1
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2024:10.1038/s41575-024-00996-z. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
2
|
Li H, Chen J, You W, Xu Y, Ye Y, Zhao H, Li J, Zhang H. Developmental characteristics of cutaneous telocytes in late embryos of the silky fowl. Eur J Histochem 2024; 68. [PMID: 39410819 DOI: 10.4081/ejh.2024.4089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/23/2024] [Indexed: 11/06/2024] Open
Abstract
Telocytes (TCs) have been identified in various animals. However, information on TCs in the embryos is still very limited. In this work, the developing skin of the silky fowl was sampled for TCs identification by histology, immunohistochemistry and transmission electron microscopy. In addition, morphological parameters of cutaneous TCs and their location relationships were measured using a morphometry software - ImageJ (FiJi). At the 12th, 16th and 20th day of incubation, in the embryonic skin, telocyte-like cells (TC-L) were observed in the dermis. TCs were PDGFRα+ at the 12th, 16th and 20th day of incubation, but showed CD34+ only at 20th day of incubation in the embryonic dermis. Ultrastructurally, TCs were observed in the dermis at all late embryonic developmental stages. TCs established the homocellular contacts/plasmalemmal adhesion with each other. TCs established heterocellular contacts with melanocytes at 20th day of incubation in the dermis. In addition, the intracellular microvesicles were present in the cytoplasm of TCs. The extracellular microvesicles/exosomes were in close proximity to the TCs. The results confirmed that the locations, immunophenotypes, structural characteristics and relationships of TCs, and revealed the developmental characteristics of cutaneous TCs in late silky fowl embryos.
Collapse
Affiliation(s)
- Hao Li
- College of Life Science and Engineering, Foshan University, Foshan; Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou.
| | - Junliang Chen
- College of Life Science and Engineering, Foshan University, Foshan.
| | - Wenjun You
- College of Life Science and Engineering, Foshan University, Foshan.
| | - Yizhen Xu
- College of Life Science and Engineering, Foshan University, Foshan.
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan.
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan.
| | - Junxing Li
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou.
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang.
| |
Collapse
|
3
|
Mou X, Leeman SM, Roye Y, Miller C, Musah S. Fenestrated Endothelial Cells across Organs: Insights into Kidney Function and Disease. Int J Mol Sci 2024; 25:9107. [PMID: 39201792 PMCID: PMC11354928 DOI: 10.3390/ijms25169107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/07/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
In the human body, the vascular system plays an indispensable role in maintaining homeostasis by supplying oxygen and nutrients to cells and organs and facilitating the removal of metabolic waste and toxins. Blood vessels-the key constituents of the vascular system-are composed of a layer of endothelial cells on their luminal surface. In most organs, tightly packed endothelial cells serve as a barrier separating blood and lymph from surrounding tissues. Intriguingly, endothelial cells in some tissues and organs (e.g., choroid plexus, liver sinusoids, small intestines, and kidney glomerulus) form transcellular pores called fenestrations that facilitate molecular and ionic transport across the vasculature and mediate immune responses through leukocyte transmigration. However, the development and unique functions of endothelial cell fenestrations across organs are yet to be fully uncovered. This review article provides an overview of fenestrated endothelial cells in multiple organs. We describe their development and organ-specific roles, with expanded discussions on their contributions to glomerular health and disease. We extend these discussions to highlight the dynamic changes in endothelial cell fenestrations in diabetic nephropathy, focal segmental glomerulosclerosis, Alport syndrome, and preeclampsia, and how these unique cellular features could be targeted for therapeutic development. Finally, we discuss emerging technologies for in vitro modeling of biological systems, and their relevance for advancing the current understanding of endothelial cell fenestrations in health and disease.
