1
|
Halligan NLN, Hanks SC, Matsuo K, Martins T, Zöllner S, Quasney MW, Scott LJ, Dahmer MK. Variants in the β-globin locus are associated with pneumonia in African American children. HGG ADVANCES 2024; 6:100374. [PMID: 39444160 DOI: 10.1016/j.xhgg.2024.100374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
In African American adults, the strongest genetic predictor of pneumonia appears to be the A allele of rs334, a variant in the β-globin gene, which in homozygous form causes sickle cell disease (SCD). No comparable studies have been done in African American children. We performed genome-wide association analyses of 482 African American children with documented pneumonia and 2,048 African American control individuals using genotypes imputed from two reference panels: 1000 Genomes (1KG) (which contains rs334) and TOPMed (does not contain rs334). Using 1KG imputed genotypes, the most significant variant was rs334 (A allele; odds ratio [OR] = 2.76; 95% CI, 2.21-3.74; p = 5.9 × 10-19); using TOPMed imputed genotypes the most significant variant was rs2226952, found in the β-globin locus control region (G allele; OR = 2.14; 95% CI, 1.78-2.57; p = 5.1 × 10-16). After conditioning on rs334, the most strongly associated variant in the β-globin locus, rs33930165 (T allele, 1KG: OR = 4.09; 95% CI, 2.29-7.29; p = 1.7 × 10-6; TOPMed: OR = 3.58; 95% CI, 2.18-5.90; p = 4.7 × 10-7), which as a compound heterozygote with rs334 A allele, can cause SCD. To compare the power of different sample sets we developed a way to estimate the power of sample sets with different sample sizes, genotype arrays, and imputation platforms. Our results suggest that, in African American children, the strongest genetic determinants of pneumonia are those that increase the risk of SCD.
Collapse
Affiliation(s)
- Nadine L N Halligan
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah C Hanks
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karen Matsuo
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Taylor Martins
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sebastian Zöllner
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael W Quasney
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laura J Scott
- Department of Biostatistics and Center for Statistical Genetics, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Mary K Dahmer
- Division of Critical Care Medicine, Department of Pediatrics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Suarez-Pajes E, Marcelino-Rodriguez I, Hernández Brito E, Gonzalez-Barbuzano S, Ramirez-Falcon M, Tosco-Herrera E, Rubio-Rodríguez LA, Briones ML, Rajas O, Borderías L, Ferreres J, Payeras A, Lorente L, Aspa J, Lorenzo Salazar JM, Valencia-Gallardo JM, Carbonell N, Freixinet JL, Rodríguez de Castro F, Solé Violán J, Flores C, Rodríguez-Gallego C. A genome-wide association study of adults with community-acquired pneumonia. Respir Res 2024; 25:374. [PMID: 39415140 PMCID: PMC11484206 DOI: 10.1186/s12931-024-03009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Community-acquired pneumonia (CAP) is associated with high morbidity and hospitalization rate. In infectious diseases, host genetics plays a critical role in susceptibility and immune response, and the immune pathways involved are highly dependent on the microorganism and its route of infection. Here we aimed to identify genetic risk loci for CAP using a case-control genome-wide association study (GWAS). METHODS We performed a GWAS on 3,765 Spanish individuals, including 257 adult patients hospitalized with CAP and 3,508 population controls. Pneumococcal CAP was documented in 30% of patients; the remaining 70% were selected among patients with unidentified microbiological etiology. We tested 7,6 million imputed genotypes using logistic regressions. UK Biobank GWAS of bacterial pneumonia were used for results validation. Subsequently, we prioritized genes and likely causal variants based on Bayesian fine mapping and functional evidence. Imputation and association of classical HLA alleles and amino acids were also conducted. RESULTS Six independent sentinel variants reached the genome-wide significance (p < 5 × 10-8), three on chromosome 6p21.32, and one for each of the chromosomes 4q28.2, 11p12, and 20q11.22. Only one variant at 6p21.32 was validated in independent GWAS of bacterial and pneumococcal pneumonia. Our analyses prioritized C4orf33 on 4q28.2, TAPBP on 6p21.32, and ZNF341 on 20q11.22. Interestingly, genetic defects of TAPBP and ZNF341 are previously known inborn errors of immunity predisposing to bacterial pneumonia, including pneumococcus and Haemophilus influenzae. Associations were all non-significant for the classical HLA alleles. CONCLUSIONS We completed a GWAS of CAP and identified four novel risk loci involved in CAP susceptibility.
