsic microporosity (PIMs) are emerging as promising candidates for next-generation ion exchange membranes (IEMs). However, especially with high ion exchange capacity (IEC), IEMs derived from PIMs suffer from severe swelling, thus, resulting in decreased selectivity. To solve this problem, we report ultramicroporous polymer framework membranes constructed with rigid Tröger's Base network chains, which are fabricated via an organic sol-gel process. These membranes demonstrate excellent antiswelling, with swelling ratios below 4.5% at a high IEC of 2.09 mmol g-1, outperforming currently reported PIM membranes. The rigid ultramicropore confinement and charged modification of pore channels endow membranes with both very high size-exclusion selectivity and competitive ion conductivity. The membranes thus enable the efficient and stable operation of pH-neutral aqueous organic redox flow batteries (AORFBs). This work presents the advantages of polymer framework materials as IEMs and calls for increasing attention to extending their varieties and utilization in other applications.
Collapse
Affiliation(s)
- Junmin Liu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenyi Wu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
7
|
Zuo P, Ran J, Ye C, Li X, Xu T, Yang Z. Advancing Ion Selective Membranes with Micropore Ion Channels in the Interaction Confinement Regime. ACS NANO 2024; 18:6016-6027. [PMID: 38349043 DOI: 10.1021/acsnano.3c12616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Ion exchange membranes allowing the passage of charge-carrying ions have established their critical role in water, environmental, and energy-relevant applications. The design strategies for high-performance ion exchange membranes have evolved beyond creating microphase-separated membrane morphologies, which include advanced ion exchange membranes to ion-selective membranes. The properties and functions of ion-selective membranes have been repeatedly updated by the emergence of materials with subnanometer-sized pores and the understanding of ion movement under confined micropore ion channels. These research progresses have motivated researchers to consider even greater aims in the field, i.e., replicating the functions of ion channels in living cells with exotic materials or at least targeting fast and ion-specific transmembrane conduction. To help realize such goals, we briefly outline and comment on the fundamentals of rationally designing membrane pore channels for ultrafast and specific ion conduction, pore architecture/chemistry, and membrane materials. Challenges are discussed, and perspectives and outlooks are given.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin Ran
- Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, People's Republic of China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
8
|
Goethem CV, Shen Y, Chi HY, Mensi M, Zhao K, Nijmeijer A, Just PE, Agrawal KV. Advancing Molecular Sieving via Å-Scale Pore Tuning in Bottom-Up Graphene Synthesis. ACS NANO 2024. [PMID: 38324377 PMCID: PMC10883125 DOI: 10.1021/acsnano.3c11885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Porous graphene films are attractive as a gas separation membrane given that the selective layer can be just one atom thick, allowing high-flux separation. A favorable aspect of porous graphene is that the pore size, essentially gaps created by lattice defects, can be tuned. While this has been demonstrated for postsynthetic, top-down pore etching in graphene, it does not exist in the more scalable, bottom-up synthesis of porous graphene. Inspired by the mechanism of precipitation-based synthesis of porous graphene over catalytic nickel foil, we herein conceive an extremely simple way to tune the pore size. This is implemented by increasing the cooling rate by over 100-fold from -1 °C min-1 to over -5 °C s-1. Rapid cooling restricts carbon diffusion, resulting in a higher availability of dissolved carbon for precipitation, as evidenced by quantitative carbon-diffusion simulation, measurement of carbon concentration as a function of nickel depth, and imaging of the graphene nanostructure. The resulting enhanced grain (inter)growth reduces the effective pore size which leads to an increase of the H2/CH4 separation factor from 6.2 up to 53.3.
Collapse
Affiliation(s)
- Cédric Van Goethem
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Yueqing Shen
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Heng-Yu Chi
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Mounir Mensi
- X-ray Diffraction and Surface Analytics Platform (XRD-SAP), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL-Valais Wallis), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Kangning Zhao
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| | - Arian Nijmeijer
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
- Inorganic Membranes, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Paul-Emmanuel Just
- Shell Global Solutions International B.V., P.O. Box 38000, 1030 BN Amsterdam, The Netherlands
| | - Kumar Varoon Agrawal
- Laboratory for Advanced Separations (LAS), Institute of Chemical Sciences and Engineering (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l'industrie 17, 1950 Sion, Switzerland
| |
Collapse
|
9
|
Jethwa R, Hey D, Kerber RN, Bond AD, Wright DS, Grey CP. Exploring the Landscape of Heterocyclic Quinones for Redox Flow Batteries. ACS APPLIED ENERGY MATERIALS 2024; 7:414-426. [PMID: 38273966 PMCID: PMC10806605 DOI: 10.1021/acsaem.3c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Redox flow batteries (RFBs) rely on the development of cheap, highly soluble, and high-energy-density electrolytes. Several candidate quinones have already been investigated in the literature as two-electron anolytes or catholytes, benefiting from fast kinetics, high tunability, and low cost. Here, an investigation of nitrogen-rich fused heteroaromatic quinones was carried out to explore avenues for electrolyte development. These quinones were synthesized and screened by using electrochemical techniques. The most promising candidate, 4,8-dioxo-4,8-dihydrobenzo[1,2-d:4,5-d']bis([1,2,3]triazole)-1,5-diide (-0.68 V(SHE)), was tested in both an asymmetric and symmetric full-cell setup resulting in capacity fade rates of 0.35% per cycle and 0.0124% per cycle, respectively. In situ ultraviolet-visible spectroscopy (UV-Vis), nuclear magnetic resonance (NMR), and electron paramagnetic resonance (EPR) spectroscopies were used to investigate the electrochemical stability of the charged species during operation. UV-Vis spectroscopy, supported by density functional theory (DFT) modeling, reaffirmed that the two-step charging mechanism observed during battery operation consisted of two, single-electron transfers. The radical concentration during battery operation and the degree of delocalization of the unpaired electron were quantified with NMR and EPR spectroscopy.