Collapse
Affiliation(s)
- Xingrui Mou
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Sophia M. Leeman
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Department of Computer Science, Duke University, Durham, NC 27710, USA
| | - Yasmin Roye
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
| | - Carmen Miller
- Department of Biology, Duke University, Durham, NC 27710, USA
| | - Samira Musah
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC 27710, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC 27710, USA
- Division of Nephrology, Department of Medicine, School of Medicine, Duke University, Durham, NC 27710, USA
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
- Faculty of the Developmental and Stem Cell Biology Program, Duke Regeneration Center, Duke MEDx Initiative, Duke University, Durham, NC 27710, USA
| |
Collapse
|
4
|
Ribatti D. Microbiota and angiogenesis in the intestinal vasculature. Tissue Cell 2024; 89:102466. [PMID: 38986346 DOI: 10.1016/j.tice.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024]
Abstract
The gut microbiota is responsible for several metabolic functions, producing various metabolites with numerous roles for the host. The gut microbiota plays a key role in constructing the microvascular network in the intestinal villus, depending on the Paneth cells, strategically positioned to coordinate the development of both the microbiota and the microvasculature. The gut microbiota secretes several molecules and chemokines involved in the induction of the secretion of pro-angiogenic factors.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
5
|
Harnik Y, Yakubovsky O, Hoefflin R, Novoselsky R, Bahar Halpern K, Barkai T, Korem Kohanim Y, Egozi A, Golani O, Addadi Y, Kedmi M, Keidar Haran T, Levin Y, Savidor A, Keren-Shaul H, Mayer C, Pencovich N, Pery R, Shouval DS, Tirosh I, Nachmany I, Itzkovitz S. A spatial expression atlas of the adult human proximal small intestine. Nature 2024; 632:1101-1109. [PMID: 39112711 DOI: 10.1038/s41586-024-07793-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
The mouse small intestine shows profound variability in gene expression along the crypt-villus axis1,2. Whether similar spatial heterogeneity exists in the adult human gut remains unclear. Here we use spatial transcriptomics, spatial proteomics and single-molecule fluorescence in situ hybridization to reconstruct a comprehensive spatial expression atlas of the adult human proximal small intestine. We describe zonated expression and cell type representation for epithelial, mesenchymal and immune cell types. We find that migrating enterocytes switch from lipid droplet assembly and iron uptake at the villus bottom to chylomicron biosynthesis and iron release at the tip. Villus tip cells are pro-immunogenic, recruiting γδ T cells and macrophages to the tip, in contrast to their immunosuppressive roles in mouse. We also show that the human small intestine contains abundant serrated and branched villi that are enriched at the tops of circular folds. Our study presents a detailed resource for understanding the biology of the adult human small intestine.
Collapse
Affiliation(s)
- Yotam Harnik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Oran Yakubovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roy Novoselsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Keren Bahar Halpern
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Barkai
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Sheba Medical Center, Ramat Gan, Israel
| | - Yael Korem Kohanim
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Adi Egozi
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Yoseph Addadi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Keidar Haran
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Yishai Levin
- The De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Savidor
- The De Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Keren-Shaul
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Chen Mayer
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Pathology, Sheba Medical Center, Ramat Gan, Israel
| | - Niv Pencovich
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ron Pery
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S Shouval
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ido Nachmany
- Department of General Surgery and Transplantation, Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
6
|
Wang L, He L, Yi W, Wang M, Xu F, Liu H, Nie J, Pan YH, Dang S, Zhang W. ADAMTS18-fibronectin interaction regulates the morphology of liver sinusoidal endothelial cells. iScience 2024; 27:110273. [PMID: 39040056 PMCID: PMC11261151 DOI: 10.1016/j.isci.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) have a unique morphological structure known as "fenestra" that plays a crucial role in liver substance exchange and homeostasis maintenance. In this study, we demonstrate that ADAMTS18 protease is primarily secreted by fetal liver endothelial cells. ADAMTS18 deficiency leads to enlarged fenestrae and increased porosity of LSECs, microthrombus formation in liver vessels, and an imbalance of liver oxidative stress. These defects worsen carbon tetrachloride (CCl4)-induced liver fibrosis and diethylnitrosamine (DEN)/high-fat-induced hepatocellular carcinoma (HCC) in adult Adamts18-deficient mice. Mechanically, ADAMTS18 functions as a modifier of fibronectin (FN) to regulate the morphological acquisition of LSECs via the vascular endothelial growth factor A (VEGFA) signaling pathways. Collectively, a mechanism is proposed for LSEC morphogenesis and liver homeostasis maintenance via ADAMTS18-FN-VEGFA niches.