Collapse
Affiliation(s)
- Eva Suarez-Pajes
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Itahisa Marcelino-Rodriguez
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
- Area of Preventive Medicine and Public Health, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | - Elisa Hernández Brito
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Silvia Gonzalez-Barbuzano
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Melody Ramirez-Falcon
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Eva Tosco-Herrera
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain
| | - Luis A Rubio-Rodríguez
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - María Luisa Briones
- Department of Respiratory Diseases, Hospital Clínico y Universitario de Valencia, Valencia, Spain
| | - Olga Rajas
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Luis Borderías
- Department of Respiratory Diseases, Hospital Universitario San Jorge, Huesca, Spain
| | - Jose Ferreres
- Intensive Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Antoni Payeras
- Department of Internal Medicine, Hospital Son Llatzer, Palma de Mallorca, Spain
| | - Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, San Cristóbal de La Laguna, Spain
| | - Javier Aspa
- Department of Respiratory Diseases, Hospital Universitario de la Princesa, Madrid, Spain
| | - Jose M Lorenzo Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
| | - José Manuel Valencia-Gallardo
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Nieves Carbonell
- Intensive Care Unit, Hospital Clínico de Valencia, Valencia, Spain
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Jorge L Freixinet
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Felipe Rodríguez de Castro
- Department of Respiratory Diseases, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Jordi Solé Violán
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
- Critical Care Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario Nuestra Señora de Candelaria, Instituto de Investigación Sanitaria de Canarias (IISC), Santa Cruz de Tenerife, Spain.
- Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain.
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| | - Carlos Rodríguez-Gallego
- Department of Immunology, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain.
- Department of Medical and Surgical Sciences, School of Medicine, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain.
- Department of Clinical Sciences, University Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain.
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
3
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins MUC5AC and MUC5B. Am J Hum Genet 2024; 111:1700-1716. [PMID: 38991590 PMCID: PMC11344006 DOI: 10.1016/j.ajhg.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
4
|
Reay WR, Clarke E, Eslick S, Riveros C, Holliday EG, McEvoy MA, Peel R, Hancock S, Scott RJ, Attia JR, Collins CE, Cairns MJ. Using Genetics to Inform Interventions Related to Sodium and Potassium in Hypertension. Circulation 2024; 149:1019-1032. [PMID: 38131187 PMCID: PMC10962430 DOI: 10.1161/circulationaha.123.065394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hypertension is a key risk factor for major adverse cardiovascular events but remains difficult to treat in many individuals. Dietary interventions are an effective approach to lower blood pressure (BP) but are not equally effective across all individuals. BP is heritable, and genetics may be a useful tool to overcome treatment response heterogeneity. We investigated whether the genetics of BP could be used to identify individuals with hypertension who may receive a particular benefit from lowering sodium intake and boosting potassium levels. METHODS In this observational genetic study, we leveraged cross-sectional data from up to 296 475 genotyped individuals drawn from the UK Biobank cohort for whom BP and urinary electrolytes (sodium and potassium), biomarkers of sodium and potassium intake, were measured. Biologically directed genetic scores for BP were constructed specifically among pathways related to sodium and potassium biology (pharmagenic enrichment scores), as well as unannotated genome-wide scores (conventional polygenic scores). We then tested whether there was a gene-by-environment interaction between urinary electrolytes and these genetic scores on BP. RESULTS Genetic risk and urinary electrolytes both independently correlated with BP. However, urinary sodium was associated with a larger BP increase among individuals with higher genetic risk in sodium- and potassium-related pathways than in those with comparatively lower genetic risk. For example, each SD in urinary sodium was associated with a 1.47-mm Hg increase in systolic BP for those in the top 10% of the distribution of genetic risk in sodium and potassium transport pathways versus a 0.97-mm Hg systolic BP increase in the lowest 10% (P=1.95×10-3). This interaction with urinary sodium remained when considering estimated glomerular filtration rate and indexing sodium to urinary creatinine. There was no strong evidence of an interaction between urinary sodium and a standard genome-wide polygenic score of BP. CONCLUSIONS The data suggest that genetic risk in sodium and potassium pathways could be used in a precision medicine model to direct interventions more specifically in the management of hypertension. Intervention studies are warranted.
