1
|
Xiang Y, Lao Z, Lin Z, Yang X. SpyFixer enables efficient site-specific immobilization for protein-protein interaction analysis and antibody purification. Int J Biol Macromol 2024; 287:138548. [PMID: 39653208 DOI: 10.1016/j.ijbiomac.2024.138548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/19/2024]
Abstract
Traditional methods of protein immobilization often result in activity loss due to random coupling. This study introduces SpyFixer, a variant of SpyCatcher that achieves over 99% efficient site-specific protein immobilization. We applied SpyFixer on two platforms: bio-layer interferometry (BLI) for protein-protein interaction analysis and epoxy agarose resin for antibody purification. Using human growth hormone (hGH) and the Z domain of Protein A as model proteins, we demonstrated that SpyFixer enables efficient, site-specific immobilization on BLI sensors, yielding reproducible kinetic data with lower variability than conventional methods. Additionally, we developed a cost-effective strategy for antibody purification utilizing SpyFixer-modified resin, which exhibited remarkable capture efficiencies exceeding 90%, elution efficiencies over 70%, and purities over 90% for human immunoglobulin G (hIgG) from complex samples, including bacterial lysates, human serum, and recombinant fermentation broth. The resin's loading capacity surpassed 200 mg/mL, and no significant activity loss was observed after 20 regeneration cycles. This study further advances the potential of Spy chemistry in biotechnological applications.
Collapse
Affiliation(s)
- Ya Xiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zisha Lao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China; School of Biomedicine, Guangdong University of Technology, Guangzhou, Guangdong 510006, China.
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Lima GM, Jame-Chenarboo Z, Sojitra M, Sarkar S, Carpenter EJ, Yang CY, Schmidt E, Lai J, Atrazhev A, Yazdan D, Peng C, Volker EA, Ho R, Monteiro G, Lai R, Mahal LK, Macauley MS, Derda R. The liquid lectin array detects compositional glycocalyx differences using multivalent DNA-encoded lectins on phage. Cell Chem Biol 2024; 31:1986-2001.e9. [PMID: 39454580 DOI: 10.1016/j.chembiol.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/05/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
Selective detection of disease-associated changes in the glycocalyx is an emerging field in modern targeted therapies. Detecting minor glycan changes on the cell surface is a challenge exacerbated by the lack of correspondence between cellular DNA/RNA and glycan structures. We demonstrate that multivalent displays of lectins on DNA-barcoded phages-liquid lectin array (LiLA)-detect subtle differences in density of glycans on cells. LiLA constructs displaying 73 copies of diCBM40 (CBM) lectin per virion (φ-CBM73) exhibit non-linear ON/OFF-like recognition of sialoglycans on the surface of normal and cancer cells. A high-valency φ-CBM290 display, or soluble CBM protein, cannot amplify the subtle differences detected by φ-CBM73. Similarly, multivalent displays of CBM and Siglec-7 detect differences in the glycocalyx between stem-like and non-stem populations in cancer. Multivalent display of lectins offer in situ detection of minor differences in glycocalyx in cells both in vitro and in vivo not feasible to currently available technologies.
Collapse
Affiliation(s)
- Guilherme M Lima
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Mirat Sojitra
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Susmita Sarkar
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Eric J Carpenter
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Claire Y Yang
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Edward Schmidt
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Justine Lai
- Department of Medicine, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Danial Yazdan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Elizabeth A Volker
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Ray Ho
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Gisele Monteiro
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP 05508 000, Brazil
| | - Raymond Lai
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2J7, Canada
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada.