Collapse
Affiliation(s)
- Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li He
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Weijia Yi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
7
|
Wang Z, Guo Z, Liu L, Ren D, Zu H, Li B, Liu F. Potential Probiotic Weizmannia coagulans WC10 Improved Antibiotic-Associated Diarrhea in Mice by Regulating the Gut Microbiota and Metabolic Homeostasis. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10308-1. [PMID: 38900235 DOI: 10.1007/s12602-024-10308-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Antibiotic-associated diarrhea (AAD) is a common side effect of long-term and heavy antibiotic therapy. Weizmannia coagulans (W. coagulans) is an ideal probiotic because of its high viability, stability, and numerous health benefits to the host. In this study, the strains were first screened for W. coagulans WC10 (WC10) with a high combined ability based on their biological properties of gastrointestinal tolerance, adhesion, and short-chain fatty acid production ability. The effect of WC10 on mice with AAD was further evaluated. The results showed that WC10 was effective in improving the symptoms of AAD, effectively restoring antibiotic-induced weight loss, and reducing diarrhea status score and fecal water content. In addition, WC10 decreased the expression of pro-inflammatory cytokines and increased the expression of anti-inflammatory cytokines, alleviated intestinal tissue damage and inflammation, and improved intestinal epithelial barrier function by decreasing serum levels of enterotoxin, DAO, and D-lactic acid, and by increasing the expression of the intestinal mucosal immune factors sIgA and occludin. Importantly, the composition and function of the gut microbiota gradually recovered after WC10 treatment, increasing the number of SCFAs-producing Bifidobacterium and Roseburia. Subsequently, the short-chain fatty acid (SCFA) content was examined and WC10 significantly increased acetate, propionate, and butyrate production. Additionally, metabolomic analysis also showed that WC10 reversed the antibiotic interference with major metabolic pathways. These findings provide a solid scientific basis for the future application of W. coagulans WC10 in the treatment of AAD.
Collapse
Affiliation(s)
- Zengbo Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Zengtao Guo
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Food College, Northeast Agricultural University, Harbin, 150030, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hang Zu
- Heilongjiang Ubert Dairy Co., Heilongjiang, China
| | - Bailiang Li
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
- Food College, Northeast Agricultural University, Harbin, 150030, China.
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
- Food College, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
8
|
Salcedo-Tacuma D, Howells G, Mchose C, Gutierrez-Diaz A, Schupp J, Smith DM. ProEnd: A Comprehensive Database for Identifying HbYX Motif-Containing Proteins Across the Tree of Life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.08.598080. [PMID: 38895466 PMCID: PMC11185799 DOI: 10.1101/2024.06.08.598080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The proteasome plays a crucial role in cellular homeostasis by degrading misfolded, damaged, or unnecessary proteins. Understanding the regulatory mechanisms of proteasome activity is vital, particularly the interaction with activators containing the hydrophobic-tyrosine-any amino acid (HbYX) motif. Here, we present ProEnd, a comprehensive database designed to identify and catalog HbYX motif-containing proteins across the tree of life. Using a simple bioinformatics pipeline, we analyzed approximately 73 million proteins from 22,000 reference proteomes in the UniProt/SwissProt database. Our findings reveal the widespread presence of HbYX motifs in diverse organisms, highlighting their evolutionary conservation and functional significance. Notably, we observed an interesting prevalence of these motifs in viral proteomes, suggesting strategic interactions with the host proteasome. As validation two novel HbYX proteins found in this database were tested and found to directly interact with the proteasome. ProEnd's extensive dataset and user-friendly interface enable researchers to explore the potential proteasomal regulator landscape, generating new hypotheses to advance proteasome biology. This resource is set to facilitate the discovery of novel therapeutic targets, enhancing our approach to treating diseases such as neurodegenerative disorders and cancer. Link: http://proend.org/.
Collapse
Affiliation(s)
- David Salcedo-Tacuma
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Giovanni Howells
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Coleman Mchose
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - Aimer Gutierrez-Diaz
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala 75007, Sweden
| | - Jane Schupp
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
| | - David M. Smith
- Department of Biochemistry and Molecular Medicine, West Virginia University School of Medicine, 4 Medical Center Dr., Morgantown, WV USA
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
9
|
Sanketi BD, Mantri M, Huang L, Tavallaei MA, Hu S, Wang MFZ, De Vlaminck I, Kurpios NA. Villus myofibroblasts are developmental and adult progenitors of mammalian gut lymphatic musculature. Dev Cell 2024; 59:1159-1174.e5. [PMID: 38537630 PMCID: PMC11078612 DOI: 10.1016/j.devcel.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/26/2024] [Accepted: 03/01/2024] [Indexed: 05/09/2024]
Abstract
Inside the finger-like intestinal projections called villi, strands of smooth muscle cells contract to propel absorbed dietary fats through the adjacent lymphatic capillary, the lacteal, sending fats into the systemic blood circulation for energy production. Despite this vital function, mechanisms of formation, assembly alongside lacteals, and maintenance of villus smooth muscle are unknown. By combining single-cell RNA sequencing and quantitative lineage tracing of the mouse intestine, we identified a local hierarchy of subepithelial fibroblast progenitors that differentiate into mature smooth muscle fibers via intermediate contractile myofibroblasts. This continuum persists as the major mechanism for villus musculature renewal throughout adult life. The NOTCH3-DLL4 signaling axis governs the assembly of smooth muscle fibers alongside their adjacent lacteals and is required for fat absorption. Our studies identify the ontogeny and maintenance of a poorly defined class of intestinal smooth muscle, with implications for accelerated repair and recovery of digestive function following injury.
