1
|
Li C, Liu Y, Luo S, Yang M, Li L, Sun L. A review of CDKL: An underestimated protein kinase family. Int J Biol Macromol 2024; 277:133604. [PMID: 38964683 DOI: 10.1016/j.ijbiomac.2024.133604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Cyclin-dependent kinase-like (CDKL) family proteins are serine/threonine protein kinases and is a specific branch of CMGC (including CDK, MAPK, GSK). Its name is due to the sequence similarity with CDK and it consists of 5 members. Their function in protein phosphorylation underpins their important role in cellular activities, including cell cycle, apoptosis, autophagy and microtubule dynamics. CDKL proteins have been demonstrated to regulate the length of primary cilium, which is a dynamic and diverse signaling hub and closely associated with multiple diseases. Furthermore, CDKL proteins have been shown to be involved in the development and progression of several diseases, including cancer, neurodegenerative diseases and kidney disease. In this review, we summarize the structural characteristics and discovered functions of CDKL proteins and their role in diseases, which might be helpful for the development of innovative therapeutic strategies for disease.
Collapse
Affiliation(s)
- Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China.
| |
Collapse
|
2
|
Ewerling A, May-Simera HL. Evolutionary trajectory for nuclear functions of ciliary transport complex proteins. Microbiol Mol Biol Rev 2024; 88:e0000624. [PMID: 38995044 PMCID: PMC11426024 DOI: 10.1128/mmbr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
SUMMARYCilia and the nucleus were two defining features of the last eukaryotic common ancestor. In early eukaryotic evolution, these structures evolved through the diversification of a common membrane-coating ancestor, the protocoatomer. While in cilia, the descendants of this protein complex evolved into parts of the intraflagellar transport complexes and BBSome, the nucleus gained its selectivity by recruiting protocoatomer-like proteins to the nuclear envelope to form the selective nuclear pore complexes. Recent studies show a growing number of proteins shared between the proteomes of the respective organelles, and it is currently unknown how ciliary transport proteins could acquire nuclear functions and vice versa. The nuclear functions of ciliary proteins are still observable today and remain relevant for the understanding of the disease mechanisms behind ciliopathies. In this work, we review the evolutionary history of cilia and nucleus and their respective defining proteins and integrate current knowledge into theories for early eukaryotic evolution. We postulate a scenario where both compartments co-evolved and that fits current models of eukaryotic evolution, explaining how ciliary proteins and nucleoporins acquired their dual functions.
Collapse
Affiliation(s)
- Alexander Ewerling
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Helen Louise May-Simera
- Faculty of Biology, Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
3
|
Zhang Q, Huang Y, Gao S, Ding Y, Zhang H, Chang G, Wang X. Obesity-Related Ciliopathies: Focus on Advances of Biomarkers. Int J Mol Sci 2024; 25:8484. [PMID: 39126056 PMCID: PMC11312664 DOI: 10.3390/ijms25158484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity-related ciliopathies, as a group of ciliopathies including Alström Syndrome and Bardet-Biedl Syndrome, exhibit distinct genetic and phenotypic variability. The understanding of these diseases is highly significant for understanding the functions of primary cilia in the human body, particularly regarding the relationship between obesity and primary cilia. The diagnosis of these diseases primarily relies on clinical presentation and genetic testing. However, there is a significant lack of research on biomarkers to elucidate the variability in clinical manifestations, disease progression, prognosis, and treatment responses. Through an extensive literature review, the paper focuses on obesity-related ciliopathies, reviewing the advancements in the field and highlighting the potential roles of biomarkers in the clinical presentation, diagnosis, and prognosis of these diseases.
