1
|
Chen A, Zhao C, Zhang H, Yang Y, Li J. Surface albedo regulates aerosol direct climate effect. Nat Commun 2024; 15:7816. [PMID: 39242629 PMCID: PMC11379713 DOI: 10.1038/s41467-024-52255-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Aerosols and Surface Albedo (SA) are critical in balancing Earth's energy budget. With the changes of surface types and corresponding SA in recent years, an intriguing yet unresolved question emerges: how does Aerosol Direct Radiative Effect (ADRE) and its warming effect (AWE) change with varying SA? Here we investigate the critical SA marking ADRE shift from negative to positive under varying aerosol properties, along with the impact of SA on the ADRE. Results show that AWE often occurs in mid-high latitudes or regions with high-absorptivity aerosols, with critical SA ranging from 0.18 to 0.96. Thinner and/or more absorptive aerosols more readily cause AWE statistically. In regions where the SA trend is significant, SA has decreased at -0.012/decade, causing a -0.2 ± 0.17 W/m²/decade ADRE change, with the most pronounced changes in the Northern Hemisphere during June-July. As SA declines, we highlight enhanced ADRE cooling or reduced AWE, indicating aerosols' stronger cooling, partly countering the energy rise from SA reduction.
Collapse
Affiliation(s)
- Annan Chen
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Chuanfeng Zhao
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China.
- Institute of Carbon Neutrality, Peking University, Beijing, 100871, China.
| | - Haotian Zhang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Yikun Yang
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| | - Jiefeng Li
- Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University, Beijing, 100871, China
| |
Collapse
|
2
|
Wang W, Song H, Min R, Wang Q, Qi M. LUCC-induced dust aerosol change increase surface and reduce atmospheric direct radiative forcing in Northern China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122185. [PMID: 39151337 DOI: 10.1016/j.jenvman.2024.122185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Land use and land cover change (LUCC) can alter surface properties, such as albedo, roughness, and vegetation coverage, directly affecting dust emissions and aerosol concentrations, leading to variations in direct radiative forcing (DRF) of dust aerosols and consequently impacting the climate. This study utilized the Weather Research and Forecasting model with Chemistry (WRF-Chem) to quantify the impact of LUCC in northern China from 2000 to 2020 on dust aerosol DRF. Results indicated that LUCC's influence on shortwave radiative forcing of dust was significantly greater than its influence on longwave radiative forcing and exhibited obvious seasonal variations. Overall, LUCC can cause net direct radiative forcing to increase by 5.3 W m-2 at the surface and decrease by 7.8 W m-2 in the atmosphere. Different types of LUCC transformation showed distinct impacts on dust aerosol DRF, with the conversion from sparse vegetation to barren land had the most significant effect on net radiative intensity, resulting in a decrease of 8.1 W m-2 at the surface, an increase of 12.2 W m-2 in the atmosphere, and an increase of 4.1 W m-2 at the top of the atmosphere. Conversely, the conversion from barren land to sparse vegetation led to surface cooling and atmospheric warming. These findings are of great significance for enhancing our knowledge of the effects of LUCC on the radiative balance of dust aerosols.
Collapse
Affiliation(s)
- Weijiao Wang
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, 475004, China
| | - Hongquan Song
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; Henan Key Laboratory of Air Pollution Control and Ecological Security, Henan University, Kaifeng, 475004, China.
| | - Ruiqi Min
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| | - Qianfeng Wang
- College of Environmental & Safety Engineering, Fuzhou University, Fuzhou, 350116, China
| | - Minghui Qi
- Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education, Kaifeng, 475004, China; College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
| |
Collapse
|
3
|
Braga A, Laurini M. Spatial heterogeneity in climate change effects across Brazilian biomes. Sci Rep 2024; 14:16414. [PMID: 39014072 PMCID: PMC11252347 DOI: 10.1038/s41598-024-67244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
We present a methodology designed to study the spatial heterogeneity of climate change. Our approach involves decomposing the observed changes in temperature patterns into multiple trend, cycle, and seasonal components within a spatio-temporal model. We apply this method to test the hypothesis of a global long-term temperature trend against multiple trends in distinct biomes. Applying this methodology, we delve into the examination of heterogeneity of climate change in Brazil-a country characterized by a spectrum of climate zones. The findings challenge the notion of a global trend, revealing the presence of distinct trends in warming effects, and more accelerated trends for the Amazon and Cerrado biomes, indicating a composition between global warming and deforestation in determining changes in permanent temperature patterns.