Collapse
Affiliation(s)
- Bhargav D Sanketi
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Liqing Huang
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Mohammad A Tavallaei
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Shing Hu
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Michael F Z Wang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14850, USA.
| | - Natasza A Kurpios
- Department of Molecular Medicine, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Shoshkes-Carmel M. Telocytes in the Luminal GI Tract. Cell Mol Gastroenterol Hepatol 2024; 17:697-701. [PMID: 38342300 PMCID: PMC10958115 DOI: 10.1016/j.jcmgh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/13/2024]
Abstract
Telocytes are unique mesenchymal cells characterized by multiple remarkably long cytoplasmic extensions that extend hundreds of micron away from the cell body. Through these extensions, telocytes establish a 3-dimensional network by connecting with other telocytes and various cell types within the tissue. In the intestine, telocytes have emerged as an essential component of the stem cell niche, providing Wnt proteins that are critical for the proliferation of stem and progenitor cells. However, the analysis of single-cell RNA sequencing has revealed other stromal populations and mechanisms for niche organization, raising questions about the role of telocytes as a component of the stem cell niche. This review explores the current state-of-the-art, existing controversies, and potential future directions related to telocytes in the luminal gastrointestinal tract.
Collapse
Affiliation(s)
- Michal Shoshkes-Carmel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| |
Collapse
|
11
|
Bernier-Latmani J, González-Loyola A, Petrova TV. Mechanisms and functions of intestinal vascular specialization. J Exp Med 2024; 221:e20222008. [PMID: 38051275 PMCID: PMC10697212 DOI: 10.1084/jem.20222008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
The intestinal vasculature has been studied for the last 100 years, and its essential role in absorbing and distributing ingested nutrients is well known. Recently, fascinating new insights into the organization, molecular mechanisms, and functions of intestinal vessels have emerged. These include maintenance of intestinal epithelial cell function, coping with microbiota-induced inflammatory pressure, recruiting gut-specific immune cells, and crosstalk with other organs. Intestinal function is also regulated at the systemic and cellular levels, such that the postprandial hyperemic response can direct up to 30% of systemic blood to gut vessels, while micron-sized endothelial cell fenestrations are necessary for nutrient uptake. In this review, we will highlight past discoveries made about intestinal vasculature in the context of new findings of molecular mechanisms underpinning gut function. Such comprehensive understanding of the system will pave the way to breakthroughs in nutrient uptake optimization, drug delivery efficiency, and treatment of human diseases.
Collapse
Affiliation(s)
- Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | | | - Tatiana V. Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
12
|
Rosa I, Nardini P, Fioretto BS, Guasti D, Romano E, Sgambati E, Marini M, Manetti M. Immunohistochemical and ultrastructural identification of telocytes in the lamina propria of human vaginal mucosa. Acta Histochem 2023; 125:152094. [PMID: 37757515 DOI: 10.1016/j.acthis.2023.152094] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023]
Abstract
Since their relatively recent discovery, telocytes (TCs) have been described as peculiar cells strategically positioned in the stromal tissue component of multiple organ systems of the mammalian body including female reproductive organs (i.e., ovary, uterine tube, and uterus). Nevertheless, current knowledge of TCs in the vagina is very limited. The present study was therefore undertaken to investigate the existence and characteristics of TCs in the stromal tissue of human vaginal mucosa by means of immunohistochemistry, immunofluorescence confocal microscopy, and transmission electron microscopy. In the vaginal lamina propria, TCs were first identified by CD34 immunohistochemistry that revealed the presence of CD34+ stromal cells arranged in networks, especially around blood vessels. Double immunofluorescence confocal microscopy allowed to precisely distinguish the perivascular networks of CD34+ stromal cells lacking CD31 immunoreactivity from adjacent CD31+ microvessels. All the perivascular networks of TCs/CD34+ stromal cells situated in the vaginal lamina propria coexpressed platelet-derived growth factor receptor α, which strengthened their identification as TCs. Instead, vaginal mucosal TCs were immunophenotypically negative for c-kit/CD117. The ultrastructural examination confirmed the presence of TCs, namely stromal cells with characteristic cytoplasmic processes (i.e., telopodes) forming labyrinthine networks around blood vessels and releasing extracellular vesicles. Together, our morphological findings provide the first comprehensive demonstration that TCs reside in the human vaginal lamina propria, thus paving the way for further investigation of their putative functions in vaginal mucosal homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Irene Rosa
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Patrizia Nardini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Bianca Saveria Fioretto
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Daniele Guasti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eloisa Romano
- Section of Internal Medicine, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Eleonora Sgambati
- Department of Biosciences and Territory, University of Molise, Contrada Fonte Lappone, 86090 Pesche, Isernia, Italy
| | - Mirca Marini
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy
| | - Mirko Manetti
- Section of Anatomy and Histology, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy; Imaging Platform, Department of Experimental and Clinical Medicine, University of Florence, Largo Brambilla 3, 50134 Florence, Italy.