Collapse
Affiliation(s)
| | - Dominic Hey
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | | | - Andrew D. Bond
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Dominic S. Wright
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Clare P. Grey
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
10
|
Khan IA, Alzahrani AS, Ali S, Mansha M, Tahir MN, Khan M, Qayyum HA, Khan SA. Development of Membranes and Separators to Inhibit Cross-Shuttling of Sulfur in Polysulfide-Based Redox Flow Batteries: A Review. CHEM REC 2024; 24:e202300171. [PMID: 37606899 DOI: 10.1002/tcr.202300171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Indexed: 08/23/2023]
Abstract
The global rapid transition from fossil fuels to renewable energy resources necessitates the implementation of long-duration energy storage technologies owing to the intermittent nature of renewable energy sources. Therefore, the deployment of grid-scale energy storage systems is inevitable. Sulfur-based batteries can be exploited as excellent energy storage devices owing to their intrinsic safety, low cost of raw materials, low risk of environmental hazards, and highest theoretical capacities (gravimetric: 2600 Wh/kg and volumetric: 2800 Wh/L). However, sulfur-based batteries exhibit certain scientific limitations, such as polysulfide crossover, which causes rapid capacity decay and low Coulombic efficiency, thereby hindering their implementation at a commercial scale. In this review article, we focus on the latest research developments between 2012-2023 to improve the separators/membranes and overcome the shuttle effect associated with them. Various categories of ion exchange membranes (IEMs) used in redox batteries, particularly polysulfide redox flow batteries and lithium-sulfur batteries, are discussed in detail. Furthermore, advances in IEM constituents are summarized to gain insights into different fundamental strategies for attaining targeted characteristics, and a critical analysis is proposed to highlight their efficiency in mitigating sulfur cross-shuttling issues. Finally, future prospects and recommendations are suggested for future research toward the fabrication of more effective membranes with desired properties.
Collapse
Affiliation(s)
- Ibad Ali Khan
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Department of Materials Science and Engineering, College of Chemical Sciences, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Shahid Ali
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Mansha
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Muhammad Nawaz Tahir
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Majad Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Hafiz Adil Qayyum
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
- Department of Physics, College of General Studies, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabi
| | - Safyan Akram Khan
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
11
|
Wu Y, Wang Y, Zhang D, Xu F, Dai L, Qu K, Cao H, Xia Y, Li S, Huang K, Xu Z. Crystallizing Self-Standing Covalent Organic Framework Membranes for Ultrafast Proton Transport in Flow Batteries. Angew Chem Int Ed Engl 2023; 62:e202313571. [PMID: 37885408 DOI: 10.1002/anie.202313571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 10/28/2023]
Abstract
Covalent organic frameworks (COFs) display great potential to be assembled into proton conductive membranes for their uniform and controllable pore structure, yet constructing self-standing COF membrane with high crystallinity to fully exploit their ordered crystalline channels for efficient ionic conduction remains a great challenge. Here, a macromolecular-mediated crystallization strategy is designed to manipulate the crystallization of self-standing COF membrane, where the -SO3 H groups in introduced sulfonated macromolecule chains function as the sites to interact with the precursors of COF and thus offer long-range ordered template for membrane crystallization. The optimized self-standing COF membrane composed of highly-ordered nanopores exhibits high proton conductivity (75 mS cm-1 at 100 % relative humidity and 20 °C) and excellent flow battery performance, outperforming Nafion 212 and reported membranes. Meanwhile, the long-term run of membrane is achieved with the help of the anchoring effect of flexible macromolecule chains. Our work provides inspiration to design self-standing COF membranes with ordered channels for permselective application.
Collapse
Affiliation(s)
- Yulin Wu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | | | | | - Fang Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Liheng Dai
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Kai Qu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Hongyan Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Yu Xia
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Siyao Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| | - Kang Huang
- Suzhou Laboratory, Suzhou, 215000, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road, Nanjing, 211816, China
| | - Zhi Xu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, No.130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
12
|
George TY, Thomas IC, Haya NO, Deneen JP, Wang C, Aziz MJ. Membrane-Electrolyte System Approach to Understanding Ionic Conductivity and Crossover in Alkaline Flow Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38050967 DOI: 10.1021/acsami.3c14173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Membrane transport properties are crucial for electrochemical devices, and these properties are influenced by the composition and concentration of the electrolyte in contact with the membrane. We apply this general membrane-electrolyte system approach to alkaline flow batteries, studying the conductivity and ferricyanide crossover of Nafion and E-620. We report undetectable crossover for as-received Nafion and E-620 after both sodium and potassium exchange but high ferricyanide permeability of 10-7 to 10-8 cm2 s-1 for Nafion subjected to pretreatment prevalent in the flow battery literature. We show how the electrolyte mass fraction in hydrated membranes regulates the influence of ion concentration on membrane conductivity, identifying that increasing electrolyte concentration may not increase membrane conductivity even when it increases electrolyte conductivity. To illustrate this behavior, we introduce a new metric, the membrane penalty, as the ratio of the conductivity of the electrolyte to that of the membrane equilibrated with the electrolyte. We discuss the trade-off between flow battery volumetric capacity and areal power density that arises from these findings. Finally, we apply insights from this approach to provide recommendations for use of membranes in alkaline flow cells and electrochemical reactors in general.