Collapse
Affiliation(s)
- Adriano Braga
- Department of Economics, University of São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto, São Paulo, 100190, Brazil
| | - Márcio Laurini
- Department of Economics, University of São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto, São Paulo, 100190, Brazil.
| |
Collapse
|
4
|
Li XC, Qian HR, Zhang YY, Zhang QY, Liu JS, Lai HY, Zheng WG, Sun J, Fu B, Zhou XN, Zhang XX. Optimal decision-making in relieving global high temperature-related disease burden by data-driven simulation. Infect Dis Model 2024; 9:618-633. [PMID: 38645696 PMCID: PMC11026972 DOI: 10.1016/j.idm.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/27/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024] Open
Abstract
The rapid acceleration of global warming has led to an increased burden of high temperature-related diseases (HTDs), highlighting the need for advanced evidence-based management strategies. We have developed a conceptual framework aimed at alleviating the global burden of HTDs, grounded in the One Health concept. This framework refines the impact pathway and establishes systematic data-driven models to inform the adoption of evidence-based decision-making, tailored to distinct contexts. We collected extensive national-level data from authoritative public databases for the years 2010-2019. The burdens of five categories of disease causes - cardiovascular diseases, infectious respiratory diseases, injuries, metabolic diseases, and non-infectious respiratory diseases - were designated as intermediate outcome variables. The cumulative burden of these five categories, referred to as the total HTD burden, was the final outcome variable. We evaluated the predictive performance of eight models and subsequently introduced twelve intervention measures, allowing us to explore optimal decision-making strategies and assess their corresponding contributions. Our model selection results demonstrated the superior performance of the Graph Neural Network (GNN) model across various metrics. Utilizing simulations driven by the GNN model, we identified a set of optimal intervention strategies for reducing disease burden, specifically tailored to the seven major regions: East Asia and Pacific, Europe and Central Asia, Latin America and the Caribbean, Middle East and North Africa, North America, South Asia, and Sub-Saharan Africa. Sectoral mitigation and adaptation measures, acting upon our categories of Infrastructure & Community, Ecosystem Resilience, and Health System Capacity, exhibited particularly strong performance for various regions and diseases. Seven out of twelve interventions were included in the optimal intervention package for each region, including raising low-carbon energy use, increasing energy intensity, improving livestock feed, expanding basic health care delivery coverage, enhancing health financing, addressing air pollution, and improving road infrastructure. The outcome of this study is a global decision-making tool, offering a systematic methodology for policymakers to develop targeted intervention strategies to address the increasingly severe challenge of HTDs in the context of global warming.
Collapse
Affiliation(s)
- Xin-Chen Li
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hao-Ran Qian
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Yan-Yan Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qi-Yu Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jing-Shu Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Hong-Yu Lai
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Wei-Guo Zheng
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Jian Sun
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Bo Fu
- School of Data Science, Fudan University, Shanghai, People's Republic of China
| | - Xiao-Nong Zhou
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Xiao-Xi Zhang
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Institute of One Health, Shanghai Jiao Tong University, Shanghai, People's Republic of China
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Lu J, Peng Q, Song Y, Lyu L, Chen D, Huang P, Peng F, Liu Y. Characteristics and effects of global sloping land urbanization from 2000 to 2020. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173348. [PMID: 38795997 DOI: 10.1016/j.scitotenv.2024.173348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Cities usually expand on flat land. However, in recent decades, the increasing scarcity of available flat land has compelled many cities to expand to sloping land (sloping land urbanization, SLU), and the understanding for global SLU is still unclear. This study, based on the currently available high-precision global Digital Elevation Model (FABDEM) and global land cover dataset (GlobeLand30), investigated the characteristics and impacts of SLU in 26,402 urban residential areas worldwide from 2000 to 2020. Results show that the total area of SLU globally is 16,383 km2, accounting for 9.54 % of the overall urban expansion. This phenomenon is widespread globally and relatively concentrated in a few countries, with 42.78 %, 24.35 %, and 21.83 % of the area coming from cultivated land, forest, and grassland respectively. Global SLU has accommodated 34.78 million urban population, and indirectly protected 8922 km2 of flat cultivated land, while causing a net loss of 4373 km2 of green ecological land. Deliberately balancing the dual effects of SLU is crucial for advancing sustainable global urbanization.