| |
Collapse
|
13
|
Brügger MD, Basler K. The diverse nature of intestinal fibroblasts in development, homeostasis, and disease. Trends Cell Biol 2023; 33:834-849. [PMID: 37080817 DOI: 10.1016/j.tcb.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/22/2023]
Abstract
Only in recent years have we begun to appreciate the involvement of fibroblasts in intestinal development, tissue homeostasis, and disease. These insights followed the advent of single-cell transcriptomics that allowed researchers to explore the heterogeneity of intestinal fibroblasts in unprecedented detail. Since researchers often defined cell types and their associated function based on the biological process they studied, there are a plethora of partially overlapping markers for different intestinal fibroblast populations. This ambiguity complicates putting different research findings into context. Here, we provide a census on the function and identity of intestinal fibroblasts in mouse and human. We propose a simplified framework consisting of three colonic and four small intestinal fibroblast populations to aid navigating the diversity of intestinal fibroblasts.
Collapse
Affiliation(s)
- Michael David Brügger
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
14
|
Wiggins BG, Wang YF, Burke A, Grunberg N, Vlachaki Walker JM, Dore M, Chahrour C, Pennycook BR, Sanchez-Garrido J, Vernia S, Barr AR, Frankel G, Birdsey GM, Randi AM, Schiering C. Endothelial sensing of AHR ligands regulates intestinal homeostasis. Nature 2023; 621:821-829. [PMID: 37586410 PMCID: PMC10533400 DOI: 10.1038/s41586-023-06508-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.
Collapse
Affiliation(s)
- Benjamin G Wiggins
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
| | - Alice Burke
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Nil Grunberg
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Julia M Vlachaki Walker
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences, London, UK
| | | | - Betheney R Pennycook
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Santiago Vernia
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Alexis R Barr
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, London, UK
| | - Graeme M Birdsey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Anna M Randi
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Chris Schiering
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
- MRC London Institute of Medical Sciences, London, UK.
| |
Collapse
|
15
|
Zarkada G, Chen X, Zhou X, Lange M, Zeng L, Lv W, Zhang X, Li Y, Zhou W, Liu K, Chen D, Ricard N, Liao JK, Kim YB, Benedito R, Claesson-Welsh L, Alitalo K, Simons M, Ju R, Li X, Eichmann A, Zhang F. Chylomicrons Regulate Lacteal Permeability and Intestinal Lipid Absorption. Circ Res 2023; 133:333-349. [PMID: 37462027 PMCID: PMC10530007 DOI: 10.1161/circresaha.123.322607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood. METHODS We used various genetically engineered mouse models in combination with cellular, biochemical, and molecular biology approaches to elucidate the signaling pathways regulating junction morphology and function in lymphatic capillaries. RESULTS By studying the permeability of intestinal lacteal capillaries to lipoprotein particles known as chylomicrons, we show that ROCK (Rho-associated kinase)-dependent cytoskeletal contractility is a fundamental mechanism of LEC permeability regulation. We show that chylomicron-derived lipids trigger neonatal lacteal junction opening via ROCK-dependent contraction of junction-anchored stress fibers. LEC-specific ROCK deletion abolished junction opening and plasma lipid uptake. Chylomicrons additionally inhibited VEGF (vascular endothelial growth factor)-A signaling. We show that VEGF-A antagonizes LEC junction opening via VEGFR (VEGF receptor) 2 and VEGFR3-dependent PI3K (phosphatidylinositol 3-kinase)/AKT (protein kinase B) activation of the small GTPase RAC1 (Rac family small GTPase 1), thereby restricting RhoA (Ras homolog family member A)/ROCK-mediated cytoskeleton contraction. CONCLUSIONS Our results reveal that antagonistic inputs into ROCK-dependent cytoskeleton contractions regulate the interconversion of lymphatic junctions in the intestine and in other tissues, providing a tunable mechanism to control the lymphatic barrier.