| |
Collapse
|
3
|
Zhao Y, Zhang T, Zhu Y, Yin J, Omer R, Hemu X, Li W, Bi X. Recent Toolboxes for Chemoselective Dual Modifications of Proteins. Chemistry 2024; 30:e202402272. [PMID: 39037007 DOI: 10.1002/chem.202402272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/23/2024]
Abstract
Site-selective chemical modifications of proteins have emerged as a potent technology in chemical biology, materials science, and medicine, facilitating precise manipulation of proteins with tailored functionalities for basic biology research and developing innovative therapeutics. Compared to traditional recombinant expression methods, one of the prominent advantages of chemical protein modification lies in its capacity to decorate proteins with a wide range of functional moieties, including non-genetically encoded ones, enabling the generation of novel protein conjugates with enhanced or previously unexplored properties. Among these, approaches for dual or multiple modifications of proteins are increasingly garnering attention, as it has been found that single modification of proteins is inadequate to meet current demands. Therefore, in light of the rapid developments in this field, this review provides a timely and comprehensive overview of the latest advancements in chemical and biological approaches for dual functionalization of proteins. It further discusses their advantages, limitations, and potential future directions in this relatively nascent area.
Collapse
Affiliation(s)
- Yiping Zhao
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tianmeng Zhang
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Yujie Zhu
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Juan Yin
- Zhejiang Yangshengtang Institute of Natural Medication Co., Ltd, Hangzhou, Zhejiang, China
| | - Rida Omer
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xinya Hemu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Victoria, 3086, Australia
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Hills RA, Tan TK, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PNP, Storm KN, Rorick AV, West AP, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, Admans G, James WS, Bjorkman PJ, Townsend AR, Howarth MR. Proactive vaccination using multiviral Quartet Nanocages to elicit broad anti-coronavirus responses. NATURE NANOTECHNOLOGY 2024; 19:1216-1223. [PMID: 38710880 PMCID: PMC11329374 DOI: 10.1038/s41565-024-01655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 03/15/2024] [Indexed: 05/08/2024]
Abstract
Defending against future pandemics requires vaccine platforms that protect across a range of related pathogens. Nanoscale patterning can be used to address this issue. Here, we produce quartets of linked receptor-binding domains (RBDs) from a panel of SARS-like betacoronaviruses, coupled to a computationally designed nanocage through SpyTag/SpyCatcher links. These Quartet Nanocages, possessing a branched morphology, induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented in the vaccine. Equivalent antibody responses are raised to RBDs close to the nanocage or at the tips of the nanoparticle's branches. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increase the strength and breadth of an otherwise narrow immune response. A Quartet Nanocage including the Omicron XBB.1.5 'Kraken' RBD induced antibodies with binding to a broad range of sarbecoviruses, as well as neutralizing activity against this variant of concern. Quartet nanocages are a nanomedicine approach with potential to confer heterotypic protection against emergent zoonotic pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | | | - Kaya N Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Annie V Rorick
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Anthony P West
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Michelle L Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Gabrielle Admans
- Department of Pharmacology, University of Cambridge, Cambridge, UK
| | - William S James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Alain R Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK.
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK.
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Department of Pharmacology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
5
|
Driscoll CL, Keeble AH, Howarth MR. SpyMask enables combinatorial assembly of bispecific binders. Nat Commun 2024; 15:2403. [PMID: 38493197 PMCID: PMC10944524 DOI: 10.1038/s41467-024-46599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
Bispecific antibodies are a successful and expanding therapeutic class. Standard approaches to generate bispecifics are complicated by the need for disulfide reduction/oxidation or specialized formats. Here we present SpyMask, a modular approach to bispecifics using SpyTag/SpyCatcher spontaneous amidation. Two SpyTag-fused antigen-binding modules can be precisely conjugated onto DoubleCatcher, a tandem SpyCatcher where the second SpyCatcher is protease-activatable. We engineer a panel of structurally-distinct DoubleCatchers, from which binders project in different directions. We establish a generalized methodology for one-pot assembly and purification of bispecifics in 96-well plates. A panel of binders recognizing different HER2 epitopes were coupled to DoubleCatcher, revealing unexpected combinations with anti-proliferative or pro-proliferative activity on HER2-addicted cancer cells. Bispecific activity depended sensitively on both binder orientation and DoubleCatcher scaffold geometry. These findings support the need for straightforward assembly in different formats. SpyMask provides a scalable tool to discover synergy in bispecific activity, through modulating receptor organization and geometry.