Collapse
Affiliation(s)
- Jiating Lu
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Qiuzhi Peng
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Surveying and Mapping Geo-informatics Technology Research Center on Plateau Mountains of Yunnan Higher Education, Kunming 650093, Yunnan, China; Yunnan Natural Resources and Planning Intelligence Innovation Laboratory, Kunming 650093, Yunnan, China.
| | - Yufei Song
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Leting Lyu
- School of Geographical Sciences, Liaoning Normal University, Dalian 116029, Liaoning, China
| | - Di Chen
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Peiyi Huang
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Fengcan Peng
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yaxuan Liu
- Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
6
|
Cheng P, An Y, Jen AKY, Lei D. New Nanophotonics Approaches for Enhancing the Efficiency and Stability of Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309459. [PMID: 37878233 DOI: 10.1002/adma.202309459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Indexed: 10/26/2023]
Abstract
Over the past decade, the power conversion efficiency (PCE) of perovskite solar cells (PSCs) has experienced a remarkable ascent, soaring from 3.8% in 2009 to a remarkable record of 26.1% in 2023. Many recent approaches for improving PSC performance employ nanophotonic technologies, from light harvesting and thermal management to the manipulation of charge carrier dynamics. Plasmonic nanoparticles and arrayed dielectric nanostructures have been applied to tailor the light absorption, scattering, and conversion, as well as the heat dissipation within PSCs to improve their PCE and operational stability. In this review, it is begin with a concise introduction to define the realm of nanophotonics by focusing on the nanoscale interactions between light and surface plasmons or dielectric photonic structures. Prevailing strategies that utilize resonance-enhanced light-matter interactions for boosting the PCE and stability of PSCs from light trapping, carrier transportation, and thermal management perspectives are then elaborated, and the resultant practical applications, such as semitransparent photovoltaics, colored PSCs, and smart perovskite windows are discussed. Finally, the state-of-the-art nanophotonic paradigms in PSCs are reviewed, and the benefits of these approaches in improving the aesthetic effects and energy-saving character of PSC-integrated buildings are highlighted.
Collapse
Affiliation(s)
- Pengfei Cheng
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Yidan An
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Alex K-Y Jen
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- The Hong Kong Institute for Clean Energy, City University of Hong Kong, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Centre, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
7
|
Shen P, Zhao S. Intensifying urban imprint on land surface warming: Insights from local to global scale. iScience 2024; 27:109110. [PMID: 38433922 PMCID: PMC10904926 DOI: 10.1016/j.isci.2024.109110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/05/2024] Open
Abstract
Increasing urbanization exacerbates surface energy balance perturbations and the health risks of climate warming; however, it has not been determined whether urban-induced warming and attributions vary from local, regional, to global scale. Here, the local surface urban heat island (SUHI) is evidenced to manifest with an annual daily mean intensity of 0.99°C-1.10°C during 2003-2018 using satellite observations over 536 cities worldwide. Spatiotemporal patterns and mechanisms of SUHI tightly link with climate-vegetation conditions, with regional warming effect reaching up to 0.015°C-0.138°C (annual average) due to surface energy alterations. Globally, the SUHI footprint of 1,860 cities approximates to 1% of the terrestrial lands, about 1.8-2.9 times far beyond the urban impervious areas, suggesting the enlargements of the imprint of urban warming from local to global scales. With continuous development of urbanization, the implications for SUHI-added warming and scaling effects are considerably important on accelerating global warming.
