1
|
Li D, Mei Q, Li G. scQA: A dual-perspective cell type identification model for single cell transcriptome data. Comput Struct Biotechnol J 2024; 23:520-536. [PMID: 38235363 PMCID: PMC10791572 DOI: 10.1016/j.csbj.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Single-cell RNA sequencing technologies have been pivotal in advancing the development of algorithms for clustering heterogeneous cell populations. Existing methods for utilizing scRNA-seq data to identify cell types tend to neglect the beneficial impact of dropout events and perform clustering focusing solely on quantitative perspective. Here, we introduce a novel method named scQA, notable for its ability to concurrently identify cell types and cell type-specific key genes from both qualitative and quantitative perspectives. In contrast to other methods, scQA not only identifies cell types but also extracts key genes associated with these cell types, enabling bidirectional clustering for scRNA-seq data. Through an iterative process, our approach aims to minimize the number of landmarks to approximately a dozen while maximizing the inclusion of quasi-trend-preserved genes with dropouts both qualitatively and quantitatively. It then clusters cells by employing an ingenious label propagation strategy, obviating the requirement for a predetermined number of cell types. Validated on 20 publicly available scRNA-seq datasets, scQA consistently outperforms other salient tools. Furthermore, we confirm the effectiveness and potential biological significance of the identified key genes through both external and internal validation. In conclusion, scQA emerges as a valuable tool for investigating cell heterogeneity due to its distinctive fusion of qualitative and quantitative facets, along with bidirectional clustering capabilities. Furthermore, it can be seamlessly integrated into border scRNA-seq analyses. The source codes are publicly available at https://github.com/LD-Lyndee/scQA.
Collapse
Affiliation(s)
- Di Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| | - Qinglin Mei
- MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of Automation, Tsinghua University, Beijing 100084, China
| | - Guojun Li
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
2
|
Tommasini D, Yoshimatsu T, Baden T, Shekhar K. Comparative transcriptomic insights into the evolutionary origin of the tetrapod double cone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621990. [PMID: 39574734 PMCID: PMC11580882 DOI: 10.1101/2024.11.04.621990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
The tetrapod double cone is a pair of tightly associated cones called the "principal" and the "accessory" member. It is found in amphibians, reptiles, and birds, as well as monotreme and marsupial mammals but is absent in fish and eutherian mammals. To explore the potential evolutionary origins of the double cone, we analyzed single-cell and -nucleus transcriptomic atlases of photoreceptors from six vertebrate species: zebrafish, chicken, lizard, opossum, ground squirrel, and human. Computational analyses separated the principal and accessory members in chicken and lizard, identifying molecular signatures distinguishing either member from single cones and rods in the same species. Comparative transcriptomic analyses suggest that both the principal and accessory originated from ancestral red cones. Furthermore, the gene expression variation among cone subtypes mirrors their spectral order (red → green → blue → UV), suggesting a constraint in their order of emergence during evolution. Finally, we find that rods are equally dissimilar to all cone types, suggesting that they emerged before the spectral diversification of cones.
Collapse
Affiliation(s)
- Dario Tommasini
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Takeshi Yoshimatsu
- Department of Ophthalmology and Visual Sciences, Washington University in St Louis School of Medicine, St Louis, MO, USA
| | - Tom Baden
- Center for Sensory Neuroscience and Computation, Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Karthik Shekhar
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA, USA
- Vision Sciences Graduate Program; Center for Computational Biology; Biophysics Graduate Group, University of California, Berkeley, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
3
|
Wu B, Xu W, Wu K, Li Y, Hu M, Feng C, Zhu C, Zheng J, Cui X, Li J, Fan D, Zhang F, Liu Y, Chen J, Liu C, Li G, Qiu Q, Qu K, Wang W, Wang K. Single-cell analysis of the amphioxus hepatic caecum and vertebrate liver reveals genetic mechanisms of vertebrate liver evolution. Nat Ecol Evol 2024; 8:1972-1990. [PMID: 39152328 DOI: 10.1038/s41559-024-02510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/19/2024] [Indexed: 08/19/2024]
Abstract
The evolution of the vertebrate liver is a prime example of the evolution of complex organs, yet the driving genetic factors behind it remain unknown. Here we study the evolutionary genetics of liver by comparing the amphioxus hepatic caecum and the vertebrate liver, as well as examining the functional transition within vertebrates. Using in vivo and in vitro experiments, single-cell/nucleus RNA-seq data and gene knockout experiments, we confirm that the amphioxus hepatic caecum and vertebrate liver are homologous organs and show that the emergence of ohnologues from two rounds of whole-genome duplications greatly contributed to the functional complexity of the vertebrate liver. Two ohnologues, kdr and flt4, play an important role in the development of liver sinusoidal endothelial cells. In addition, we found that liver-related functions such as coagulation and bile production evolved in a step-by-step manner, with gene duplicates playing a crucial role. We reconstructed the genetic footprint of the transfer of haem detoxification from the liver to the spleen during vertebrate evolution. Together, these findings challenge the previous hypothesis that organ evolution is primarily driven by regulatory elements, underscoring the importance of gene duplicates in the emergence and diversification of a complex organ.
