1
|
Bai J, Lei X, Liu J, Huang Y, Bi L, Wang Y, Li J, Yu H, Yao S, Chen L, Janssen BJ, Snowden KC, Zhang M, Yao R. The strigolactone receptor DWARF14 regulates flowering time in Arabidopsis. THE PLANT CELL 2024; 36:4752-4767. [PMID: 39235115 PMCID: PMC11530773 DOI: 10.1093/plcell/koae248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Multiple plant hormones, including strigolactone (SL), play key roles in regulating flowering time. The Arabidopsis (Arabidopsis thaliana) DWARF14 (AtD14) receptor perceives SL and recruits F-box protein MORE AXILLARY GROWTH2 (MAX2) and the SUPPRESSOR OF MAX2-LIKE (SMXL) family proteins. These interactions lead to the degradation of the SMXL repressor proteins, thereby regulating shoot branching, leaf shape, and other developmental processes. However, the molecular mechanism by which SL regulates plant flowering remains elusive. Here, we demonstrate that intact strigolactone biosynthesis and signaling pathways are essential for normal flowering in Arabidopsis. Loss-of-function mutants in both SL biosynthesis (max3) and signaling (Atd14 and max2) pathways display earlier flowering, whereas the repressor triple mutant smxl6/7/8 (s678) exhibits the opposite phenotype. Retention of AtD14 in the cytoplasm leads to its inability to repress flowering. Moreover, we show that nuclear-localized AtD14 employs dual strategies to enhance the function of the AP2 transcription factor TARGET OF EAT1 (TOE1). AtD14 directly binds to TOE1 in an SL-dependent manner and stabilizes it. In addition, AtD14-mediated degradation of SMXL7 releases TOE1 from the repressor protein, allowing it to bind to and inhibit the FLOWERING LOCUS T (FT) promoter. This results in reduced FT transcription and delayed flowering. In summary, AtD14 perception of SL enables the transcription factor TOE1 to repress flowering, providing insights into hormonal control of plant flowering.
Collapse
Affiliation(s)
- Jinrui Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Xi Lei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Jinlan Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Lumei Bi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Yuehua Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Jindong Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Haiyang Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
| | - Shixiang Yao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Li Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Bart J Janssen
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Kimberley C Snowden
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1025, New Zealand
| | - Meng Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| | - Ruifeng Yao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410082, China
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou 511300, China
| |
Collapse
|
2
|
Han S, Wei Q, Liu J, Li L, Xu T, Cao L, Liu J, Liu X, Chen P, Liu H, Ma Y, Lei B, Lin Y. Naturally Occurring Dehydrocostus Lactone Covalently Binds to KARRIKIN INSENSITIVE 2 by Dual Serine Modifications in Orobanche cumana and Arabidopsis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19920-19930. [PMID: 39213540 DOI: 10.1021/acs.jafc.4c06359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Parasitic weeds, such as Orobanche and Striga, threaten crops globally. Contiguous efforts on the discovery and development of structurally novel seed germination stimulants targeting HYPOSENSITIVE TO LIGHT/KARRIKIN INSENSITIVE 2 (HTL/KAI2) have been made with the goal of weed control. Here, we demonstrate that a natural compound dehydrocostus lactone (DCL) exhibits effective "suicide germination" activity against Orobanche cumana and covalently binds to OcKAI2d2 on two catalytic serine sites with the second modification dependent on the first one. The same interactions and covalent modifications of DCL are also confirmed in AtKAI2. Further in-depth evolution analysis indicates that the proposed two catalytic sites are present throughout the streptophyte algae, hornworts, lycophytes, and seed plants. This discovery is particularly noteworthy as it signifies the first confirmation of a plant endogenous molecule directly binding to KAI2, which is valuable for unraveling the elusive identity of the KAI2 ligand and for targeting KAI2 paralogues for the development of novel germination stimulants.