Collapse
Affiliation(s)
- Pengke Shen
- National Climate Center, China Meteorological Administration, Beijing 100081, China
| | - Shuqing Zhao
- College of Ecology and the Environment, Hainan University, Haikou 570228, China
| |
Collapse
|
8
|
Hu C, Tam CY, Yang ZL, Wang Z. Analyzing urban influence on extreme winter precipitation through observations and numerical simulation of two South China case studies. Sci Rep 2024; 14:2099. [PMID: 38267536 PMCID: PMC10808133 DOI: 10.1038/s41598-024-52193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
This study investigates the impact of urbanization on extreme winter rainfall in the South China Greater Bay Area (GBA) through the analysis of hourly station observations and simulations using the Weather Research and Forecasting Model with the Single Layer Urban Canopy Model (WRF-SLUCM). Data from 2008 to 2017 reveal that urban areas in the GBA experience lower 99th percentile hourly winter rainfall intensity compared to surrounding rural regions. However, urban locations exhibit higher annual maximum hourly rainfall (Rmax) and very extreme rainfall events (99.99th percentile) in winter, suggesting a positive influence of urbanization on extreme winter precipitation. A case study further underscores the role of the Urban Heat Island (UHI) effect in enhancing extreme rainfall intensity and probability in the GBA urban areas. Additionally, two extreme cases were dynamically downscaled using WRF-SLUCM, involving four parallel experiments: replacing urban land use with cropland (Nourban), using historical urban land use data from 1999 (99LS), projecting near-future urban land use for 2030 (30LS), and considering 2030 urban land use without anthropogenic heat (AH) (30LS-AH0). Synoptic analysis demonstrates that cold air intrusion suppresses the GBA UHI in Case 2013 but not in Case 2015. Reduced evaporation and humidity induced by urban surfaces significantly decrease urban precipitation in Case 2013. In contrast, the persistent UHI in Case 2015 enhances local convection and land-ocean circulation, leading to increased moisture flux convergence and amplified urban precipitation intensity and probability in 30LS compared to Nourban. This amplification is primarily attributed to AH, while the change in 99LS remains insignificant. These findings suggest that urban influences on extreme precipitation in the GBA persist during winter, particularly when the UHI effect is maintained.
Collapse
Affiliation(s)
- Chenxi Hu
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong, China
| | - Chi-Yung Tam
- Earth System Science Programme, The Chinese University of Hong Kong, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Zong-Liang Yang
- Department of Earth and Planetary Sciences, Jackson School of Geoscience, The University of Texas at Austin, Austin, TX, USA
| | - Ziqian Wang
- School of Atmospheric Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies, Sun Yat-Sen University, Zhuhai, China
| |
Collapse
|
9
|
Zhao S, Liu M, Tao M, Zhou W, Lu X, Xiong Y, Li F, Wang Q. The role of satellite remote sensing in mitigating and adapting to global climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166820. [PMID: 37689189 DOI: 10.1016/j.scitotenv.2023.166820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Climate change has critical adverse impacts on human society and poses severe challenges to global sustainable development. Information on essential climate variables (ECVs) that reflects the substantial changes that have occurred on Earth is critical for assessing the influence of climate change. Satellite remote sensing (SRS) technology has led to a new era of observations and provides multiscale information on ECVs that is independent of in situ measurements and model simulations. This enhances our understanding of climate change from space and supports policy-making in combating climate change. However, it remains challenging to remotely retrieve ECVs due to the complexity of the climate system. We provide an update on the studies on the role of SRS in climate change research, specifically in monitoring and quantifying ECVs in the atmosphere (greenhouse gases, clouds and aerosols), ocean (sea surface temperature, sea ice melt and sea level rise, ocean currents and mesoscale eddies, phytoplankton and ocean productivity), and terrestrial ecosystems (land use and land cover change and carbon flux, water resource and hydrological hazards, solar-induced chlorophyll fluorescence and terrestrial gross primary production). The benefits and challenges of applying SRS in climate change studies are also examined and discussed. This work will help us apply SRS and recommend future SRS studies to mitigate and adapt to global climate change.