Collapse
Affiliation(s)
- Qianwen Zhang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Yiguo Huang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Shiyang Gao
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Yu Ding
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Hao Zhang
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
| | - Guoying Chang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| | - Xiumin Wang
- Department of Endocrinology and Metabolism, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; (Q.Z.); (Y.H.); (S.G.); (Y.D.)
| |
Collapse
|
4
|
Ran J, Guo G, Zhang S, Zhang Y, Zhang L, Li D, Wu S, Cong Y, Wang X, Xie S, Zhao H, Liu H, Ou G, Zhu X, Zhou J, Liu M. KIF11 UFMylation Maintains Photoreceptor Cilium Integrity and Retinal Homeostasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400569. [PMID: 38666385 PMCID: PMC11220646 DOI: 10.1002/advs.202400569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Indexed: 07/04/2024]
Abstract
The photoreceptor cilium is vital for maintaining the structure and function of the retina. However, the molecular mechanisms underlying the photoreceptor cilium integrity and retinal homeostasis are largely unknown. Herein, it is shown that kinesin family member 11 (KIF11) localizes at the transition zone (connecting cilium) of the photoreceptor and plays a crucial role in orchestrating the cilium integrity. KIF11 depletion causes malformations of both the photoreceptor ciliary axoneme and membranous discs, resulting in photoreceptor degeneration and the accumulation of drusen-like deposits throughout the retina. Mechanistic studies show that the stability of KIF11 is regulated by an interplay between its UFMylation and ubiquitination; UFMylation of KIF11 at lysine 953 inhibits its ubiquitination by synoviolin 1 and thereby prevents its proteasomal degradation. The lysine 953-to-arginine mutant of KIF11 is more stable than wild-type KIF11 and also more effective in reversing the ciliary and retinal defects induced by KIF11 depletion. These findings identify a critical role for KIF11 UFMylation in the maintenance of photoreceptor cilium integrity and retinal homeostasis.
Collapse
Affiliation(s)
- Jie Ran
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Guizhi Guo
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Sai Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Yufei Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Liang Zhang
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Dengwen Li
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Shian Wu
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Yusheng Cong
- Key Laboratory of Aging and Cancer Biology of Zhejiang ProvinceInstitute of Aging ResearchSchool of MedicineHangzhou Normal UniversityHangzhou310036China
| | - Xiaohong Wang
- Department of PharmacologyTianjin Key Laboratory of Inflammation BiologySchool of Basic Medical SciencesTianjin Medical UniversityTianjin300070China
| | - Songbo Xie
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Huijie Zhao
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
| | - Hongbin Liu
- Center for Reproductive MedicineCheeloo College of MedicineKey Laboratory of Reproductive Endocrinology of Ministry of EducationShandong UniversityJinan250014China
| | - Guangshuo Ou
- Tsinghua‐Peking Center for Life SciencesMinistry of Education Key Laboratory for Protein ScienceSchool of Life SciencesTsinghua UniversityBeijing100084China
| | - Xueliang Zhu
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesShanghai200031China
| | - Jun Zhou
- Center for Cell Structure and FunctionShandong Provincial Key Laboratory of Animal Resistance BiologyHaihe Laboratory of Cell EcosystemCollege of Life SciencesShandong Normal UniversityJinan250014China
- Department of Genetics and Cell BiologyState Key Laboratory of Medicinal Chemical BiologyCollege of Life SciencesNankai UniversityTianjin300071China
| | - Min Liu
- Laboratory of Tissue HomeostasisHaihe Laboratory of Cell EcosystemTianjin300462China
| |
Collapse
|
5
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. Curr Biol 2024; 34:2756-2763.e2. [PMID: 38838665 PMCID: PMC11187650 DOI: 10.1016/j.cub.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - David H Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Maureen M Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
6
|
Houston BJ, Merriner DJ, Stathatos GG, Nguyen JH, O'Connor AE, Lopes AM, Conrad DF, Baker M, Dunleavy JE, O'Bryan MK. Genetic mutation of Cep76 results in male infertility due to abnormal sperm tail composition. Life Sci Alliance 2024; 7:e202302452. [PMID: 38570187 PMCID: PMC10992998 DOI: 10.26508/lsa.202302452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
The transition zone is a specialised gate at the base of cilia/flagella, which separates the ciliary compartment from the cytoplasm and strictly regulates protein entry. We identified a potential new regulator of the male germ cell transition zone, CEP76. We demonstrated that CEP76 was involved in the selective entry and incorporation of key proteins required for sperm function and fertility into the ciliary compartment and ultimately the sperm tail. In the mutant, sperm tails were shorter and immotile as a consequence of deficits in essential sperm motility proteins including DNAH2 and AKAP4, which accumulated at the sperm neck in the mutant. Severe annulus, fibrous sheath, and outer dense fibre abnormalities were also detected in sperm lacking CEP76. Finally, we identified that CEP76 dictates annulus positioning and structure. This study suggests CEP76 as a male germ cell transition zone protein and adds further evidence to the hypothesis that the spermatid transition zone and annulus are part of the same functional structure.