Collapse
Affiliation(s)
- Baosheng Wu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wenjie Xu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Kunjin Wu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ye Li
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Mingliang Hu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenguang Feng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Chenglong Zhu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jiangmin Zheng
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Xinxin Cui
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jing Li
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Deqian Fan
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Fenghua Zhang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Yuxuan Liu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chang Liu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guang Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Qiang Qiu
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
| | - Kai Qu
- Key Laboratory of Surgical Critical Care and Life Support (Xi'an Jiaotong University), Ministry of Education, Xi'an, China.
- Department of Hepatobiliary Surgery and Liver Transplantation, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Wen Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- New Cornerstone Science Laboratory, Xi'an, China.
| | - Kun Wang
- Shaanxi Key Laboratory of Qinling Ecological Intelligent Monitoring and Protection, School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
| |
Collapse
|
4
|
Yan Y, Zhu S, Jia M, Chen X, Qi W, Gu F, Valencak TG, Liu JX, Sun HZ. Advances in single-cell transcriptomics in animal research. J Anim Sci Biotechnol 2024; 15:102. [PMID: 39090689 PMCID: PMC11295521 DOI: 10.1186/s40104-024-01063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/12/2024] [Indexed: 08/04/2024] Open
Abstract
Understanding biological mechanisms is fundamental for improving animal production and health to meet the growing demand for high-quality protein. As an emerging biotechnology, single-cell transcriptomics has been gradually applied in diverse aspects of animal research, offering an effective method to study the gene expression of high-throughput single cells of different tissues/organs in animals. In an unprecedented manner, researchers have identified cell types/subtypes and their marker genes, inferred cellular fate trajectories, and revealed cell‒cell interactions in animals using single-cell transcriptomics. In this paper, we introduce the development of single-cell technology and review the processes, advancements, and applications of single-cell transcriptomics in animal research. We summarize recent efforts using single-cell transcriptomics to obtain a more profound understanding of animal nutrition and health, reproductive performance, genetics, and disease models in different livestock species. Moreover, the practical experience accumulated based on a large number of cases is highlighted to provide a reference for determining key factors (e.g., sample size, cell clustering, and cell type annotation) in single-cell transcriptomics analysis. We also discuss the limitations and outlook of single-cell transcriptomics in the current stage. This paper describes the comprehensive progress of single-cell transcriptomics in animal research, offering novel insights and sustainable advancements in agricultural productivity and animal health.
Collapse
Affiliation(s)
- Yunan Yan
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Senlin Zhu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Minghui Jia
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyi Chen
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenlingli Qi
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fengfei Gu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China
| | - Teresa G Valencak
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
- Agency for Health and Food Safety Austria, 1220, Vienna, Austria
| | - Jian-Xin Liu
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Zeng Sun
- Institute of Dairy Science, Ministry of Education Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
- Key Laboratory of Dairy Cow Genetic Improvement and Milk Quality Research of Zhejiang Province, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Chang L, Chen Q, Wang B, Liu J, Zhang M, Zhu W, Jiang J. Single cell RNA analysis uncovers the cell differentiation and functionalization for air breathing of frog lung. Commun Biol 2024; 7:665. [PMID: 38816547 PMCID: PMC11139932 DOI: 10.1038/s42003-024-06369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
The evolution and development of vertebrate lungs have been widely studied due to their significance in terrestrial adaptation. Amphibians possess the most primitive lungs among tetrapods, underscoring their evolutionary importance in bridging the transition from aquatic to terrestrial life. However, the intricate process of cell differentiation during amphibian lung development remains poorly understood. Using single-cell RNA sequencing, we identify 13 cell types in the developing lungs of a land-dwelling frog (Microhyla fissipes). We elucidate the differentiation trajectories and mechanisms of mesenchymal cells, identifying five cell fates and their respective driver genes. Using temporal dynamics analyses, we reveal the gene expression switches of epithelial cells, which facilitate air breathing during metamorphosis. Furthermore, by integrating the published data from another amphibian and two terrestrial mammals, we illuminate both conserved and divergent cellular repertoires during the evolution of tetrapod lungs. These findings uncover the frog lung cell differentiation trajectories and functionalization for breathing in air and provide valuable insights into the cell-type evolution of vertebrate lungs.