Collapse
Affiliation(s)
- Thomas Y George
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| | - Isabelle C Thomas
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
- Emmanuel College, University of Cambridge, Cambridge CB2 1TN, U.K
| | - Naphtal O Haya
- Harvard College, Cambridge, Massachusetts 02138, United States
| | - John P Deneen
- Harvard College, Cambridge, Massachusetts 02138, United States
| | - Cliffton Wang
- Harvard College, Cambridge, Massachusetts 02138, United States
| | - Michael J Aziz
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
13
|
Zhu F, Guo W, Fu Y. Functional materials for aqueous redox flow batteries: merits and applications. Chem Soc Rev 2023; 52:8410-8446. [PMID: 37947236 DOI: 10.1039/d3cs00703k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Redox flow batteries (RFBs) are promising electrochemical energy storage systems, offering vast potential for large-scale applications. Their unique configuration allows energy and power to be decoupled, making them highly scalable and flexible in design. Aqueous RFBs stand out as the most promising technologies, primarily due to their inexpensive supporting electrolytes and high safety. For aqueous RFBs, there has been a skyrocketing increase in studies focusing on the development of advanced functional materials that offer exceptional merits. They include redox-active materials with high solubility and stability, electrodes with excellent mechanical and chemical stability, and membranes with high ion selectivity and conductivity. This review summarizes the types of aqueous RFBs currently studied, providing an outline of the merits needed for functional materials from a practical perspective. We discuss design principles for redox-active candidates that can exhibit excellent performance, ranging from inorganic to organic active materials, and summarize the development of and need for electrode and membrane materials. Additionally, we analyze the mechanisms that cause battery performance decay from intrinsic features to external influences. We also describe current research priorities and development trends, concluding with a summary of future development directions for functional materials with valuable insights for practical applications.
Collapse
Affiliation(s)
- Fulong Zhu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Wei Guo
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| | - Yongzhu Fu
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
14
|
Cruz-Balaz MI, Bósquez-Cáceres MF, Delgado AD, Arjona N, Morera Córdova V, Álvarez-Contreras L, Tafur JP. Green Energy Storage: Chitosan-Avocado Starch Hydrogels for a Novel Generation of Zinc Battery Electrolytes. Polymers (Basel) 2023; 15:4398. [PMID: 38006122 PMCID: PMC10675044 DOI: 10.3390/polym15224398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Meeting the ever-increasing global energy demands through sustainable and environmentally friendly means is a paramount challenge. In response to this imperative, this study is dedicated to the development of biopolymer electrolytes, which hold promise for improving the efficiency, safety, and biodegradability of energy systems. The present study aims to evaluate hydrogels synthesized from chitosan biopolymer and starch from avocado seed residues in different ratios, and dried using freeze-thawing and freeze-drying techniques. Epichlorohydrin was used as a chemical crosslinker to create a suitable degree of swelling using an ionic solution. Physical freezing crosslinking strategies such as freezing-thawing and freezing-drying were performed to generate a denser porous structure in the polymer matrix. Subsequently, synthesized electrolytes were immersed in 12 M KOH solution to improve their electrochemical properties. The effect of the different ratios of starch in the hydrogels on the structural properties of the materials was evaluated using characterization techniques such as FTIR and XRD, which allowed to confirm the crosslinking between chitosan and starch. The electrochemical performance of the hydrogels is assessed using electrochemical impedance spectroscopy. A maximum conductivity value of 0.61 S·cm-1 was achieved at room temperature. The designed materials were tested in prototype zinc-air batteries; their specific capacity value was 1618 mA h·g-1, and their obtained power density was 90 mW·cm-2. These substantial findings unequivocally underscore the potential of the synthesized hydrogels as highly promising electrolytes for the application in zinc-air battery systems.
Collapse
Affiliation(s)
- María I. Cruz-Balaz
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences & Engineering, Yachay Tech University, Urcuquí 100115, Ecuador; (M.I.C.-B.); (M.F.B.-C.); (V.M.C.)
| | - María Fernanda Bósquez-Cáceres
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences & Engineering, Yachay Tech University, Urcuquí 100115, Ecuador; (M.I.C.-B.); (M.F.B.-C.); (V.M.C.)
| | - Anabel D. Delgado
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Pedro Escobedo, Querétaro C.P. 76703, Mexico;
| | - Vivian Morera Córdova
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences & Engineering, Yachay Tech University, Urcuquí 100115, Ecuador; (M.I.C.-B.); (M.F.B.-C.); (V.M.C.)
| | - Lorena Álvarez-Contreras
- Centro de Investigación en Materiales Avanzados S.C. (CIMAV), Miguel de Cervantes No. 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico;
| | - Juan P. Tafur
- Grupo de Investigación Aplicada en Materiales y Procesos (GIAMP), School of Chemical Sciences & Engineering, Yachay Tech University, Urcuquí 100115, Ecuador; (M.I.C.-B.); (M.F.B.-C.); (V.M.C.)
- Departamento de Ingeniería Mecánica, Química y Diseño Industrial, Escuela Técnica Superior de Ingeniería y Diseño Industrial (ETSIDI), Universidad Politécnica de Madrid (UPM), Ronda de Valencia 3, 28012 Madrid, Spain
| |
Collapse
|
15
|
Emmel D, Kunz S, Blume N, Kwon Y, Turek T, Minke C, Schröder D. Benchmarking organic active materials for aqueous redox flow batteries in terms of lifetime and cost. Nat Commun 2023; 14:6672. [PMID: 37865696 PMCID: PMC10590391 DOI: 10.1038/s41467-023-42450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 10/11/2023] [Indexed: 10/23/2023] Open
Abstract
Flow batteries are one option for future, low-cost stationary energy storage. We present a perspective overview of the potential cost of organic active materials for aqueous flow batteries based on a comprehensive mathematical model. The battery capital costs for 38 different organic active materials, as well as the state-of-the-art vanadium system are elucidated. We reveal that only a small number of organic molecules would result in costs close to the vanadium reference system. We identify the most promising candidate as the phenazine 3,3'-(phenazine-1,6-diylbis(azanediyl))dipropionic acid) [1,6-DPAP], suggesting costs even below that of the vanadium reference. Additional cost-saving potential can be expected by mass production of these active materials; major benefits lie in the reduced electrolyte costs as well as power costs, although plant maintenance is a major challenge when applying organic materials. Moreover, this work is designed to be expandable. The developed calculation tool (ReFlowLab) accompanying this publication is open for updates with new data.