Collapse
Affiliation(s)
- William R. Reay
- Schools of Biomedical Sciences and Pharmacy (W.R.R., R.J.S., M.J.C.), The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program (W.R.R., M.J.C.), New Lambton, NSW, Australia
| | - Erin Clarke
- Health Sciences (E.C., S.E., C.E.C.), The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program (E.C., C.E.C.), New Lambton, NSW, Australia
| | - Shaun Eslick
- Health Sciences (E.C., S.E., C.E.C.), The University of Newcastle, Callaghan, NSW, Australia
| | - Carlos Riveros
- Hunter Medical Research Institute (C.R., E.G.H., J.R.A.), New Lambton, NSW, Australia
| | - Elizabeth G. Holliday
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute (C.R., E.G.H., J.R.A.), New Lambton, NSW, Australia
| | - Mark A. McEvoy
- Rural Health School, La Trobe University, Bendigo, Victoria, Australia (M.A.M.)
| | - Roseanne Peel
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
| | - Stephen Hancock
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
| | - Rodney J. Scott
- Schools of Biomedical Sciences and Pharmacy (W.R.R., R.J.S., M.J.C.), The University of Newcastle, Callaghan, NSW, Australia
- Cancer Detection and Therapy Research Program (R.J.S.), New Lambton, NSW, Australia
| | - John R. Attia
- Medicine and Public Health (E.G.H., R.P., S.H., J.R.A.), The University of Newcastle, Callaghan, NSW, Australia
- Hunter Medical Research Institute (C.R., E.G.H., J.R.A.), New Lambton, NSW, Australia
| | - Clare E. Collins
- Health Sciences (E.C., S.E., C.E.C.), The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program (E.C., C.E.C.), New Lambton, NSW, Australia
| | - Murray J. Cairns
- Schools of Biomedical Sciences and Pharmacy (W.R.R., R.J.S., M.J.C.), The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program (W.R.R., M.J.C.), New Lambton, NSW, Australia
| |
Collapse
|
5
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins, MUC5AC and MUC5B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585560. [PMID: 38562829 PMCID: PMC10983947 DOI: 10.1101/2024.03.18.585560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Reay WR, Kiltschewskij DJ, Di Biase MA, Gerring ZF, Kundu K, Surendran P, Greco LA, Clarke ED, Collins CE, Mondul AM, Albanes D, Cairns MJ. Genetic influences on circulating retinol and its relationship to human health. Nat Commun 2024; 15:1490. [PMID: 38374065 PMCID: PMC10876955 DOI: 10.1038/s41467-024-45779-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Retinol is a fat-soluble vitamin that plays an essential role in many biological processes throughout the human lifespan. Here, we perform the largest genome-wide association study (GWAS) of retinol to date in up to 22,274 participants. We identify eight common variant loci associated with retinol, as well as a rare-variant signal. An integrative gene prioritisation pipeline supports novel retinol-associated genes outside of the main retinol transport complex (RBP4:TTR) related to lipid biology, energy homoeostasis, and endocrine signalling. Genetic proxies of circulating retinol were then used to estimate causal relationships with almost 20,000 clinical phenotypes via a phenome-wide Mendelian randomisation study (MR-pheWAS). The MR-pheWAS suggests that retinol may exert causal effects on inflammation, adiposity, ocular measures, the microbiome, and MRI-derived brain phenotypes, amongst several others. Conversely, circulating retinol may be causally influenced by factors including lipids and serum creatinine. Finally, we demonstrate how a retinol polygenic score could identify individuals more likely to fall outside of the normative range of circulating retinol for a given age. In summary, this study provides a comprehensive evaluation of the genetics of circulating retinol, as well as revealing traits which should be prioritised for further investigation with respect to retinol related therapies or nutritional intervention.