Collapse
Affiliation(s)
- Brendan J Houston
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - D Jo Merriner
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - G Gemma Stathatos
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Joseph H Nguyen
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Anne E O'Connor
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Alexandra M Lopes
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology & Immunology, University of Porto, Porto, Portugal
| | - Donald F Conrad
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| | - Mark Baker
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, Australia
| | - Jessica Em Dunleavy
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Moira K O'Bryan
- https://ror.org/01ej9dk98 School of BioSciences and Bio21 Molecular Sciences and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| |
Collapse
|
7
|
Zhang W, Ou M, Yang P, Ning M. The role of extracellular vesicle immune checkpoints in cancer. Clin Exp Immunol 2024; 216:230-239. [PMID: 38518192 PMCID: PMC11097917 DOI: 10.1093/cei/uxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/02/2024] [Accepted: 03/21/2024] [Indexed: 03/24/2024] Open
Abstract
Immune checkpoints (ICPs) play a crucial role in regulating the immune response. In the tumor, malignant cells can hijack the immunosuppressive effects of inhibitory ICPs to promote tumor progression. Extracellular vesicles (EVs) are produced by a variety of cells and contain bioactive molecules on their surface or within their lumen. The expression of ICPs has also been detected in EVs. In vitro and in vivo studies have shown that extracellular vesicle immune checkpoints (EV ICPs) have immunomodulatory effects and are involved in tumor immunity. EV ICPs isolated from the peripheral blood of cancer patients are closely associated with the tumor progression and the prognosis of cancer patients. Blocking inhibitory ICPs has been recognized as an effective strategy in cancer treatment. However, the efficacy of immune checkpoint inhibitors (ICIs) in cancer treatment is hindered by the emergence of therapeutic resistance, which limits their widespread use. Researchers have demonstrated that EV ICPs are correlated with clinical response to ICIs therapy and were involved in therapeutic resistance. Therefore, it is essential to investigate the immunomodulatory effects, underlying mechanisms, and clinical significance of EV ICPs in cancer. This review aims to comprehensively explore these aspects. We have provided a comprehensive description of the cellular origins, immunomodulatory effects, and clinical significance of EV ICPs in cancer, based on relevant studies.
Collapse
Affiliation(s)
- Weiming Zhang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingrong Ou
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing Jiangsu, China
| | - Ping Yang
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Mingzhe Ning
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Rao VG, Subramanianbalachandar V, Magaj MM, Redemann S, Kulkarni SS. Mechanisms of cilia regeneration in Xenopus multiciliated epithelium in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544972. [PMID: 37398226 PMCID: PMC10312767 DOI: 10.1101/2023.06.14.544972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cilia regeneration is a physiological event, and while studied extensively in unicellular organisms, it remains poorly understood in vertebrates. In this study, using Xenopus multiciliated cells (MCCs) as a model, we demonstrate that, unlike unicellular organisms, deciliation removes the transition zone (TZ) and the ciliary axoneme. While MCCs immediately begin the regeneration of the ciliary axoneme, surprisingly, the assembly of TZ is delayed. However, ciliary tip proteins, Sentan and Clamp, localize to regenerating cilia without delay. Using cycloheximide (CHX) to block new protein synthesis, we show that the TZ protein B9d1 is not a component of the cilia precursor pool and requires new transcription/translation, providing insights into the delayed repair of TZ. Moreover, MCCs in CHX treatment assemble fewer (∼ 10 vs. ∼150 in controls) but near wild-type length (ranging between 60 to 90%) cilia by gradually concentrating ciliogenesis proteins like IFTs at a select few basal bodies. Using mathematical modeling, we show that cilia length compared to cilia number influences the force generated by MCCs more. In summary, our results question the requirement of TZ in motile cilia assembly and provide insights into how cells determine organelle size and number.