Collapse
Affiliation(s)
- Georgia Zarkada
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Xun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuetong Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Martin Lange
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Lei Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Wenyu Lv
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Yunhua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Weibin Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Keli Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Dongying Chen
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Nicolas Ricard
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - James K. Liao
- University of Arizona, College of Medicine, Banner University Medical Center, Tucson, AZ, 85724, USA
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts
| | - Rui Benedito
- Molecular Genetics of Angiogenesis Group, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid E28029, Spain
| | - Lena Claesson-Welsh
- Uppsala University, Rudbeck, SciLifeLab and Beijer Laboratories, Department of Immunology, Genetics and Pathology, 751 85 Uppsala, Sweden
| | - Kari Alitalo
- Wihuri Research Institute and Translational Cancer Medicine Program, Biomedicum, University of Helsinki, Finland
| | - Michael Simons
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Anne Eichmann
- Cardiovascular Research Center and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510-3221, USA
- INSERM U970, Paris Cardiovascular Research Center, 75015 Paris, France
| | - Feng Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
16
|
Größbacher G, Bartolf-Kopp M, Gergely C, Bernal PN, Florczak S, de Ruijter M, Rodriguez NG, Groll J, Malda J, Jungst T, Levato R. Volumetric Printing Across Melt Electrowritten Scaffolds Fabricates Multi-Material Living Constructs with Tunable Architecture and Mechanics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300756. [PMID: 37099802 DOI: 10.1002/adma.202300756] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Major challenges in biofabrication revolve around capturing the complex, hierarchical composition of native tissues. However, individual 3D printing techniques have limited capacity to produce composite biomaterials with multi-scale resolution. Volumetric bioprinting recently emerged as a paradigm-shift in biofabrication. This ultrafast, light-based technique sculpts cell-laden hydrogel bioresins into 3D structures in a layerless fashion, providing enhanced design freedom over conventional bioprinting. However, it yields prints with low mechanical stability, since soft, cell-friendly hydrogels are used. Herein, the possibility to converge volumetric bioprinting with melt electrowriting, which excels at patterning microfibers, is shown for the fabrication of tubular hydrogel-based composites with enhanced mechanical behavior. Despite including non-transparent melt electrowritten scaffolds in the volumetric printing process, high-resolution bioprinted structures are successfully achieved. Tensile, burst, and bending mechanical properties of printed tubes are tuned altering the electrowritten mesh design, resulting in complex, multi-material tubular constructs with customizable, anisotropic geometries that better mimic intricate biological tubular structures. As a proof-of-concept, engineered tubular structures are obtained by building trilayered cell-laden vessels, and features (valves, branches, fenestrations) that can be rapidly printed using this hybrid approach. This multi-technology convergence offers a new toolbox for manufacturing hierarchical and mechanically tunable multi-material living structures.
Collapse
Affiliation(s)
- Gabriel Größbacher
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Michael Bartolf-Kopp
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Csaba Gergely
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Paulina Núñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Mylène de Ruijter
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Núria Ginés Rodriguez
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jos Malda
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| | - Tomasz Jungst
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), KeyLab Polymers for Medicine of the Bavarian Polymer Institute (BPI), University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, 3584 CX, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, 3584 CT, The Netherlands
| |
Collapse
|
17
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
18
|
Secreted protease ADAMTS18 in development and disease. Gene 2023; 858:147169. [PMID: 36632911 DOI: 10.1016/j.gene.2023.147169] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/07/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
ADAMTS18 was identified in 2002 as a member of the ADAMTS family of 19 secreted Zinc-dependent metalloproteinases. Prior to 2016, ADAMTS18 was known as a candidate gene associated with a wide range of pathologies, particularly various malignancies and eye disorders. However, functions and substrates of ADAMTS18 in normal conditions were unknown. Since 2016, with the development of Adamts18 knockout models, many studies had been conducted on the Adamts18 gene in vivo. These studies revealed that ADAMTS18 is essential for the morphology and organogenesis of several epithelial organs (e.g., lung, kidney, breast, salivary glands, and lacrimal glands), vascular and neuronal systems, adipose tissue, and reproductive tracts. In this review, we describe the current understanding of ADAMTS18 and its substrates and regulators. Limitations in translating new findings on ADAMTS18 to clinical practice are also discussed.