Collapse
Affiliation(s)
- Dominik Emmel
- Institute of Energy and Process Systems Engineering (InES), Technische Universität Braunschweig, Braunschweig, Germany
| | - Simon Kunz
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Giessen, Germany
- Center for Materials Research, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nick Blume
- Institute of Mineral and Waste Processing, Recycling and Circular Economy Systems, Clausthal University of Technology, Clausthal-Zellerfeld, Germany
- Research Center Energy Storage Technologies, Goslar, Germany
| | - Yongchai Kwon
- Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology, Nowon-gu, Seoul, Republic of Korea
| | - Thomas Turek
- Research Center Energy Storage Technologies, Goslar, Germany
- Institute of Chemical and Electrochemical Process Engineering, Clausthal University of Technology, Clausthal Zellerfeld, Germany
| | - Christine Minke
- Institute of Mineral and Waste Processing, Recycling and Circular Economy Systems, Clausthal University of Technology, Clausthal-Zellerfeld, Germany.
- Research Center Energy Storage Technologies, Goslar, Germany.
| | - Daniel Schröder
- Institute of Energy and Process Systems Engineering (InES), Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
16
|
Köble K, Schilling M, Eifert L, Bevilacqua N, Fahy KF, Atanassov P, Bazylak A, Zeis R. Revealing the Multifaceted Impacts of Electrode Modifications for Vanadium Redox Flow Battery Electrodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:46775-46789. [PMID: 37768857 PMCID: PMC10571042 DOI: 10.1021/acsami.3c07940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023]
Abstract
Carbon electrodes are one of the key components of vanadium redox flow batteries (VRFBs), and their wetting behavior, electrochemical performance, and tendency to side reactions are crucial for cell efficiency. Herein, we demonstrate three different types of electrode modifications: poly(o-toluidine) (POT), Vulcan XC 72R, and an iron-doped carbon-nitrogen base material (Fe-N-C + carbon nanotube (CNT)). By combining synchrotron X-ray imaging with traditional characterization approaches, we give thorough insights into changes caused by each modification in terms of the electrochemical performance in both half-cell reactions, wettability and permeability, and tendency toward the hydrogen evolution side reaction. The limiting performance of POT and Vulcan XC 72R could mainly be ascribed to hindered electrolyte transport through the electrode. Fe-N-C + CNT displayed promising potential in the positive half-cell with improved electrochemical performance and wetting behavior but catalyzed the hydrogen evolution side reaction in the negative half-cell.
Collapse
Affiliation(s)
- Kerstin Köble
- Helmholtz
Institute Ulm, Karlsruhe Institute of Technology, Helmholtzstraße 11, 89081 Ulm, Germany
| | - Monja Schilling
- Helmholtz
Institute Ulm, Karlsruhe Institute of Technology, Helmholtzstraße 11, 89081 Ulm, Germany
| | - László Eifert
- Helmholtz
Institute Ulm, Karlsruhe Institute of Technology, Helmholtzstraße 11, 89081 Ulm, Germany
| | - Nico Bevilacqua
- Helmholtz
Institute Ulm, Karlsruhe Institute of Technology, Helmholtzstraße 11, 89081 Ulm, Germany
| | - Kieran F. Fahy
- Department
of Mechanical & Industrial Engineering, Faculty of Applied Science
& Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Plamen Atanassov
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, 221 Engineering Service Rd., Irvine, California 92617, United States
| | - Aimy Bazylak
- Department
of Mechanical & Industrial Engineering, Faculty of Applied Science
& Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| | - Roswitha Zeis
- Department
of Electrical, Electronics, and Communication Engineering, Faculty
of Engineering, Friedrich-Alexander-Universität
Erlangen-Nürnberg (FAU), Cauerstraße 9, 91058 Erlangen, Germany
- Helmholtz
Institute Ulm, Karlsruhe Institute of Technology, Helmholtzstraße 11, 89081 Ulm, Germany
- Department
of Mechanical & Industrial Engineering, Faculty of Applied Science
& Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
17
|
Sharma J, Gupta R, Mishra S, Ramanujam K, Kulshrestha V. Sulfonated Poly(2,6-dimethyl-1,4-phenylene ether)-Modified Mixed-Matrix Bifunctional Polyelectrolyte Membranes for Long-Run Anthrarufin-Based Redox Flow Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44899-44911. [PMID: 37708403 DOI: 10.1021/acsami.3c08089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
The resurgence in designing polyelectrolyte membrane (PEM) materials has propound grid-scale electrochemical energy storage devices. Herein, we report on studies corroborating the synergistic influence of ionic domain microstructure modification and intercalation of telechelic bis-piperidinium-functionalized graphene oxide (GO) to fabricate stable bifunctional membranes from sulfonated poly(2,6-dimethyl-1,4-phenylene ether) (sPPE) for efficient anthrarufin-based alkaline redox flow batteries. A critically long-lasting quest on alkaline stability and -OH conductivity dilemma in hydrocarbon-based PEMs is meticulously resolved via a bifunctional ion-conducting matrix. Preferential studies on hydrophilic domain distribution in sPPE suggest that, with high microphase homogeneity, higher specific capacity retentions are achievable during galvanostatic charge-discharge (GCD) analysis. Moreover, the low-capacity issues were overcome by improving the redoxolyte-membrane interface affinities incorporating bis-piperidinium-bearing graphene oxide (bis-QGO). Consequently, at 1.0 and 2.0 wt % intercalation of bis-QGO, the bifunctional polyelectrolyte membranes (BFPMs) impart lowest overpotentials of 93 mV (for BFPM-1.0) and ∼100 mV (for BFPM-2.0) which are ∼43 and 40% lower than that of Nafion-117 (i.e., ∼164 mV). Furthermore, the efficiency of BFPMs, viz., the Coulombic, voltage, and energy efficiencies, was ∼95-98%, ∼85%, and ≥80% at 20 mA cm-2, respectively. In long-cycling operations, the GCD profile evidenced ∼99% efficiency retention over 450 cycles and illustrated reproducible rate capability. Finally, the polarization studies of BFPMs revealed ∼54% higher peak power density (87.5 mW cm-2) delivery than Nafion-117 (∼57 mW cm-2). We believe that this strategic designing approach could offer newer and simple avenues to avail high-performance BFPMs at low intercalation loads for alkaline electrochemical energy storage and related applications.