Collapse
Affiliation(s)
- Claudia L Driscoll
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Mark R Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK.
| |
Collapse
|
6
|
Fan R, Aranko AS. Catcher/Tag Toolbox: Biomolecular Click-Reactions For Protein Engineering Beyond Genetics. Chembiochem 2024; 25:e202300600. [PMID: 37851860 DOI: 10.1002/cbic.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Manipulating protein architectures beyond genetic control has attracted widespread attention. Catcher/Tag systems enable highly specific conjugation of proteins in vivo and in vitro via an isopeptide-bond. They provide efficient, robust, and irreversible strategies for protein conjugation and are simple yet powerful tools for a variety of applications in enzyme industry, vaccines, biomaterials, and cellular applications. Here we summarize recent development of the Catcher/Tag toolbox with a particular emphasis on the design of Catcher/Tag pairs targeted for specific applications. We cover the current limitations of the Catcher/Tag systems and discuss the pH sensitivity of the reactions. Finally, we conclude some of the future directions in the development of this versatile protein conjugation method and envision that improved control over inducing the ligation reaction will further broaden the range of applications.
Collapse
Affiliation(s)
- Ruxia Fan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| |
Collapse
|
7
|
Vester SK, Davies AM, Beavil RL, Sandhar BS, Beavil AJ, Gould HJ, Sutton BJ, McDonnell JM. Expanding the Anti-Phl p 7 Antibody Toolkit: An Anti-Idiotype Nanobody Inhibitor. Antibodies (Basel) 2023; 12:75. [PMID: 37987253 PMCID: PMC10660547 DOI: 10.3390/antib12040075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
We have previously produced a toolkit of antibodies, comprising recombinant human antibodies of all but one of the human isotypes, directed against the polcalcin family antigen Phl p 7. In this work, we complete the toolkit of human antibody isotypes with the IgD version of the anti-Phl p 7 monoclonal antibody. We also raised a set of nanobodies against the IgD anti-Phl p 7 antibody and identify and characterize one paratope-specific nanobody. This nanobody also binds to the IgE isotype of this antibody, which shares the same idiotype, and orthosterically inhibits the interaction with Phl p 7. The 2.1 Å resolution X-ray crystal structure of the nanobody in complex with the IgD Fab is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK; (S.K.V.); (A.M.D.); (R.L.B.); (B.S.S.); (A.J.B.); (H.J.G.); (B.J.S.)
| |
Collapse
|
8
|
Keeble AH, Wood DP, Howarth M. Design and Evolution of Enhanced Peptide-Peptide Ligation for Modular Transglutaminase Assembly. Bioconjug Chem 2023. [PMID: 37289810 DOI: 10.1021/acs.bioconjchem.3c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Robust and precise tools are needed to enhance the functionality and resilience of synthetic nanoarchitectures. Here, we have employed directed evolution and rational design to build a fast-acting molecular superglue from a bacterial adhesion protein. We have generated the SnoopLigase2 coupling system, a genetically encoded route for efficient transamidation between SnoopTag2 and DogTag2 peptides. Each peptide was selected for rapid reaction by phage display screening. The optimized set allows more than 99% completion and is compatible with diverse buffers, pH values, and temperatures, accelerating the reaction over 1000-fold. SnoopLigase2 directs a specific reaction in the mammalian secretory pathway, allowing covalent display on the plasma membrane. Transglutaminase 2 (TG2) has a network of interactions and substrates amidst the mammalian cell surface and extracellular matrix. We expressed a modified TG2 with resistance to oxidative inactivation and minimal self-reactivity. SnoopLigase2 enables TG2 functionalization with transforming growth factor alpha (TGFα) in routes that would be impossible through genetic fusion. The TG2:TGFα conjugate retained transamidase activity, stably anchored TGFα for signal activation in the extracellular environment, and reprogrammed cell behavior. This modular toolbox should create new opportunities for molecular assembly, both for novel biomaterials and complex cellular environments.