Collapse
|
19
|
Li S, Liu P, Feng X, Du M, Zhang Y, Wang Y, Wang J. Mechanism of Tao Hong Decoction in the treatment of atherosclerosis based on network pharmacology and experimental validation. Front Cardiovasc Med 2023; 10:1111475. [PMID: 36776258 PMCID: PMC9909180 DOI: 10.3389/fcvm.2023.1111475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 01/27/2023] Open
Abstract
Background Atherosclerosis (AS) has long been recognized as a cardiovascular disease and stroke risk factor. A well-known traditional Chinese medicine prescription, Tao Hong decoction (THD), has been proven effective in treating AS, but its mechanism of action is still unclear. Objective To assess the effects, explore THD's primary mechanism for treating AS, and provide a basis for rational interpretation of its prescription compatibility. Methods Based on network pharmacology, we evaluated the mechanism of THD on AS by data analysis, target prediction, the construction of PPI networks, and GO and KEGG analysis. AutoDockTools software to conduct Molecular docking. Then UPLC-Q-TOF-MS was used to identify significant constituents of THD. Furthermore, an AS mice model was constructed and intervened with THD. Immunofluorescence, RT-qPCR, and Western blot were used to verify the critical targets in animal experiments. Results The network pharmacology results indicate that eight core targets and seven core active ingredients play an essential role in this process. The GO and KEGG analysis results suggested that the mechanism is mainly involved in Fluid shear stress and atherosclerosis and Lipid and atherosclerosis. The molecular docking results indicate a generally strong affinity. The animal experiment showed that THD reduced plaque area, increased plaque stability, and decreased the levels of inflammatory cytokines (NF-κB, IL-1α, TNF-α, IL-6, IL-18, IL-1β) in high-fat diet -induced ApoE-/-mice. Decreased levels of PTGS2, HIF-1α, VEGFA, VEGFC, FLT-4, and the phosphorylation of PI3K, AKT, and p38 were detected in the THD-treated group. Conclusion THD plays a vital role in treating AS with multiple targets and pathways. Angiogenesis regulation, oxidative stress regulation, and immunity regulation consist of the crucial regulation cores in the mechanism. This study identified essential genes and pathways associated with the prognosis and pathogenesis of AS from new insights, demonstrating a feasible method for researching THD's chemical basis and pharmacology.
Collapse
|
20
|
Stromal regulation of the intestinal barrier. Mucosal Immunol 2023; 16:221-231. [PMID: 36708806 DOI: 10.1016/j.mucimm.2023.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/27/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The intestinal barrier is a complex structure that allows the absorption of nutrients while ensuring protection against intestinal pathogens and balanced immunity. The development and maintenance of a functional intestinal barrier is a multifactorial process that is only partially understood. Here we review novel findings on the emerging role of mesenchymal cells in this process using insights gained from lineage tracing approaches, Cre-based gene deletion, and single-cell transcriptomics. The current evidence points toward a key organizer role for distinct mesenchymal lineages in intestinal development and homeostasis, regulating both epithelial and immune components of the intestinal barrier. We further discuss recent findings on functional mesenchymal heterogeneity and implications for intestinal regeneration and inflammatory intestinal pathologies.
Collapse
|
21
|
Biswas L, Chen J, De Angelis J, Singh A, Owen-Woods C, Ding Z, Pujol JM, Kumar N, Zeng F, Ramasamy SK, Kusumbe AP. Lymphatic vessels in bone support regeneration after injury. Cell 2023; 186:382-397.e24. [PMID: 36669473 DOI: 10.1016/j.cell.2022.12.031] [Citation(s) in RCA: 76] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 10/05/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023]
Abstract
Blood and lymphatic vessels form a versatile transport network and provide inductive signals to regulate tissue-specific functions. Blood vessels in bone regulate osteogenesis and hematopoiesis, but current dogma suggests that bone lacks lymphatic vessels. Here, by combining high-resolution light-sheet imaging and cell-specific mouse genetics, we demonstrate presence of lymphatic vessels in mouse and human bones. We find that lymphatic vessels in bone expand during genotoxic stress. VEGF-C/VEGFR-3 signaling and genotoxic stress-induced IL6 drive lymphangiogenesis in bones. During lymphangiogenesis, secretion of CXCL12 from proliferating lymphatic endothelial cells is critical for hematopoietic and bone regeneration. Moreover, lymphangiocrine CXCL12 triggers expansion of mature Myh11+ CXCR4+ pericytes, which differentiate into bone cells and contribute to bone and hematopoietic regeneration. In aged animals, such expansion of lymphatic vessels and Myh11-positive cells in response to genotoxic stress is impaired. These data suggest lymphangiogenesis as a therapeutic avenue to stimulate hematopoietic and bone regeneration.