Collapse
Affiliation(s)
- Jeet Sharma
- Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Richa Gupta
- Department of Chemistry, Clean Energy Lab, Indian Institute of Technology Madras (IIT-M), Chennai, Tamil Nadu 600036, India
| | - Sarthak Mishra
- Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Kothandaraman Ramanujam
- Department of Chemistry, Clean Energy Lab, Indian Institute of Technology Madras (IIT-M), Chennai, Tamil Nadu 600036, India
| | - Vaibhav Kulshrestha
- Council of Scientific and Industrial Research-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
18
|
Zhao Z, Liu X, Zhang M, Zhang L, Zhang C, Li X, Yu G. Development of flow battery technologies using the principles of sustainable chemistry. Chem Soc Rev 2023; 52:6031-6074. [PMID: 37539656 DOI: 10.1039/d2cs00765g] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Realizing decarbonization and sustainable energy supply by the integration of variable renewable energies has become an important direction for energy development. Flow batteries (FBs) are currently one of the most promising technologies for large-scale energy storage. This review aims to provide a comprehensive analysis of the state-of-the-art progress in FBs from the new perspectives of technological and environmental sustainability, thus guiding the future development of FB technologies. More importantly, we evaluate the current situation and future development of key materials with key aspects of green economy and decarbonization to promote sustainable development and improve the novel energy framework. Finally, we present an analysis of the current challenges and prospects on how to effectively construct low-carbon and sustainable FB materials in the future.
Collapse
Affiliation(s)
- Ziming Zhao
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Science and Technology of China, Hefei 230026, China
| | - Xianghui Liu
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Mengqi Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| | - Changkun Zhang
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Xianfeng Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA.
| |
Collapse
|
19
|
Pathak C, Gogoi A, Devi A, Seth S. Polymers of Intrinsic Microporosity Based on Dibenzodioxin Linkage: Design, Synthesis, Properties, and Applications. Chemistry 2023; 29:e202301512. [PMID: 37303240 DOI: 10.1002/chem.202301512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/13/2023]
Abstract
The development of polymers of intrinsic microporosity (PIMs) over the last two decades has established them as a distinct class of microporous materials, which combine the attributes of microporous solid materials and the soluble nature of glassy polymers. Due to their solubility in common organic solvents, PIMs are easily processable materials that potentially find application in membrane-based separation, catalysis, ion separation in electrochemical energy storage devices, sensing, etc. Dibenzodioxin linkage, Tröger's base, and imide bond-forming reactions have widely been utilized for synthesis of a large number of PIMs. Among these linkages, however, most of the studies have been based on dibenzodioxin-based PIMs. Therefore, this review focuses precisely on dibenzodioxin linkage chemistry. Herein, the design principles of different rigid and contorted monomer scaffolds are discussed, as well as synthetic strategies of the polymers through dibenzodioxin-forming reactions including copolymerization and postsynthetic modifications, their characteristic properties and potential applications studied so far. Towards the end, the prospects of these materials are examined with respect to their utility in industrial purposes. Further, the structure-property correlation of dibenzodioxin PIMs is analyzed, which is essential for tailored synthesis and tunable properties of these PIMs and their molecular level engineering for enhanced performances making these materials suitable for commercial usage.
Collapse
Affiliation(s)
| | - Abinash Gogoi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Arpita Devi
- Department of Applied Sciences, Tezpur University, Assam, India
| | - Saona Seth
- Department of Applied Sciences, Tezpur University, Assam, India
| |
Collapse
|
20
|
Yang G, Zhu Y, Hao Z, Lu Y, Zhao Q, Zhang K, Chen J. Organic Electroactive Materials for Aqueous Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301898. [PMID: 37158492 DOI: 10.1002/adma.202301898] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/21/2023] [Indexed: 05/10/2023]
Abstract
Organic electroactive materials take advantage of potentially sustainable production and structural tunability compared to present commercial inorganic materials. Unfortunately, traditional redox flow batteries based on toxic redox-active metal ions have certain deficiencies in resource utilization and environmental protection. In comparison, organic electroactive materials in aqueous redox flow batteries (ARFBs) have received extensive attention in recent years for low-cost and sustainable energy storage systems due to their inherent safety. This review aims to provide the recent progress in organic electroactive materials for ARFBs. The main reaction types of organic electroactive materials are classified in ARFBs to provide an overview of how to regulate their solubility, potential, stability, and viscosity. Then, the organic anolyte and catholyte in ARFBs are summarized according to the types of quinones, viologens, nitroxide radicals, hydroquinones, etc, and how to increase the solubility by designing various functional groups is emphasized. The research advances are presented next in the characterization of organic electroactive materials for ARFBs. Future efforts are finally suggested to focus on building neutral ARFBs, designing advanced electroactive materials through molecular engineering, and resolving problems of commercial applications.