Collapse
Affiliation(s)
- Anthony H Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| | - Dominic P Wood
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, U.K
| |
Collapse
|
9
|
Chen Y, Chen Y, Ming D, Zhu L, Jiang L. Highly efficiency production of D-allulose from inulin using curli fiber multi-enzyme cascade catalysis. Int J Biol Macromol 2023; 241:124468. [PMID: 37088188 DOI: 10.1016/j.ijbiomac.2023.124468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/01/2023] [Accepted: 04/12/2023] [Indexed: 04/25/2023]
Abstract
D-Allulose is a rare sugar with numerous physiological benefits and low caloric content, which can be obtained from inulin through enzymatic catalysis. In this study, we combined D-allulose 3-epimerase, exo- and endo-inulinases (EXINU and ENINU) with the NGTag/NGCatcher/CsgA system to accelerate D-allulose accumulation from inulin. Molecular dynamics simulations were used to screen linkers of appropriate length for ENINU. In vitro, we successfully observed the assembled NGCatcher_ENINU_CsgA, NGTag_EXINU, and DAERK fibers using fluorescent labelling with GFP, YFP, and mCherry. The optimal pH and temperature of the tagged variants were comparable to those of the wild-type, and the MD simulations showed that NGCatcher_ENINU_CsgA had improved stability in the working environment of EXINU. D-Allulose accumulation rate of the assembled enzymes cascade (NGCatcher_ENINU_CsgA/NGTag_EXINU_CsgA/DAERK) reached 0.25 g/L min-1 (1.25 mgD-allulose mgDAERK-1 min-1) at an inulin concentration of 100 g/L. The assembled system greatly improves the high-valued productions of rare sugars from cheap biomass.
Collapse
Affiliation(s)
- Yao Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yujin Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
10
|
Zheng P, Yang Y, Fu Y, He J, Hu Y, Zheng X, Duan B, Wang M, Liu Q, Li W, Li D, Yang Y, Yang Z, Yang X, Huang W, Ma Y. Engineered Norovirus-Derived Nanoparticles as a Plug-and-Play Cancer Vaccine Platform. ACS NANO 2023; 17:3412-3429. [PMID: 36779845 DOI: 10.1021/acsnano.2c08840] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, virus-derived self-assembled protein nanoparticles (NPs) have emerged as attractive antigen delivery platforms for developing both preventive and therapeutic vaccines. In this study, we exploited the genetically engineered Norovirus S domain (Nov-S) with SpyCatcher003 fused to the C-terminus to develop a robust, modular, and versatile NP-based carrier platform (Nov-S-Catcher003). The NPs can be conveniently armed in a plug-and-play pattern with SpyTag003-linked antigens. Nov-S-Catcher003 was efficiently expressed in Escherichia coli and self-assembled into highly uniform NPs with a purified protein yield of 97.8 mg/L. The NPs presented high stability at different maintained temperatures and after undergoing differing numbers of freeze-thaw cycles. Tumor vaccine candidates were easily obtained by modifying Nov-S-Catcher003 NPs with SpyTag003-linked tumor antigens. Nov-S-Catcher003-antigen NPs significantly promoted the maturation of bone marrow-derived dendritic cells in vitro and were capable of efficiently migrating to lymph nodes in vivo. In TC-1 and B16F10 tumor-bearing mice, the subcutaneous immunization of NPs elicited robust tumor-specific T-cell immunity, reshaped the tumor microenvironment, and inhibited tumor growth. In the TC-1 model, the NPs even completely abolished established tumors. In conclusion, the Nov-S-Catcher003 system is a promising delivery platform for facilitating the development of NP-based cancer vaccines.