Collapse
Affiliation(s)
- William R Reay
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia.
| | - Dylan J Kiltschewskij
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Maria A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zachary F Gerring
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kousik Kundu
- Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
| | - Laura A Greco
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Erin D Clarke
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, The University of Newcastle, Callaghan, NSW, Australia
- Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia
| | - Alison M Mondul
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Department of Health and Human Services, Bethesda, MD, USA
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia.
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton, NSW, Australia.
| |
Collapse
|
7
|
Olasege BS, Oh ZY, Tahir MS, Porto-Neto LR, Hayes BJ, Fortes MRS. Genomic regions and biological pathways associated with sex-limited reproductive traits in bovine species. J Anim Sci 2024; 102:skae085. [PMID: 38545844 PMCID: PMC11135212 DOI: 10.1093/jas/skae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/25/2024] [Indexed: 05/30/2024] Open
Abstract
Many animal species exhibit sex-limited traits, where certain phenotypes are exclusively expressed in one sex. Yet, the genomic regions that contribute to these sex-limited traits in males and females remain a subject of debate. Reproductive traits are ideal phenotypes to study sexual differences since they are mostly expressed in a sex-limited way. Therefore, this study aims to use local correlation analyses to identify genomic regions and biological pathways significantly associated with male and female sex-limited traits in two distinct cattle breeds (Brahman [BB] and Tropical Composite [TC]). We used the Correlation Scan method to perform local correlation analysis on 42 trait pairs consisting of six female and seven male reproductive traits recorded on ~1,000 animals for each sex in each breed. To pinpoint a specific region associated with these sex-limited reproductive traits, we investigated the genomic region(s) consistently identified as significant across the 42 trait pairs in each breed. The genes found in the identified regions were subjected to Quantitative Trait Loci (QTL) colocalization, QTL enrichment analyses, and functional analyses to gain biological insight into sexual differences. We found that the genomic regions associated with the sex-limited reproductive phenotypes are widely distributed across all the chromosomes. However, no single region across the genome was associated with all the 42 reproductive trait pairs in the two breeds. Nevertheless, we found a region on the X-chromosome to be most significant for 80% to 90% (BB: 33 and TC: 38) of the total 42 trait pairs. A considerable number of the genes in this region were regulatory genes. By considering only genomic regions that were significant for at least 50% of the 42 trait pairs, we observed more regions spread across the autosomes and the X-chromosome. All genomic regions identified were highly enriched for trait-specific QTL linked to sex-limited traits (percentage of normal sperm, metabolic weight, average daily gain, carcass weight, age at puberty, etc.). The gene list created from these identified regions was enriched for biological pathways that contribute to the observed differences between sexes. Our results demonstrate that genomic regions associated with male and female sex-limited reproductive traits are distributed across the genome. Yet, chromosome X seems to exert a relatively larger effect on the phenotypic variation observed between the sexes.
Collapse
Affiliation(s)
- Babatunde S Olasege
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- Ag and Food, CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | - Zhen Yin Oh
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Muhammad S Tahir
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- Ag and Food, CSIRO Agriculture and Food, Saint Lucia, QLD, 4067, Australia
| | | | - Ben J Hayes
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Marina R S Fortes
- The University of Queensland, School of Chemistry and Molecular Biosciences, Saint Lucia Campus, Brisbane, QLD, 4072, Australia
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), Saint Lucia Campus, Brisbane, QLD, 4072, Australia
| |
Collapse
|
8
|
Hamilton F, Schurz H, Yates TA, Gilchrist JJ, Möller M, Naranbhai V, Ghazal P, Timpson NJ, Parks T, Pollara G. Altered IL-6 signalling and risk of tuberculosis disease: a meta-analysis and Mendelian randomisation study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.07.23285472. [PMID: 36798349 PMCID: PMC9934798 DOI: 10.1101/2023.02.07.23285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
IL-6 responses are ubiquitous in Mycobacterium tuberculosis (Mtb) infections, but their role in determining human tuberculosis (TB) disease risk is unknown. We used single nucleotide polymorphisms (SNPs) in and near the IL-6 receptor (IL6R) gene, focusing on the non-synonymous variant, rs2228145, associated with reduced classical IL-6 signalling, to assess the effect of altered IL-6 activity on TB disease risk. We identified 16 genome wide association studies (GWAS) of TB disease collating 17,982 cases of TB disease and 972,389 controls across 4 continents. Meta-analyses and Mendelian randomisation analyses revealed that reduced classical IL-6 signalling was associated with lower odds of TB disease, a finding replicated using multiple, independent SNP instruments and 2 separate exposure variables. Our findings establish a causal relationship between IL-6 signalling and the outcome of Mtb infection, suggesting IL-6 antagonists do not increase the risk of TB disease and should be investigated as adjuncts in treatment.