Collapse
|
9
|
Lin Z, Shen Y, Li Y, Lu C, Zhu Y, He R, Cao Z, Yin Z, Gao H, Guo B, Ma X, Cao M, Luo M. Novel compound heterozygous variants in ARL13B lead to Joubert syndrome. J Cell Physiol 2024; 239:e31189. [PMID: 38219074 DOI: 10.1002/jcp.31189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/07/2023] [Accepted: 12/22/2023] [Indexed: 01/15/2024]
Abstract
Joubert syndrome (JBTS) is a systematic developmental disorder mainly characterized by a pathognomonic mid-hindbrain malformation. All known JBTS-associated genes encode proteins involved in the function of antenna-like cellular organelle, primary cilium, which plays essential roles in cellular signal transduction and development. Here, we identified four unreported variants in ARL13B in two patients with the classical features of JBTS. ARL13B is a member of the Ras GTPase family and functions in ciliogenesis and cilia-related signaling. The two missense variants in ARL13B harbored the substitutions of amino acids at evolutionarily conserved positions. Using model cell lines, we found that the accumulations of the missense variants in cilia were impaired and the variants showed attenuated functions in ciliogenesis or the trafficking of INPP5E. Overall, these findings expanded the ARL13B pathogenetic variant spectrum of JBTS.
Collapse
Affiliation(s)
- Zaisheng Lin
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shen
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Yan Li
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Lu
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Ying Zhu
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruida He
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zongfu Cao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Zhe Yin
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Huafang Gao
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Bin Guo
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xu Ma
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| | - Muqing Cao
- International Peace Maternity and Child Health Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minna Luo
- National Human Genetic Resources Center, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
10
|
Moran AL, Louzao-Martinez L, Norris DP, Peters DJM, Blacque OE. Transport and barrier mechanisms that regulate ciliary compartmentalization and ciliopathies. Nat Rev Nephrol 2024; 20:83-100. [PMID: 37872350 DOI: 10.1038/s41581-023-00773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
Primary cilia act as cell surface antennae, coordinating cellular responses to sensory inputs and signalling molecules that regulate developmental and homeostatic pathways. Cilia are therefore critical to physiological processes, and defects in ciliary components are associated with a large group of inherited pleiotropic disorders - known collectively as ciliopathies - that have a broad spectrum of phenotypes and affect many or most tissues, including the kidney. A central feature of the cilium is its compartmentalized structure, which imparts its unique molecular composition and signalling environment despite its membrane and cytosol being contiguous with those of the cell. Such compartmentalization is achieved via active transport pathways that bring protein cargoes to and from the cilium, as well as gating pathways at the ciliary base that establish diffusion barriers to protein exchange into and out of the organelle. Many ciliopathy-linked proteins, including those involved in kidney development and homeostasis, are components of the compartmentalizing machinery. New insights into the major compartmentalizing pathways at the cilium, namely, ciliary gating, intraflagellar transport, lipidated protein flagellar transport and ciliary extracellular vesicle release pathways, have improved our understanding of the mechanisms that underpin ciliary disease and associated renal disorders.