Collapse
Affiliation(s)
- Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Qiannan Wei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Linrui Li
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Lin Cao
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Jiyuan Liu
- College of Plant Protection, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Xiayan Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Peng Chen
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Huawei Liu
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yongqing Ma
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Beilei Lei
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, Center of Bioinformatics, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Xianyang 712100, Shaanxi, China
| |
Collapse
|
3
|
Yin YM, Zhang XM, Shang XY, Gao ZH, Liang ZB, Wang DW, Xi Z. Discovery of Benzothiazol-2-ylthiophenylpyrazole-4-carboxamides as Novel Succinate Dehydrogenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17802-17812. [PMID: 39092526 DOI: 10.1021/acs.jafc.4c01739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Succinate dehydrogenase (SDH) has been considered an ideal target for discovering fungicides. To develop novel SDH inhibitors, in this work, 31 novel benzothiazol-2-ylthiophenylpyrazole-4-carboxamides were designed and synthesized using active fragment exchange and a link approach as promising SDH inhibitors. The findings from the tests on antifungal activity indicated that most of the synthesized compounds displayed remarkable inhibition against the fungi tested. Compound Ig N-(2-(((5-chlorobenzo[d]thiazol-2-yl)thio)methyl)phenyl)-3-(difluoromethyl)-1-methyl-1H-yrazole-4-carboxamide, with EC50 values against four kinds of fungi tested below 10 μg/mL and against Cercospora arachidicola even below 2 μg/mL, showed superior antifungal activity than that of commercial fungicide thifluzamide, and specifically compounds Ig and Im were found to show preventative potency of 90.6% and 81.3% against Rhizoctonia solani Kühn, respectively, similar to the positive fungicide thifluzamide. The molecular simulation studies suggested that hydrophobic interactions were the main driving forces between ligands and SDH. Encouragingly, we found that compound Ig can effectively promote the wheat seedlings and the growth of Arabidopsis thaliana. Our further studies indicated that compound Ig could stimulate nitrate reductase activity in planta and increase the biomass of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Ming Zhang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiao-Yue Shang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zi-Han Gao
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zheng-Bei Liang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- Frontiers Science Center for New Organic Matter, National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
4
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
5
|
Yang HZ, Liu HY, Li SH, Wang DW, Xi Z. Understanding the Effects of Ligand Configuration on Protoporphyrinogen IX Oxidase with Rationally Designed 3-( N-Phenyluracil)but-2-enoates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8401-8414. [PMID: 38587493 DOI: 10.1021/acs.jafc.3c08483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is a promising target for green herbicide discovery. However, the ligand configuration effects on PPO activity were still poorly understood. Herein, we designed 3-(N-phenyluracil)but-2-enoates using our previously developed active fragments exchange and link (AFEL) approach and synthesized a series of novel compounds with nanomolar ranges of Nicotiana tabacum PPO (NtPPO) inhibitory potency and promising herbicidal potency. Our systematic structure-activity relationship investigations showed that the E isomers of 3-(N-phenyluracil)but-2-enoates displayed improved bioactivity than their corresponding Z isomers. Using molecular simulation studies, we found that the E isomers showed a relatively lower entropy change and could sample more stable binding conformation to the receptor than the Z isomers. Our density functional theory (DFT) calculations showed that the E isomers showed higher chemical reactivity and lower electronic chemical potential than their corresponding Z isomers. Compound E-Ic emerged as the optimal compound with a Ki value of 3.0 nM against NtPPO, exhibiting a broader spectrum of weed control than saflufenacil at 37.5-75 g ai/ha and also safe to maize at 75 g ai/ha, which could be considered as a promising lead herbicide for further development.
Collapse
Affiliation(s)
- Huang-Ze Yang
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Hong-Yun Liu
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sang-Hong Li
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- National Pesticide Engineering Research Center, State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
6
|
Cai ZM, Huang GY, Dong J, Chen LJ, Ye BQ, Lin HY, Wang DW, Yang GF. Discovery of Tetrazolamide-benzimidazol-2-ones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3884-3893. [PMID: 38375801 DOI: 10.1021/acs.jafc.3c06798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD, EC 1.13.11.27) is one of the most valuable herbicide targets due to its unique biological functions. In search of HPPD inhibitors with promising biological performance, we designed and synthesized a series of novel tetrazolamide-benzimidazol-2-ones using a structure-based drug design strategy. Among the synthesized compounds, 1-(2-chlorobenzyl)-3-methyl-N-(1-methyl-1H-tetrazol-5-yl)-2-oxo-2,3-dihydro-1H-benzo[d]imidazole-4-carboxamide, 25, IC50 = 10 nM, was identified to be the most outstanding HPPD inhibitor, which showed more than 36-fold increased Arabidopsis thaliana HPPD (AtHPPD) inhibition potency than mesotrione (IC50 = 363 nM). Our AtHPPD-25 complex indicated that one nitrogen atom on the tetrazole ring and the oxygen atom on the amide group formed a classical bidentate chelation interaction with the metal ion, the benzimidazol-2-one ring created a tight π-π stacking interaction with Phe381 and Phe424, and some hydrophobic interactions were also found between the ortho-Cl-benzyl group and surrounding residues. Compound 32 showed more than 80% inhibition against all four tested weeds at 150 g ai/ha by the postemergence application. Our results indicated that the tetrazolamide-benzimidazol-2-one scaffold may be a new lead structure for herbicide discovery.