Collapse
Affiliation(s)
- Shaohua Zhao
- Satellite Environment Center, Ministry of Ecology and Environment/State Environmental Protection Key Laboratory of Satellite Remote Sensing, Beijing 100094, China
| | - Min Liu
- College of Resources and Environment, Henan University of Economics and Law, Zhengzhou 450000, China
| | - Minghui Tao
- School of Geography and Information Engineering, China University of Geosciences, Wuhan 430000, China
| | - Wei Zhou
- Satellite Environment Center, Ministry of Ecology and Environment/State Environmental Protection Key Laboratory of Satellite Remote Sensing, Beijing 100094, China
| | - Xiaoyan Lu
- Guangxi Eco-Environmental Monitoring Centre, Nanning 530028, China
| | - Yujiu Xiong
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, Guangdong, China; Center of Water Resources and Environment, Sun Yat-sen University, Guangzhou 510275, China.
| | - Feng Li
- School of Civil Engineering, Sun Yat-Sen University, Zhuhai 519082, Guangdong, China
| | - Qiao Wang
- Satellite Environment Center, Ministry of Ecology and Environment/State Environmental Protection Key Laboratory of Satellite Remote Sensing, Beijing 100094, China; Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
10
|
Liao J, Dai Y, An L, Hang J, Shi Y, Zeng L. Water-energy-vegetation nexus explain global geographical variation in surface urban heat island intensity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165158. [PMID: 37385511 DOI: 10.1016/j.scitotenv.2023.165158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/25/2023] [Accepted: 06/25/2023] [Indexed: 07/01/2023]
Abstract
Surface urban heat island (SUHI) is a key climate risk associated with urbanization. Previous case studies have suggested that precipitation (water), radiation (energy), and vegetation have important effects on urban warming, but there is a lack of research that combines these factors to explain the global geographic variation in SUHI intensity (SUHII). Here, we utilize remotely sensed and gridded datasets to propose a new water-energy-vegetation nexus concept that explains the global geographic variation of SUHII across four climate zones and seven major regions. We found that SUHII and its frequency increase from arid zones (0.36 ± 0.15 °C) to humid zones (2.28 ± 0.10 °C), but become weaker in the extreme humid zones (2.18 ± 0.15 °C). We revealed that from semi-arid/humid to humid zones, high precipitation is often coupled with high incoming solar radiation. The increased solar radiation can directly enhance the energy in the area, leading to higher SUHII and its frequency. Although solar radiation is high in arid zones (mainly in West, Central, and South Asia), water limitation leads to sparse natural vegetation, suppressing the cooling effect in rural areas and resulting in lower SUHII. In extreme humid regions (mainly in tropical areas), incoming solar radiation tends to flatten out, which, coupled with increased vegetation as hydrothermal conditions become more favorable, leads to more latent heat and reduces the intensity of SUHI. Overall, this study offers empirical evidence that the water-energy-vegetation nexus highly explains the global geographic variation of SUHII. The results can be used by urban planners seeking optimal SUHI mitigation strategies and for climate change modeling work.
Collapse
Affiliation(s)
- Jiayuan Liao
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, P.R. China; China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an, P.R. China; Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai, 519000, China
| | - Yongjiu Dai
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Le An
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Jian Hang
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China; Key Laboratory of Urban Meteorology, China Meteorological Administration, Beijing, 100089, P.R. China; China Meteorological Administration Xiong'an Atmospheric Boundary Layer Key Laboratory, Xiong'an, P.R. China; Key Laboratory of Tropical Atmosphere-Ocean System (Sun Yat-sen University), Ministry of Education, Zhuhai, 519000, China.