Collapse
Affiliation(s)
- Gaojing Yang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yaxun Zhu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Zhimeng Hao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Lu
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Qing Zhao
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Kai Zhang
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jun Chen
- Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), State Key Laboratory of Advanced Chemical Power Sources, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
21
|
Tan R, Wang A, Ye C, Li J, Liu D, Darwich BP, Petit L, Fan Z, Wong T, Alvarez-Fernandez A, Furedi M, Guldin S, Breakwell CE, Klusener PAA, Kucernak AR, Jelfs KE, McKeown NB, Song Q. Thin Film Composite Membranes with Regulated Crossover and Water Migration for Long-Life Aqueous Redox Flow Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206888. [PMID: 37178400 PMCID: PMC10369228 DOI: 10.1002/advs.202206888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Redox flow batteries (RFBs) are promising for large-scale long-duration energy storage owing to their inherent safety, decoupled power and energy, high efficiency, and longevity. Membranes constitute an important component that affects mass transport processes in RFBs, including ion transport, redox-species crossover, and the net volumetric transfer of supporting electrolytes. Hydrophilic microporous polymers, such as polymers of intrinsic microporosity (PIM), are demonstrated as next-generation ion-selective membranes in RFBs. However, the crossover of redox species and water migration through membranes are remaining challenges for battery longevity. Here, a facile strategy is reported for regulating mass transport and enhancing battery cycling stability by employing thin film composite (TFC) membranes prepared from a PIM polymer with optimized selective-layer thickness. Integration of these PIM-based TFC membranes with a variety of redox chemistries allows for the screening of suitable RFB systems that display high compatibility between membrane and redox couples, affording long-life operation with minimal capacity fade. Thickness optimization of TFC membranes further improves cycling performance and significantly restricts water transfer in selected RFB systems.
Collapse
Affiliation(s)
- Rui Tan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunchun Ye
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Jiaxi Li
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Dezhi Liu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Luke Petit
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Zhiyu Fan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Mate Furedi
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Charlotte E Breakwell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Peter A A Klusener
- Shell Global Solutions International B.V., Energy Transition Campus Amsterdam, HW Amsterdam, Grasweg 31, 1031, The Netherlands
| | - Anthony R Kucernak
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Neil B McKeown
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
22
|
Zhou W, Song M, Liang P, Li X, Liu X, Li H, Zhang T, Wang B, Zhao R, Zhao Z, Li W, Zhao D, Chao D. High-Energy Sn-Ni and Sn-Air Aqueous Batteries via Stannite-Ion Electrochemistry. J Am Chem Soc 2023; 145:10880-10889. [PMID: 37130056 DOI: 10.1021/jacs.3c03039] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Tin is promising for aqueous batteries (ABs) due to its multiple electrons' reactions, high corrosion resistance, large hydrogen overpotential, and excellent environmental compatibility. However, restricted to the high thermodynamic barrier and the poor electrochemical kinetics, efficient alkaline Sn plating/stripping at facile conditions has not yet been realized. Here, for the first time, we demonstrate a highly reversible stannite-ion electrochemistry and construct a novel paradigm of high-energy Sn-based ABs. Combined spectroscopic characterization, electrochemical evaluation, and theoretical computation reveal the thermodynamic merits with a low reaction energy barrier and feasible H2O participation in Sn-ion reduction as well as the kinetic merits with fastened surface charge transfer and SnO22- diffusion. The resultant alkaline Sn anode delivers a low potential of -1.07 V vs Hg/HgO, a specific capacity of 450 mA h g-1, a Coulombic efficiency of near 100%, superb rate capability at 45.5 A g-1, and excellent cycling durability without dendrite and dead Sn. As a proof of concept, we developed new high-energy Sn-based ABs, including 1.45 V Sn-Ni with 314 W h kg-1 (58 kW kg-1 and over 15,000 cycles) and 1.0 V Sn-air with 420 W h kg-1 (lifespan over 1900 h), on the basis of masses from cathode and anode active materials. The findings prove the feasibility of the alkaline Sn metal anode, and the new suite of high-energy Sn-based ABs may be of immediate benefit toward safe, reliable, and affordable energy storage.
Collapse
Affiliation(s)
- Wanhai Zhou
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ming Song
- College of Chemistry and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221111, P. R. China
| | - Pei Liang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Xinran Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xin Liu
- School of Electrical and Electronic Engineering, Harbin University of Science and Technology, Harbin 150080, P. R. China
| | - Hongpeng Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Tengsheng Zhang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Boya Wang
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ruizheng Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zaiwang Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei Li
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongyuan Zhao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, College of Chemistry and Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
23
|
Zuo P, Ye C, Jiao Z, Luo J, Fang J, Schubert US, McKeown NB, Liu TL, Yang Z, Xu T. Near-frictionless ion transport within triazine framework membranes. Nature 2023; 617:299-305. [PMID: 37100908 PMCID: PMC10131500 DOI: 10.1038/s41586-023-05888-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/24/2023] [Indexed: 04/28/2023]
Abstract
The enhancement of separation processes and electrochemical technologies such as water electrolysers1,2, fuel cells3,4, redox flow batteries5,6 and ion-capture electrodialysis7 depends on the development of low-resistance and high-selectivity ion-transport membranes. The transport of ions through these membranes depends on the overall energy barriers imposed by the collective interplay of pore architecture and pore-analyte interaction8,9. However, it remains challenging to design efficient, scaleable and low-cost selective ion-transport membranes that provide ion channels for low-energy-barrier transport. Here we pursue a strategy that allows the diffusion limit of ions in water to be approached for large-area, free-standing, synthetic membranes using covalently bonded polymer frameworks with rigidity-confined ion channels. The near-frictionless ion flow is synergistically fulfilled by robust micropore confinement and multi-interaction between ion and membrane, which afford, for instance, a Na+ diffusion coefficient of 1.18 × 10-9 m2 s-1, close to the value in pure water at infinite dilution, and an area-specific membrane resistance as low as 0.17 Ω cm2. We demonstrate highly efficient membranes in rapidly charging aqueous organic redox flow batteries that deliver both high energy efficiency and high-capacity utilization at extremely high current densities (up to 500 mA cm-2), and also that avoid crossover-induced capacity decay. This membrane design concept may be broadly applicable to membranes for a wide range of electrochemical devices and for precise molecular separation.