Collapse
Affiliation(s)
- Zhuo-Mei Cai
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Yi Huang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Li-Jun Chen
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Bao-Qing Ye
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Da-Wei Wang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Central China Normal University, Wuhan 430079, P. R. China
- International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|
7
|
Frackenpohl J, Abel SAG, Alnafta N, Barber DM, Bojack G, Brant NZ, Helmke H, Mattison RL. Inspired by Nature: Isostere Concepts in Plant Hormone Chemistry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:18141-18168. [PMID: 37277148 DOI: 10.1021/acs.jafc.3c01809] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chemical concepts such as isosteres and scaffold hopping have proven to be powerful tools in agrochemical innovation processes. They offer opportunities to modify known molecular lead structures with the aim to improve a range of parameters, including biological efficacy and spectrum, physicochemical properties, stability, and toxicity. While recent biochemical insights into plant-specific receptors and signaling pathways trigger the discovery of the first lead structures, the disclosure of such a new chemical structure sparks a broad range of synthesis activities giving rise to diverse chemical innovation and often a considerable boost in biological activity. Herein, recent examples of isostere concepts in plant-hormone chemistry will be discussed, outlining how synthetic creativity can broaden the scope of natural product chemistry and giving rise to new opportunities in research fields such as abiotic stress tolerance and growth promotion.
Collapse
Affiliation(s)
- Jens Frackenpohl
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Steven A G Abel
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Neanne Alnafta
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - David M Barber
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Guido Bojack
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Nicola Z Brant
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Hendrik Helmke
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| | - Rebecca L Mattison
- Research and Development, Weed Control Chemistry, Bayer AG, Crop Science Division, Industriepark Höchst, 65926 Frankfurt am Main, Germany
| |
Collapse
|
8
|
Yin YM, Sun ZY, Wang DW, Xi Z. Discovery of Benzothiazolylpyrazole-4-Carboxamides as Potent Succinate Dehydrogenase Inhibitors through Active Fragment Exchange and Link Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14471-14482. [PMID: 37775473 DOI: 10.1021/acs.jafc.3c03646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Succinate dehydrogenase (SDH) is an attractive target for developing green fungicides to manage agricultural pathogens in modern agriculture research. Herein, in this work, we report the discovery of benzothiazolylpyrazole-4-carboxamides I-III as potent SDH inhibitors using active fragment exchange and link approach. The results of the fungicidal activity assays showed that some of the synthesized compounds exhibited excellent inhibition against the tested fungi. Systematic structure-activity relationship studies led to the discovery of compound Ip, N-(1-((4,6-difluorobenzo[d]thiazol-2-yl)thio)propan-2-yl)-3-(difluoromethyl)-N-methoxy-1-methyl-1H-pyrazole-4-carboxamide, which showed higher fungicidal activity against Fusarium graminearum Schw (EC50 = 0.93 μg/mL) than the commercial fungicides thifluzamide (EC50 > 50 μg/mL) and boscalid (EC50 > 50 μg/mL). The molecular simulation studies suggested that hydrophobic interactions were the primary driving forces between ligands and SDH. Promisingly, we found that Ip could stimulate the growth of wheat seedlings and Arabidopsis thaliana and increase the biomass of the treated plants. Preliminary studies on the plant growth promoter mechanism of Ip indicated that it could increase nitrate reductase activity in planta, that, in turn, stimulates the growth of plants.
Collapse
Affiliation(s)
- Yan-Ming Yin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zong-Yue Sun
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
9
|
Arellano-Saab A, Skarina T, Xu Z, McErlean CSP, Savchenko A, Lumba S, Stogios PJ, McCourt P. Structural analysis of a hormone-bound Striga strigolactone receptor. NATURE PLANTS 2023; 9:883-888. [PMID: 37264151 DOI: 10.1038/s41477-023-01423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/25/2023] [Indexed: 06/03/2023]
Abstract
Strigolactones (SLs) regulate many aspects of plant development, but ambiguities remain about how this hormone is perceived because SL-complexed receptor structures do not exist. We find that when SL binds the Striga receptor, ShHTL5, a series of conformational changes relative to the unbound state occur, but these events are not sufficient for signalling. Ligand-complexed receptors, however, form internal tunnels that posit an explanation for how SL exits its receptor after hydrolysis.