| | - Yurong Shi
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| | - Liyue Zeng
- School of Atmospheric Sciences, Sun Yat-sen University, and Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519082, China
| |
Collapse
|
11
|
Cao J, Pan G, Zheng B, Liu Y, Zhang G, Liu Y. Significant land cover change in China during 2001-2019: Implications for direct and indirect effects on surface ozone concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122290. [PMID: 37524236 DOI: 10.1016/j.envpol.2023.122290] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
China has become one of the most prominent areas of global land cover change during the past few decades. These changes can directly influence meteorological parameters thus further regulating tropospheric ozone (O3) formation. Moreover, changes in biogenic emissions due to land cover variation can also have an indirect effect on O3 concentration. This study applied the Community Multiscale Air Quality model to comprehensively evaluate the impacts of significant land cover change on O3 levels in China during summertime between 2001 and 2019. The results showed that the daily maximum 8-h average O3 concentration (MDA8 O3) increased by 3.6-8.9 μg/m3, 2.8-8.0 μg/m3, 3.8-9.6 μg/m3, -1.5-6.2 μg/m3, and -0.6-2.5 μg/m3 in Beijing-Tianjin-Hebei region, Yangtze River Delta, Pearl River Delta, Sichuan Basin, and Fenwei Plain, respectively, in response to land cover variation. The research identified that the direct effect was the primary factor in raising O3 levels which mainly altered O3 concentration by changing vertical import and dry deposition velocity. Moreover, land cover variation tended to decrease biogenic nitric oxide emission and increase biogenic volatile organic compounds emission on the whole, and cause an obvious increase of MDA8 O3 by 1.8-4.9 μg/m3 in Pearl River Delta due to the indirect effect. This study offered valuable insights into the impacts of land cover change on O3 levels, highlighting the need for policymakers to consider land cover variation on air pollutants concentration for devising comprehensive multi-pollutant control strategies.
Collapse
Affiliation(s)
- Jingyuan Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Guanfu Pan
- National Institute of Metrology, Beijing, 100029, China
| | - Boyue Zheng
- Institute of Energy, Peking University, Beijing, 100871, China
| | - Yang Liu
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Guobin Zhang
- College of Environmental Sciences and Engineering, North China Electric Power University, Beijing, 102206, China
| | - Yang Liu
- National Institute of Metrology, Beijing, 100029, China.
| |
Collapse
|
12
|
Monticelli S, Talbot A, Gotico P, Caillé F, Loreau O, Del Vecchio A, Malandain A, Sallustrau A, Leibl W, Aukauloo A, Taran F, Halime Z, Audisio D. Unlocking full and fast conversion in photocatalytic carbon dioxide reduction for applications in radio-carbonylation. Nat Commun 2023; 14:4451. [PMID: 37488106 PMCID: PMC10366225 DOI: 10.1038/s41467-023-40136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Harvesting sunlight to drive carbon dioxide (CO2) valorisation represents an ideal concept to support a sustainable and carbon-neutral economy. While the photochemical reduction of CO2 to carbon monoxide (CO) has emerged as a hot research topic, the full CO2-to-CO conversion remains an often-overlooked criterion that prevents a productive and direct valorisation of CO into high-value-added chemicals. Herein, we report a photocatalytic process that unlocks full and fast CO2-to-CO conversion (<10 min) and its straightforward valorisation into human health related field of radiochemistry with carbon isotopes. Guided by reaction-model-based kinetic simulations to rationalize reaction optimisations, this manifold opens new opportunities for the direct access to 11C- and 14C-labeled pharmaceuticals from their primary isotopic sources [11C]CO2 and [14C]CO2.
Collapse
Affiliation(s)
- Serena Monticelli
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Alex Talbot
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Philipp Gotico
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale Paris-Saclay (BioMaps), F-91401, Orsay, France
| | - Olivier Loreau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antonio Del Vecchio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Antoine Sallustrau
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
| | - Ally Aukauloo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell, F-91191, Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, F-91400,, Orsay, France
| | - Frédéric Taran
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France
| | - Zakaria Halime
- Université Paris-Saclay, CNRS, Institut de chimie moléculaire et des matériaux d'Orsay, F-91400,, Orsay, France.