Collapse
Affiliation(s)
- Fergus Hamilton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Haiko Schurz
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tom A. Yates
- Division of Infection and Immunity, University College London, London, UK
| | - James J. Gilchrist
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Department of Paediatrics, University of Oxford, UK
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vivek Naranbhai
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Massachusetts General Hospital, Boston, USA
- Dana-Farber Cancer Institute, Boston, USA
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
- Harvard Medical School, Boston, USA
| | | | | | - Tom Parks
- Wellcome Trust Centre for Human Genetics, Oxford, UK
- Department of Infectious Diseases Imperial College London, London, UK
| | - Gabriele Pollara
- Division of Infection and Immunity, University College London, London, UK
| |
Collapse
|
9
|
Reay WR, Geaghan MP, Atkins JR, Carr VJ, Green MJ, Cairns MJ. Genetics-informed precision treatment formulation in schizophrenia and bipolar disorder. Am J Hum Genet 2022; 109:1620-1637. [PMID: 36055211 PMCID: PMC9502060 DOI: 10.1016/j.ajhg.2022.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/13/2022] [Indexed: 12/02/2022] Open
Abstract
Genetically informed drug development and repurposing is an attractive prospect for improving patient outcomes in psychiatry; however, the effectiveness of these endeavors is confounded by heterogeneity. We propose an approach that links interventions implicated by disorder-associated genetic risk, at the population level, to a framework that can target these compounds to individuals. Specifically, results from genome-wide association studies are integrated with expression data to prioritize individual "directional anchor" genes for which the predicted risk-increasing direction of expression could be counteracted by an existing drug. While these compounds represent plausible therapeutic candidates, they are not likely to be equally efficacious for all individuals. To account for this heterogeneity, we constructed polygenic scores restricted to variants annotated to the network of genes that interact with each directional anchor gene. These metrics, which we call a pharmagenic enrichment score (PES), identify individuals with a higher burden of genetic risk, localized in biological processes related to the candidate drug target, to inform precision drug repurposing. We used this approach to investigate schizophrenia and bipolar disorder and reveal several compounds targeting specific directional anchor genes that could be plausibly repurposed. These genetic risk scores, mapped to the networks associated with target genes, revealed biological insights that cannot be observed in undifferentiated genome-wide polygenic risk score (PRS). For example, an enrichment of these partitioned scores in schizophrenia cases with otherwise low PRS. In summary, genetic risk could be used more specifically to direct drug repurposing candidates that target particular genes implicated in psychiatric and other complex disorders.
Collapse
Affiliation(s)
- William R Reay
- Centre for Complex Disease and Precision Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Michael P Geaghan
- Kinghorn Centre for Clinical Genomics, Garvan Medical Research Institute, Darlinghurst, NSW, Australia
| | - Joshua R Atkins
- Centre for Complex Disease and Precision Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Vaughan J Carr
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia; Department of Psychiatry, Monash University, Melbourne, VIC, Australia
| | - Melissa J Green
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Randwick, NSW, Australia; Neuroscience Research Australia, Sydney, NSW, Australia
| | - Murray J Cairns
- Centre for Complex Disease and Precision Medicine, School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia; Precision Medicine Research Program, Hunter Medical Research Institute, Newcastle, NSW, Australia.
| |
Collapse
|