Collapse
Affiliation(s)
- Ailis L Moran
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Laura Louzao-Martinez
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
11
|
Zhao H, Li Q, Zhou J. Ciliary ectosomes: critical microvesicle packets transmitted from the cell tower. Sci Bull (Beijing) 2023; 68:2674-2677. [PMID: 37833188 DOI: 10.1016/j.scib.2023.09.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Huijie Zhao
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| | - Qingchao Li
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Wang J, Saul J, Nikonorova IA, Cruz CN, Power KM, Nguyen KC, Hall DH, Barr MM. Ciliary intrinsic mechanisms regulate dynamic ciliary extracellular vesicle release from sensory neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565151. [PMID: 37961114 PMCID: PMC10635059 DOI: 10.1101/2023.11.01.565151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cilia-derived extracellular vesicles (EVs) contain signaling proteins and act in intercellular communication. Polycystin-2 (PKD-2), a transient receptor potential channel, is a conserved ciliary EVs cargo. Caenorhabditis elegans serves as a model for studying ciliary EV biogenesis and function. C. elegans males release EVs in a mechanically-induced manner and deposit PKD-2-labeled EVs onto the hermaphrodite vulva during mating, suggesting an active release process. Here, we study the dynamics of ciliary EV release using time-lapse imaging and find that cilia can sustain the release of PKD-2-labeled EVs for a two-hour duration. Intriguingly, this extended release doesn't require neuronal synaptic transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The ciliary kinesin-3 motor KLP-6 is necessary for both initial and extended ciliary EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dihydroceramide desaturase DEGS1/2 ortholog TTM-5 is highly expressed in the EV-releasing sensory neurons, localizes to cilia, and is required for sustained but not initial ciliary EV release, implicating ceramide in ciliary ectocytosis. The study offers a comprehensive portrait of real-time ciliary EV release, and mechanisms supporting cilia as proficient EV release platforms.
Collapse
Affiliation(s)
- Juan Wang
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Josh Saul
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Inna A. Nikonorova
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Carlos Nava Cruz
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Kaiden M. Power
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Ken C. Nguyen
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maureen M. Barr
- Department of Genetics and Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
13
|
Qi X, Yuan Q, Xia X, Li W, Cao M, Yang W. Clinical and molecular analysis of cilia-associated gene signature for prognostic prediction in glioma. J Cancer Res Clin Oncol 2023; 149:11443-11455. [PMID: 37386136 DOI: 10.1007/s00432-023-05022-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/23/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE Glioma is a highly malignant and unfavorable cancer in the brain. Recent evidence highlights the vital role of cilia-related pathways as novel regulators of glioma development. However, the prognostic potential of ciliary pathways in glioma is still ambiguous. In this study, we aim to construct a gene signature using cilia-related genes to facilitate the prognostication of glioma. METHODS A multi-stage approach was employed to build the ciliary gene signature for prognostication of glioma. The strategy involved the implementation of univariate, LASSO, and stepwise multivariate Cox regression analyses based on TCGA cohort, followed by independent validation in CGGA and REMBRANDT cohort. The study further revealed molecular differences at the genomic, transcriptomic, and proteomic levels between distinct groups. RESULTS A prognostic tool utilizing a 9-gene signature based on ciliary pathways was developed to assess the clinical outcomes of glioma patients. The risk scores generated by the signature demonstrated a negative correlation with patient survival rates. The validation of the signature in an independent cohort reinforced its prognostic capabilities. In-depth analysis uncovered distinctive molecular characteristics at the genomic, transcriptomic, and protein-interactive levels in the high- and low-risk groups. Furthermore, the gene signature was able to predict the sensitivity of glioma patients to conventional chemotherapeutic drugs. CONCLUSION This study has established the utility of a ciliary gene signature as a reliable prognostic predictor of glioma patient survival. Findings not only enhance our comprehension of the intricate molecular mechanisms of cilia pathways in glioma, but also hold significant clinical implications in directing chemotherapeutic strategies.