Collapse
Affiliation(s)
- Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Ying Yang
- Cell Biology & Molecular Biology Laboratory of Experimental Teaching Center, Faculty of Basic Medical Science, Kunming Medical University, Kunming 650500, China
| | - Yuting Fu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- School of Life Sciences, Yunnan University, Kunming 650091, China
| | - Biao Duan
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Kunming Medical University, Kunming 650500, China
| | - Mengzhen Wang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Kunming Medical University, Kunming 650500, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Centers for Disease Control and Prevention, Kunming 650034, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
11
|
Hills RA, Kit Tan T, Cohen AA, Keeffe JR, Keeble AH, Gnanapragasam PN, Storm KN, Hill ML, Liu S, Gilbert-Jaramillo J, Afzal M, Napier A, James WS, Bjorkman PJ, Townsend AR, Howarth M. Multiviral Quartet Nanocages Elicit Broad Anti-Coronavirus Responses for Proactive Vaccinology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.24.529520. [PMID: 36865256 PMCID: PMC9980174 DOI: 10.1101/2023.02.24.529520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Defending against future pandemics may require vaccine platforms that protect across a range of related pathogens. The presentation of multiple receptor-binding domains (RBDs) from evolutionarily-related viruses on a nanoparticle scaffold elicits a strong antibody response to conserved regions. Here we produce quartets of tandemly-linked RBDs from SARS-like betacoronaviruses coupled to the mi3 nanocage through a SpyTag/SpyCatcher spontaneous reaction. These Quartet Nanocages induce a high level of neutralizing antibodies against several different coronaviruses, including against viruses not represented on the vaccine. In animals primed with SARS-CoV-2 Spike, boost immunizations with Quartet Nanocages increased the strength and breadth of an otherwise narrow immune response. Quartet Nanocages are a strategy with potential to confer heterotypic protection against emergent zoonotic coronavirus pathogens and facilitate proactive pandemic protection.
Collapse
Affiliation(s)
- Rory A. Hills
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Alexander A. Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer R. Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anthony H. Keeble
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | | | - Kaya N. Storm
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Michelle L. Hill
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sai Liu
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Javier Gilbert-Jaramillo
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Madeeha Afzal
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Amy Napier
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - William S. James
- James & Lillian Martin Centre, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Alain R. Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Centre for Translational Immunology, Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| |
Collapse
|
12
|
Wang H, Sun H, Gao C, Chen Q, Dong W, Chang Y, Luo H. A phase separation process induced by pH change for purification of His-tagged protein at low salt concentration. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2022.108792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Chen Y, Ding P, Li M, Liu S, Chang Z, Ren D, Li R, Zhang N, Sun X, Zhang G. Spy&IAC enables specific capture of SpyTagged proteins for rapid assembly of plug-and-display nanoparticle vaccines. Int J Biol Macromol 2023; 226:240-253. [PMID: 36509200 DOI: 10.1016/j.ijbiomac.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
From modular vaccine production to protein assembly on nanoparticles, the SpyCatcher/SpyTag system provides a convenient plug-and-display procedure. Here, we established a general-purpose immunoaffinity chromatography (IAC) method for SpyTagged proteins (Spy&IAC). SpyTags are displayed on the surface of nanoparticles to induce high-affinity monoclonal antibodies, allowing the specific capture of the target protein. Taking the key core antigenic regions of two coronaviruses that are currently more threatened in the field of human and animal diseases, the nucleocapsid (N) protein of SARS-CoV-2 and the COE protein of porcine epidemic diarrhea virus (PEDV) as model proteins, a purification model with SpyTag at the N-terminal or C-terminal expressed in E. coli or mammalian cells was constructed. After the efficient elution of Spy&IAC, the final yield of several proteins is about 3.5-15 mg/L culture, and the protein purity is above 90 %. Purification also preserves the assembly function and immunogenicity of the protein to support subsequent modular assembly and immunization programs. This strategy provides a general tool for the efficient purification of SpyTagged proteins from different expression sources and different tag positions, enabling the production of modular vaccines at lower cost and in a shorter time, which will prepare the public health field for potential pandemic threats.