Collapse
Affiliation(s)
- Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, P. R. China
| | - Chunchun Ye
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - Zhongren Jiao
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, P. R. China
| | - Jian Luo
- Utah State University, Chemistry and Biochemistry, Logan, UT, USA
| | - Junkai Fang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, P. R. China
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
- Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena, Jena, Germany
| | - Neil B McKeown
- EastCHEM School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - T Leo Liu
- Utah State University, Chemistry and Biochemistry, Logan, UT, USA.
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, P. R. China.
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Material Science, University of Science and Technology of China, Hefei, P. R. China.
| |
Collapse
|
24
|
Wang A, Tan R, Liu D, Lu J, Wei X, Alvarez-Fernandez A, Ye C, Breakwell C, Guldin S, Kucernak AR, Jelfs KE, Brandon NP, McKeown NB, Song Q. Ion-Selective Microporous Polymer Membranes with Hydrogen-Bond and Salt-Bridge Networks for Aqueous Organic Redox Flow Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210098. [PMID: 36634684 DOI: 10.1002/adma.202210098] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Redox flow batteries (RFBs) have great potential for long-duration grid-scale energy storage. Ion-conducting membranes are a crucial component in RFBs, allowing charge-carrying ions to transport while preventing the cross-mixing of redox couples. Commercial Nafion membranes are widely used in RFBs, but their unsatisfactory ionic and molecular selectivity, as well as high costs, limit the performance and the widespread deployment of this technology. To extend the longevity and reduce the cost of RFB systems, inexpensive ion-selective membranes that concurrently deliver low ionic resistance and high selectivity toward redox-active species are highly desired. Here, high-performance RFB membranes are fabricated from blends of carboxylate- and amidoxime-functionalized polymers of intrinsic microporosity, which exploit the beneficial properties of both polymers. The enthalpy-driven formation of cohesive interchain interactions, including hydrogen bonds and salt bridges, facilitates the microscopic miscibility of the blends, while ionizable functional groups within the sub-nanometer pores allow optimization of membrane ion-transport functions. The resulting microporous membranes demonstrate fast cation conduction with low crossover of redox-active molecular species, enabling improved power ratings and reduced capacity fade in aqueous RFBs using anthraquinone and ferrocyanide as redox couples.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rui Tan
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Dezhi Liu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jiaxin Lu
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Xiaochu Wei
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| | | | - Chunchun Ye
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Charlotte Breakwell
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Stefan Guldin
- Department of Chemical Engineering, University College London, London, WC1E 7JE, UK
| | - Anthony R Kucernak
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Kim E Jelfs
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| | - Nigel P Brandon
- Department of Earth Science and Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Neil B McKeown
- EaStChem School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
25
|
Han T, Cai Z, Wang C, Zheng P, Wu Q, Liu L, Liu X, Weidman J, Luo S. Ionic Microporous Polymer Membranes for Advanced Gas Separations. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Tianliang Han
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhili Cai
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Can Wang
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Peijun Zheng
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Qi Wu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Lu Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
| | - Xinyu Liu
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jennifer Weidman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Shuangjiang Luo
- CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030000, China
| |
Collapse
|
26
|
Solution-processable Amorphous Microporous Polymers for Membrane Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Abstract
Computational modeling is increasingly used to assist in the discovery of supramolecular materials. Supramolecular materials are typically primarily built from organic components that are self-assembled through noncovalent bonding and have potential applications, including in selective binding, sorption, molecular separations, catalysis, optoelectronics, sensing, and as molecular machines. In this review, the key areas where computational prediction can assist in the discovery of supramolecular materials, including in structure prediction, property prediction, and the prediction of how to synthesize a hypothetical material are discussed, before exploring the potential impact of artificial intelligence techniques on the field. Throughout, the importance of close integration with experimental materials discovery programs will be highlighted. A series of case studies from the author's work across some different supramolecular material classes will be discussed, before finishing with a discussion of the outlook for the field.