Collapse
Affiliation(s)
- Xin Qi
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wenhao Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Muqing Cao
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Wanchun Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
14
|
Truong HM, Cruz-Colón KO, Martínez-Márquez JY, Willer JR, Travis AM, Biswas SK, Lo WK, Bolz HJ, Pearring JN. The tectonic complex regulates membrane protein composition in the photoreceptor cilium. Nat Commun 2023; 14:5671. [PMID: 37704658 PMCID: PMC10500017 DOI: 10.1038/s41467-023-41450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
The primary cilium is a signaling organelle with a unique membrane composition maintained by a diffusional barrier residing at the transition zone. Many transition zone proteins, such as the tectonic complex, are linked to preserving ciliary composition but the mechanism remains unknown. To understand tectonic's role, we generate a photoreceptor-specific Tctn1 knockout mouse. Loss of Tctn1 results in the absence of the entire tectonic complex and associated MKS proteins yet has minimal effects on the transition zone structure of rod photoreceptors. We find that the protein composition of the photoreceptor cilium is disrupted as non-resident membrane proteins accumulate in the cilium over time, ultimately resulting in photoreceptor degeneration. We further show that fluorescent rhodopsin moves faster through the transition zone in photoreceptors lacking tectonic, which suggests that the tectonic complex acts as a physical barrier to slow down membrane protein diffusion in the photoreceptor transition zone to ensure proper removal of non-resident membrane proteins.
Collapse
Affiliation(s)
- Hanh M Truong
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Kevin O Cruz-Colón
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason R Willer
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Amanda M Travis
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA
| | - Sondip K Biswas
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Woo-Kuen Lo
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hanno J Bolz
- Senckenberg Centre for Human Genetics, Frankfurt am Main, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Jillian N Pearring
- Department of Ophthalmology and Visual Science, University of Michigan, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther 2023; 8:315. [PMID: 37596267 PMCID: PMC10439210 DOI: 10.1038/s41392-023-01559-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/05/2023] [Indexed: 08/20/2023] Open
Abstract
The past decade has seen significant advances in our understanding of Hedgehog (HH) signaling pathway in various biological events. HH signaling pathway exerts its biological effects through a complex signaling cascade involved with primary cilium. HH signaling pathway has important functions in embryonic development and tissue homeostasis. It plays a central role in the regulation of the proliferation and differentiation of adult stem cells. Importantly, it has become increasingly clear that HH signaling pathway is associated with increased cancer prevalence, malignant progression, poor prognosis and even increased mortality. Understanding the integrative nature of HH signaling pathway has opened up the potential for new therapeutic targets for cancer. A variety of drugs have been developed, including small molecule inhibitors, natural compounds, and long non-coding RNA (LncRNA), some of which are approved for clinical use. This review outlines recent discoveries of HH signaling in tissue homeostasis and cancer and discusses how these advances are paving the way for the development of new biologically based therapies for cancer. Furthermore, we address status quo and limitations of targeted therapies of HH signaling pathway. Insights from this review will help readers understand the function of HH signaling in homeostasis and cancer, as well as opportunities and challenges of therapeutic targets for cancer.
Collapse
Affiliation(s)
- Junjun Jing
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Zhuoxuan Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Guowen Luo
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hengyi Lin
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Fan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
16
|
Dougherty LL, Dutta S, Avasthi P. The ERK activator, BCI, inhibits ciliogenesis and causes defects in motor behavior, ciliary gating, and cytoskeletal rearrangement. Life Sci Alliance 2023; 6:e202301899. [PMID: 36914265 PMCID: PMC10011610 DOI: 10.26508/lsa.202301899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/14/2023] Open
Abstract
MAPK pathways are well-known regulators of the cell cycle, but they have also been found to control ciliary length in a wide variety of organisms and cell types from Caenorhabditis elegans neurons to mammalian photoreceptors through unknown mechanisms. ERK1/2 is a MAP kinase in human cells that is predominantly phosphorylated by MEK1/2 and dephosphorylated by the phosphatase DUSP6. We have found that the ERK1/2 activator/DUSP6 inhibitor, (E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI), inhibits ciliary maintenance in Chlamydomonas and hTERT-RPE1 cells and assembly in Chlamydomonas These effects involve inhibition of total protein synthesis, microtubule organization, membrane trafficking, and KAP-GFP motor dynamics. Our data provide evidence for various avenues for BCI-induced ciliary shortening and impaired ciliogenesis that gives mechanistic insight into how MAP kinases can regulate ciliary length.