| | - Davide Audisio
- Université Paris-Saclay, CEA, Service de Chimie Bio-organique et Marquage, DMTS, F-91191, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
Wang Y, Hou L, Shi J, Li Y, Wang Y, Zheng Y. How climate change affects electricity consumption in Chinese cities-a differential perspective based on municipal monthly panel data. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68577-68590. [PMID: 37126162 DOI: 10.1007/s11356-023-27287-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Addressing the impacts of climate change has become a global public crisis and challenge. China is characterized by a complex and diverse topography and vast territory, which makes it worthwhile to explore the differential impacts of climate change on urban electricity consumption in different zones and economic development conditions. This study examines the differential impact of climate factors on urban electricity consumption in China based on monthly panel data for 282 prefectures from 2011 to 2019 and projects the potential demand for future urban electricity consumption under different climate change scenarios. The results show that (1) temperature changes significantly alter urban electricity consumption, with cooling degree days (CDD) and heating degree days (HDD) contributing positively to urban electricity consumption in areas with different regional and economic development statuses, with elasticity coefficients of 0.1015-0.1525 and 0.0029-0.0077, respectively. (2) The temperature-electricity relationship curve shows an irregular U-shape. Each additional day of extreme weather above 30 °C and below -12 °C increases urban electricity consumption by 0.52% and 1.52% in the north and by 2.67% and 1.32% in the south. Poor cities are significantly more sensitive to extremely low temperatures than rich cities. (3) Suppose the impacts of climate degradation on urban electricity consumption are not halted. In that case, the possible Shared Socioeconomic Pathways 1-1.9 (SSP1-1.9), SSP1-2.6, and SSP2-4.5 will increase China's urban electricity consumption by 1621.96 billion kWh, 2960.87 billion kWh, and 6145.65 billion kWh, respectively, by 2090. Finally, this study makes some policy recommendations and expectations for follow-up studies.
Collapse
Affiliation(s)
- Yuanping Wang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Lingchun Hou
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Jilong Shi
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yuelong Li
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Ying Wang
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China
| | - Yingheng Zheng
- School of Civil Engineering and Architecture, Chongqing University of Science and Technology, Chongqing, 401331, China.
| |
Collapse
|
14
|
Su Y, Wang X, Gong C, Chen L, Cui B, Huang B, Wang X. Advances in spring leaf phenology are mainly triggered by elevated temperature along the rural-urban gradient in Beijing, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:777-791. [PMID: 36943496 DOI: 10.1007/s00484-023-02454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 05/25/2023]
Abstract
Urbanization-induced phenological changes have received considerable attention owing to their implications for determining urban ecosystem productivity and predicting the response of plants and ecosystem carbon cycles to future climate change. However, inconsistent rural-urban gradients in plant phenology remain, and phenological drivers other than temperature are poorly understood. In this study, we simultaneously observed the micro-climate and spring leaf phenology of seven woody plant species at 13 parks along a rural-urban gradient in Beijing, China. The minimum (Tmin) and mean (Tmean) air temperature and the minimum (VPDmin) and mean (VPDmean) vapor pressure deficit increased significantly along the rural-urban gradient, but the maximum air temperature (Tmax) and maximum vapor pressure deficit (VPDmax) did not. All observed leaf phenological phases for the seven species were significantly advanced along the rural-urban gradient by 0.20 to 1.02 days/km. Advances in the occurrence of leaf phenological events were significantly correlated with increases in Tmean (accounting for 57-59% variation), Tmin (21-26%), VPDmin (12-16%), and VPDmean (3-5%), but not with changes in Tmax or VPDmax. Advances in spring leaf phenology along the rural-urban gradient differed between non-native species and native species and between shrubs and trees. The reason may be mainly that the sensitivities of spring leaf phenology to micro-climate differ with species origin and growth form. This study highlights that urbanization-induced increases in Tmean and Tmin are the major contributors to advances in spring leaf phenology along the rural-urban gradient, exerting less influence on native species than on non-native species.