Collapse
Affiliation(s)
- Kim E. Jelfs
- Department of Chemistry, Molecular Sciences Research HubImperial College LondonLondonUK
| |
Collapse
|
28
|
Dong Y, Zhu Q, Zou W, Fang J, Yang Z, Xu T. Dibenzo-15-crown-5-based Tröger's Base membrane for 6Li+/7Li+ separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Xue B, Zhu MZ, Fu SQ, Huang PP, Qian H, Liu PN. Facile synthesis of sulfonated poly(phenyl-alkane)s for proton exchange membrane fuel cells. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Forner-Cuenca A. Bringing redox organics back to life. Nat Chem 2022; 14:1091-1092. [PMID: 36138109 DOI: 10.1038/s41557-022-01045-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antoni Forner-Cuenca
- Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
31
|
Wang A, Tan R, Breakwell C, Wei X, Fan Z, Ye C, Malpass-Evans R, Liu T, Zwijnenburg MA, Jelfs KE, McKeown NB, Chen J, Song Q. Solution-Processable Redox-Active Polymers of Intrinsic Microporosity for Electrochemical Energy Storage. J Am Chem Soc 2022; 144:17198-17208. [PMID: 36074146 PMCID: PMC9501925 DOI: 10.1021/jacs.2c07575] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 11/28/2022]
Abstract
Redox-active organic materials have emerged as promising alternatives to conventional inorganic electrode materials in electrochemical devices for energy storage. However, the deployment of redox-active organic materials in practical lithium-ion battery devices is hindered by their undesired solubility in electrolyte solvents, sluggish charge transfer and mass transport, as well as processing complexity. Here, we report a new molecular engineering approach to prepare redox-active polymers of intrinsic microporosity (PIMs) that possess an open network of subnanometer pores and abundant accessible carbonyl-based redox sites for fast lithium-ion transport and storage. Redox-active PIMs can be solution-processed into thin films and polymer-carbon composites with a homogeneously dispersed microstructure while remaining insoluble in electrolyte solvents. Solution-processed redox-active PIM electrodes demonstrate improved cycling performance in lithium-ion batteries with no apparent capacity decay. Redox-active PIMs with combined properties of intrinsic microporosity, reversible redox activity, and solution processability may have broad utility in a variety of electrochemical devices for energy storage, sensors, and electronic applications.
Collapse
Affiliation(s)
- Anqi Wang
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Rui Tan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Charlotte Breakwell
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Xiaochu Wei
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Zhiyu Fan
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| | - Chunchun Ye
- EaStChem
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | | | - Tao Liu
- Shanghai
Key Laboratory of Chemical Assessment and Sustainability, Department
of Chemistry, Tongji University, Shanghai 200092, China
| | | | - Kim E. Jelfs
- Department
of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
| | - Neil B. McKeown
- EaStChem
School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K.
| | - Jun Chen
- Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Renewable
Energy Conversion and Storage Center (RECAST), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilei Song
- Department
of Chemical Engineering, Imperial College
London, London SW7 2AZ, U.K.
| |
Collapse
|
32
|
Ye C, Tan R, Wang A, Chen J, Comesaña Gándara B, Breakwell C, Alvarez‐Fernandez A, Fan Z, Weng J, Bezzu CG, Guldin S, Brandon NP, Kucernak AR, Jelfs KE, McKeown NB, Song Q. Long-Life Aqueous Organic Redox Flow Batteries Enabled by Amidoxime-Functionalized Ion-Selective Polymer Membranes. Angew Chem Int Ed Engl 2022; 61:e202207580. [PMID: 35876472 PMCID: PMC9541571 DOI: 10.1002/anie.202207580] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 11/07/2022]
Abstract
Redox flow batteries (RFBs) based on aqueous organic electrolytes are a promising technology for safe and cost-effective large-scale electrical energy storage. Membrane separators are a key component in RFBs, allowing fast conduction of charge-carrier ions but minimizing the cross-over of redox-active species. Here, we report the molecular engineering of amidoxime-functionalized Polymers of Intrinsic Microporosity (AO-PIMs) by tuning their polymer chain topology and pore architecture to optimize membrane ion transport functions. AO-PIM membranes are integrated with three emerging aqueous organic flow battery chemistries, and the synergetic integration of ion-selective membranes with molecular engineered organic molecules in neutral-pH electrolytes leads to significantly enhanced cycling stability.
Collapse
Affiliation(s)
- Chunchun Ye
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Rui Tan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Anqi Wang
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jie Chen
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | | | - Charlotte Breakwell
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | | | - Zhiyu Fan
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - Jiaqi Weng
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| | - C. Grazia Bezzu
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Stefan Guldin
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Nigel P. Brandon
- Department of Earth Science and EngineeringImperial College LondonLondonSW7 2AZUK
| | - Anthony R. Kucernak
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Kim E. Jelfs
- Department of ChemistryMolecular Sciences Research HubImperial College LondonLondonW12 0BZUK
| | - Neil B. McKeown
- EaStCHEMSchool of ChemistryUniversity of EdinburghEdinburghEH9 3FJUK
| | - Qilei Song
- Department of Chemical EngineeringImperial College LondonLondonSW7 2AZUK
| |
Collapse
|
33
|
Fontmorin JM, Guiheneuf S, Godet-Bar T, Floner D, Geneste F. How anthraquinones can enable aqueous organic redox flow batteries to meet the needs of industrialization. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Ye C, Tan R, Wang A, Chen J, Comesaña-Gándara B, Breakwell C, Alvarez-Fernandez A, Fan Z, Weng J, Bezzu G, Guldin S, Brandon N, Kucernak A, Jelfs KE, McKeown NB, Song Q. Long‐Life Aqueous Organic Redox Flow Batteries enabled by Amidoxime‐Functionalized Ion‐Selective Polymer Membranes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chunchun Ye
- The University of Edinburgh School of Chemistry UNITED KINGDOM
| | - Rui Tan
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Anqi Wang
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Jie Chen
- The University of Edinburgh School of Chemistry UNITED KINGDOM
| | | | | | | | - Zhiyu Fan
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Jiaqi Weng
- Imperial College London Chemical Engineering UNITED KINGDOM
| | - Grazia Bezzu
- The University of Edinburgh Chemistry UNITED KINGDOM
| | - Stefan Guldin
- University College London Chemical Engineering UNITED KINGDOM
| | - Nigel Brandon
- Imperial College London Earth Science and Engineering UNITED KINGDOM
| | | | - Kim E. Jelfs
- Imperial College London Chemistry UNITED KINGDOM
| | | | - Qilei Song
- Imperial College London Department of Chemical Engineering South Kensington SW7 2AZ London UNITED KINGDOM
| |
Collapse
|