Collapse
Affiliation(s)
- Yilan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Peiyang Ding
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Zejie Chang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Dongna Ren
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ruiqi Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Ning Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China; Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
14
|
Huang KYA, Chen X, Mohapatra A, Nguyen HTV, Schimanski L, Tan TK, Rijal P, Vester SK, Hills RA, Howarth M, Keeffe JR, Cohen AA, Kakutani LM, Wu YM, Shahed-Al-Mahmud M, Chou YC, Bjorkman PJ, Townsend AR, Ma C. Structural basis for a conserved neutralization epitope on the receptor-binding domain of SARS-CoV-2. Nat Commun 2023; 14:311. [PMID: 36658148 PMCID: PMC9852238 DOI: 10.1038/s41467-023-35949-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Antibody-mediated immunity plays a crucial role in protection against SARS-CoV-2 infection. We isolated a panel of neutralizing anti-receptor-binding domain (RBD) antibodies elicited upon natural infection and vaccination and showed that they recognize an immunogenic patch on the internal surface of the core RBD, which faces inwards and is hidden in the "down" state. These antibodies broadly neutralize wild type (Wuhan-Hu-1) SARS-CoV-2, Beta and Delta variants and some are effective against other sarbecoviruses. We observed a continuum of partially overlapping antibody epitopes from lower to upper part of the inner face of the RBD and some antibodies extend towards the receptor-binding motif. The majority of antibodies are substantially compromised by three mutational hotspots (S371L/F, S373P and S375F) in the lower part of the Omicron BA.1, BA.2 and BA.4/5 RBD. By contrast, antibody IY-2A induces a partial unfolding of this variable region and interacts with a conserved conformational epitope to tolerate all antigenic variations and neutralize diverse sarbecoviruses as well. This finding establishes that antibody recognition is not limited to the normal surface structures on the RBD. In conclusion, the delineation of functionally and structurally conserved RBD epitopes highlights potential vaccine and therapeutic candidates for COVID-19.
Collapse
Affiliation(s)
- Kuan-Ying A Huang
- Graduate Institute of Immunology and Department of Pediatrics, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan.
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Xiaorui Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Hong Thuy Vy Nguyen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Chemical Biology and Molecular Biophysics program, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Lisa Schimanski
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Susan K Vester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Rory A Hills
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Mark Howarth
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Alexander A Cohen
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Leesa M Kakutani
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Yi-Min Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | | | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, USA
| | - Alain R Townsend
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Che Ma
- Genomics Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
15
|
Xu J, Sekiguchi T, Boonyakida J, Kato T, Park EY. Display of multiple proteins on engineered canine parvovirus-like particles expressed in cultured silkworm cells and silkworm larvae. Front Bioeng Biotechnol 2023; 11:1096363. [PMID: 36873345 PMCID: PMC9977810 DOI: 10.3389/fbioe.2023.1096363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Recent progress has been made dramatically in decorating virus-like particles (VLPs) on the surface or inside with functional molecules, such as antigens or nucleic acids. However, it is still challenging to display multiple antigens on the surface of VLP to meet the requirement as a practical vaccine candidate. Herein this study, we focus on the expression and engineering of the capsid protein VP2 of canine parvovirus for VLP display in the silkworm-expression system. The chemistry of the SpyTag/SpyCatcher (SpT/SpC) and SnoopTag/SnoopCatcher (SnT/SnC) are efficient protein covalent ligation systems to modify VP2 genetically, where SpyTag/SnoopTag are inserted into the N-terminus or two distinct loop regions (Lx and L2) of VP2. The SpC-EGFP and SnC-mCherry are employed as model proteins to evaluate their binding and display on six SnT/SnC-modified VP2 variants. From a series of protein binding assays between indicated protein partners, we showed that the VP2 variant with SpT inserted at the L2 region significantly enhanced VLP display to 80% compared to 5.4% from N-terminal SpT-fused VP2-derived VLPs. In contrast, the VP2 variant with SpT at the Lx region failed to form VLPs. Moreover, the SpT (Lx)/SnT (L2) double-engineered chimeric VP2 variants showed covalent conjugation capacity to both SpC/SnC protein partners. The orthogonal ligations between those binding partners were confirmed by both mixing purified proteins and co-infecting cultured silkworm cells or larvae with desired recombinant viruses. Our results indicate that a convenient VLP display platform was successfully developed for multiple antigen displays on demand. Further verifications can be performed to assess its capacity for displaying desirable antigens and inducing a robust immune response to targeted pathogens.
Collapse
Affiliation(s)
- Jian Xu
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tomofumi Sekiguchi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jirayu Boonyakida
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Tatsuya Kato
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Enoch Y Park
- Laboratory of Biotechnology, Green Chemistry Research Division, Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|