Collapse
Affiliation(s)
- Yuebo Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Xuming Wang
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - Cheng Gong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Chen
- Torch High Technology Industry Development Center, Ministry of Science & Technology, Beijing, 100045, China
| | - Bowen Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
15
|
Jiang S. Compound Heat Vulnerability in the Record-Breaking Hot Summer of 2022 over the Yangtze River Delta Region. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20085539. [PMID: 37107821 PMCID: PMC10138504 DOI: 10.3390/ijerph20085539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/19/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Hourly meteorological data and multisource socioeconomic data collected in the Yangtze River Delta (YRD) region were used to analyze its heat vulnerability during the record-breaking hot summer of 2022 in both daytime and nighttime. Over forty consecutive days, daytime temperatures exceeded 40 °C, and 58.4% of the YRD region experienced 400 h with temperatures hotter than 26 °C during the nighttime. Only 7.5% of the YRD region was under low heat risk during both daytime and nighttime. Strong heat risk combined with strong heat sensitivity and weak heat adaptability led to strong heat vulnerability during both daytime and nighttime in most areas (72.6%). Inhomogeneity in heat sensitivity and heat adaptability further aggravated the heterogeneity of heat vulnerability, leading to compound heat vulnerability in most regions. The ratios of heat-vulnerable areas generated by multiple causes were 67.7% and 79.3% during daytime and nighttime, respectively. For Zhejiang and Shanghai, projects designed to decrease the urban heat island effect and lower the local heat sensitivity are most important. For Jiangsu and Anhui, measures aiming to decrease the urban heat island effect and improve heat adaptability are most important. It is urgent to take efficient measures to address heat vulnerability during both daytime and nighttime.
Collapse
Affiliation(s)
- Shaojing Jiang
- Department of Geography and Spatial Information Techniques, Ningbo University, Ningbo 315211, China;
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
16
|
The Necessity of Maintaining the Resilience of Peri-Urban Forests to Secure Environmental and Ecological Balance: A Case Study of Forest Stands Located on the Romanian Sector of the Pannonian Plain. DIVERSITY 2023. [DOI: 10.3390/d15030380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Climate change’s negative effects, such as rising global temperatures and the disruption of global ecological ecosystems as a direct effect of rising carbon emissions in the atmosphere, are a significant concern for human health, communities, and ecosystems. The condition and presence of forest ecosystems, especially those in peri-urban areas, play an essential role in mitigating the negative effects of climate change on society. They provide direct benefits to the residents of large cities and their surrounding areas, and they must be managed sustainably to protect all their component ecosystems. This research was carried out in the forests of Lunca Muresului Natural Park and Bazos Arboretum, located in the Romanian sector of the Pannonian Plain, near urban agglomerations. The results showed high variability in the stands. Using the height-to-diameter ratio indicator concerning dbh and species, a strong Pearson correlation was registered (between 0.45 and 0.82). These values indicate the high stability of these stands, providing positive human–nature interactions such as recreational or outdoor activities (and a complementary yet indirect use value through attractive landscape views). Protecting these ecosystems offers a so-called insurance policy for the next generations from a climate change standpoint.
Collapse
|
17
|
Li Y, Chen M, Guang S, Zhang Y, Dong L, Hu G, Wu N. "Ladetes"-A novel device to test deformation behaviors of hydrate-bearing sediments. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:125004. [PMID: 36586902 DOI: 10.1063/5.0120205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
Natural gas hydrate (NGH) exploitation is severely restricted by geotechnical problems. Deformation behaviors of the hydrate-bearing strata (HBS) control the occurrence and evolution of geotechnical problems during extracting natural gas from HBS. In this paper, a novel approach named Ladetes is introduced to evaluate the lateral deformation behaviors of the near-wellbore and fracture-filling regions of the HBS. The pressuremeter test and the flat dilatometer test are designed to simulate the inner boundaries of an NGH-producing well and an artificial stimulation fracture for the first time. The device can realize the in situ hydrate formation prior to the experiment and axial loading application throughout the experiment. Both the strain control mode and the stress control mode can be achieved to estimate the deformation characteristics of HBS under different downhole conditions. Prime experiments proved their adaptability and reliability. The Ladetes provides an effective and alternative way of obtaining geotechnical parameters for HBS.
Collapse
Affiliation(s)
- Yanlong Li
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Mingtao Chen
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Shixiong Guang
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Yajuan Zhang
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Lin Dong
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Gaowei Hu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| | - Nengyou Wu
- Key Laboratory of Gas Hydrate, Ministry of Natural Resources, Qingdao Institute of Marine Geology, Qingdao 266237, China
| |
Collapse
|