Collapse
Affiliation(s)
- Larissa L Dougherty
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| | - Soumita Dutta
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prachee Avasthi
- Biochemistry and Cell Biology Department, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Anatomy and Cell Biology Department, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
17
|
Lu Q, Westlake CJ. Multi-color live-cell fluorescence imaging of primary ciliary membrane assembly and dynamics. Methods Cell Biol 2023; 176:235-250. [PMID: 37164540 PMCID: PMC11302370 DOI: 10.1016/bs.mcb.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The ciliary membrane is continuous with the plasma membrane but has distinct lipid and protein composition, which is key to defining the function of the primary cilium. Ciliary membranes dynamically assemble and disassemble in association with the cell cycle and directly transmit signals and molecules through budding membranes. Various imaging approaches have greatly advanced the understanding of the ciliary membrane function. In particular, fluorescence live-cell imaging has revealed important insights into the dynamics of ciliary membrane assembly by monitoring the changes of fluorescent-tagged ciliary proteins. Protein dynamics can be tracked simultaneously using multi-color live cell imaging by coupling ciliary-associated factors with different colored fluorescent tags. Ciliary membrane and membrane associated-proteins such as Smoothened, 5-HTr6, SSTR3, Rab8a, and Arl13b have been used to track ciliary membranes and centriole proteins like Centrin1/2, CEP164, and CEP83 are often used to mark the ciliary basal body. Here, we describe a method for studying ciliogenesis membrane dynamics using spinning disk confocal live-cell imaging.
Collapse
Affiliation(s)
- Quanlong Lu
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| | - Christopher J Westlake
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States.
| |
Collapse
|
18
|
Moruzzi N, Leibiger B, Barker CJ, Leibiger IB, Berggren PO. Novel aspects of intra-islet communication: Primary cilia and filopodia. Adv Biol Regul 2023; 87:100919. [PMID: 36266190 DOI: 10.1016/j.jbior.2022.100919] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 12/02/2022]
Abstract
Pancreatic islets are micro-organs composed of a mixture of endocrine and non-endocrine cells, where the former secrete hormones and peptides necessary for metabolic homeostasis. Through vasculature and innervation the cells within the islets are in communication with the rest of the body, while they interact with each other through juxtacrine, paracrine and autocrine signals, resulting in fine-tuned sensing and response to stimuli. In this context, cellular protrusion in islet cells, such as primary cilia and filopodia, have gained attention as potential signaling hubs. During the last decade, several pieces of evidence have shown how the primary cilium is required for islet vascularization, function and homeostasis. These findings have been possible thanks to the development of ciliary/basal body specific knockout models and technological advances in microscopy, which allow longitudinal monitoring of engrafted islets transplanted in the anterior chamber of the eye in living animals. Using this technique in combination with optogenetics, new potential paracrine interactions have been suggested. For example, reshaping and active movement of filopodia-like protrusions of δ-cells were visualized in vivo, suggesting a continuous cell remodeling to increase intercellular contacts. In this review, we discuss these recent discoveries regarding primary cilia and filopodia and their role in islet homeostasis and intercellular islet communication.
Collapse
Affiliation(s)
- Noah Moruzzi
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| | - Barbara Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Christopher J Barker
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Ingo B Leibiger
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, 171 76, Stockholm, Sweden.
| |
Collapse
|
19
|
Sale WS, Christensen ST. Peter Satir (1936-2022), cell biology pioneer and mentor. J Cell Sci 2022; 135:285814. [PMID: 36484464 DOI: 10.1242/jcs.260826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | |
Collapse
|