Collapse
Affiliation(s)
- Lincoln Biswas
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Junyu Chen
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jessica De Angelis
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Amit Singh
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK; Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, Heidelberg D-69120, Germany
| | - Charlotte Owen-Woods
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Zhangfan Ding
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Joan Mane Pujol
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Naveen Kumar
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK
| | - Fanxin Zeng
- Department of Clinic Medical Center, Dazhou Central Hospital, Dazhou, China
| | - Saravana K Ramasamy
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, UK
| | - Anjali P Kusumbe
- Tissue and Tumor Microenvironments Group, MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, Medical Sciences Division, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
22
|
Sun H, Tan J, Chen H, Wu N, Su B. Immune niches orchestrated by intestinal mesenchymal stromal cells lining the crypt-villus. Front Immunol 2022; 13:1057932. [PMID: 36405734 PMCID: PMC9669707 DOI: 10.3389/fimmu.2022.1057932] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/20/2022] [Indexed: 07/22/2023] Open
Abstract
The mammalian intestine is an organ that can be spatially defined by two axes: longitudinal and vertical. Such anatomical structure ensures the maintenance of a relatively immuno-quiescent and proliferation-promoting crypt for intestinal stem cell differentiation while actively warding off the invading intestinal microbes at the villus tip during digestion and nutrient absorption. Such behavior is achieved by the fine coordination among intestinal epithelial cells, intestinal mesenchymal stromal cells and tissue-resident immune cells like myeloid cells and lymphocytes. Among these cell types resided in the colon, intestinal mesenchymal stromal cells are considered to be the essential link between epithelium, vasculature, neuronal system, and hematopoietic compartment. Recent advancement of single cell and spatial transcriptomics has enabled us to characterize the spatial and functional heterogeneity of intestinal mesenchymal stromal cells. These studies reveal distinctive intestinal mesenchymal stromal cells localized in different regions of the intestine with diverse functions including but not limited to providing cytokines and growth factors essential for different immune cells and epithelial cells which predict niche formation for immune function from the villus tip to the crypt bottom. In this review, we aim to provide an overall view of the heterogeneity of intestinal mesenchymal stromal cells, the spatial distribution of these cells along with their interaction with immune cells and the potential regulatory cytokine profile of these cell types. Summarization of such information may enrich our current understanding of the immuno-regulatory functions of the newly identified mesenchymal stromal cell subsets beyond their epithelial regulatory function.
Collapse
Affiliation(s)
- Hongxiang Sun
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianmei Tan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongqian Chen
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ningbo Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, and the Ministry of Education Key Laboratory of Cell Death and Differentiation, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Center for Immune-Related Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Jiao Tong University School of Medicine–Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Key Laboratory of Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
23
|
Ma J, Chen S, Li Y, Wu X, Song Z. Arbutin improves gut development and serum lipids via Lactobacillus intestinalis. Front Nutr 2022; 9:948573. [PMID: 36159503 PMCID: PMC9502005 DOI: 10.3389/fnut.2022.948573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/02/2022] [Indexed: 01/10/2023] Open
Abstract
Arbutin has been widely studied in whitening, anti-inflammatory, and antioxidant. However, the interaction between arbutin and intestinal microbes has been rarely studied. Thus, mice were treated with arbutin concentrations of 0, 0.1, 0.2, 0.4, and 1 mg/ml. We found that arbutin promoted gut development such as villus length, villus areas, and villus length/crypt depth (L/D). Total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were significantly reduced by low concentrations of arbutin. Importantly, we analyzed the microbial composition in the control and 0.4 mg/ml arbutin group and found that the abundance of Lactobacillus intestinalis (L. intestinalis) was highest and enhanced in arbutin. Further, mice were fed with oral antibiotics and antibiotics + 0.4 mg/ml arbutin and then we transplanted fecal microbes from oral 0.4 mg/ml arbutin mice to mice pretreated with antibiotics. Our results showed that arbutin improves gut development, such as villus width, villus length, L/D, and villus areas. In addition, L. intestinalis monocolonization was carried out after a week of oral antibiotics and increased villus length, crypt depth, and villus areas. Finally, in vitro arbutin and L. intestinalis co-culture showed that arbutin promoted the growth and proliferation of L. intestinalis. Taken together, our results suggest that arbutin improves gut development and health of L. intestinalis. Future studies are needed to explore the function and mechanism of L. intestinalis affecting gut development.
Collapse
Affiliation(s)
- Jie Ma
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Shuai Chen
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, China
| | - Xin Wu
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Zehe Song
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- *Correspondence: Zehe Song,
| |
Collapse
|