Collapse
Affiliation(s)
- Amir Arellano-Saab
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Tatiana Skarina
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Zhenhua Xu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | | - Alexei Savchenko
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Shelley Lumba
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Peter J Stogios
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Peter McCourt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.
| |
Collapse
|
10
|
Liu HY, Yu LK, Qin SN, Yang HZ, Wang DW, Xi Z. Design, Synthesis, and Metabolism Studies of N-1,4-Diketophenyltriazinones as Protoporphyrinogen IX Oxidase Inhibitors. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3225-3238. [PMID: 36780578 DOI: 10.1021/acs.jafc.2c09082] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Protoporphyrinogen IX oxidase (PPO, EC 1.3.3.4) is an established site for green herbicide discovery. In this work, based on structural analysis, we develop an active fragment exchange and link (AFEL) approach to designing a new class of N-1,4-diketophenyltriazinones I-III as potent Nicotiana tabacum PPO (PPO) inhibitors. After systematic structure-activity relationship optimizations, a series of new compounds with Ki values in the single-digit nanomolar range toward NtPPO and promising herbicidal activity were discovered. Among them, Ii (Ki = 0.11 nM) displays 284- and 90-fold improvement in NtPPO inhibitory activity over trifludimoxazin (Ki = 31 nM) and saflufenacil (Ki = 10 nM), respectively. In addition, Ip (Ki = 2.14 nM) not only exhibited good herbicidal activity at 9.375-37.5 g ai/ha but also showed high crop safety to rice at 75 g ai/ha by the postemergence application, indicating that Ip could be developed as a potential herbicide for weed control in rice fields. Additionally, our molecular dynamic simulation clarified the molecular basis for the interactions of these molecules with NtPPO. The metabolism studies in planta showed that IIIc could be converted to Ic, which displayed higher herbicidal activity than IIIc. The density functional theory analysis showed that due to the effect of two sulfur atoms at the triazinone moiety, IIIc is more reactive than Ic, making it more easily degraded in planta. Our work indicates that the AFEL strategy could be used to design new molecules with improved bioactivity.
Collapse
Affiliation(s)
- Hong-Yun Liu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Liang-Kun Yu
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Sheng-Nan Qin
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Huang-Ze Yang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Da-Wei Wang
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
11
|
Fan X, Li Y, Deng CH, Wang S, Wang Z, Wang Y, Qiu C, Xu X, Han Z, Li W. Strigolactone regulates adventitious root formation via the MdSMXL7-MdWRKY6-MdBRC1 signaling cascade in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:772-786. [PMID: 36575587 DOI: 10.1111/tpj.16082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Propagation through stem cuttings is a popular method worldwide for species such as fruit tree rootstocks and forest trees. Adventitious root (AR) formation from stem cuttings is crucial for effective and successful clonal propagation of apple rootstocks. Strigolactones (SLs) are newly identified hormones involved in AR formation. However, the regulatory mechanisms underpinning this process remain elusive. In the present study, weighted gene co-expression network analysis, as well as rooting assays using stable transgenic apple materials, revealed that MdBRC1 served as a key gene in the inhibition of AR formation by SLs. We have demonstrated that MdSMXL7 and MdWRKY6 synergistically regulated MdBRC1 expression, depending on the interactions of MdSMXL7 and MdWRKY6 at the protein level downstream of SLs as well as the direct promoter binding on MdBRC1 by MdWRKY6. Furthermore, biochemical studies and genetic analysis revealed that MdBRC1 inhibited AR formation by triggering the expression of MdGH3.1 in a transcriptional activation pathway. Finally, the present study not only proposes a component, MdWRKY6, that enables MdSMXL7 to regulate MdBRC1 during the process of SL-controlled AR formation in apple, but also provides prospective target genes to enhance AR formation capacity using CRISPR (i.e. clustered regularly interspaced short palindromic repeats) technology, particularly in woody plants.
Collapse
Affiliation(s)
- Xingqiang Fan
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yuqi Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Mt Albert, Auckland, 1025, New Zealand
| | - Shiyao Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zijun Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Changpeng Qiu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Wei Li
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Synthesis and Germination Activity Study of Novel Strigolactam /Strigolactone Analogues. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|