Collapse
Affiliation(s)
- Liming Chang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiheng Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Jiongyu Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Meihua Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Wei Zhu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianping Jiang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Li J, Zhang X, Wang X, Wang Z, Li X, Zheng J, Li J, Xu G, Sun C, Yi G, Yang N. Single-nucleus transcriptional and chromatin accessible profiles reveal critical cell types and molecular architecture underlying chicken sex determination. J Adv Res 2024:S2090-1232(24)00185-1. [PMID: 38734369 DOI: 10.1016/j.jare.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
INTRODUCTION Understanding the sex determination mechanisms in birds has great significance for the biological sciences and production in the poultry industry. Sex determination in chickens is a complex process that involves fate decisions of supporting cells such as granulosa or Sertoli cells. However, a systematic understanding of the genetic regulation and cell commitment process underlying sex determination in chickens is still lacking. OBJECTIVES We aimed to dissect the molecular characteristics associated with sex determination in the gonads of chicken embryos. METHODS Single-nucleus RNA-seq (snRNA-seq) and ATAC-seq (snATAC-seq) analysis were conducted on the gonads of female and male chickens at embryonic day 3.5 (E3.5), E4.5, and E5.5. RESULTS Here, we provided a time-course transcriptional and chromatin accessible profiling of gonads during chicken sex determination at single-cell resolution. We uncovered differences in cell composition and developmental trajectories between female and male gonads and found that the divergence of transcription and accessibility in gonadal cells first emerged at E5.5. Furthermore, we revealed key cell-type-specific transcription factors (TFs) and regulatory networks that drive lineage commitment. Sex determination signaling pathways, dominated by BMP signaling, are preferentially activated in males during gonadal development. Further pseudotime analysis of the supporting cells indicated that granulosa cells were regulated mainly by the TEAD gene family and that Sertoli cells were driven by the DMRT1 regulons. Cross-species analysis suggested high conservation of both cell types and cell-lineage-specific TFs across the six vertebrates. CONCLUSIONS Overall, our study will contribute to accelerating the development of sex manipulation technology in the poultry industry and the application of chickens as a unique model for studying cell fate decisions.
Collapse
Affiliation(s)
- Jianbo Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiuan Zhang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Xiqiong Wang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Zhen Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Xingzheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Jiangxia Zheng
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Guiyun Xu
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China
| | - Congjiao Sun
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| | - Guoqiang Yi
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Kunpeng Institute of Modern Agriculture at Foshan, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Ye F, Wang J, Li J, Mei Y, Guo G. Mapping Cell Atlases at the Single-Cell Level. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305449. [PMID: 38145338 PMCID: PMC10885669 DOI: 10.1002/advs.202305449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/01/2023] [Indexed: 12/26/2023]
Abstract
Recent advancements in single-cell technologies have led to rapid developments in the construction of cell atlases. These atlases have the potential to provide detailed information about every cell type in different organisms, enabling the characterization of cellular diversity at the single-cell level. Global efforts in developing comprehensive cell atlases have profound implications for both basic research and clinical applications. This review provides a broad overview of the cellular diversity and dynamics across various biological systems. In addition, the incorporation of machine learning techniques into cell atlas analyses opens up exciting prospects for the field of integrative biology.
Collapse
Affiliation(s)
- Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
| | - Jiaqi Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Yuqing Mei
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative MedicineZhejiang University School of MedicineHangzhouZhejiang310000China
- Liangzhu LaboratoryZhejiang UniversityHangzhouZhejiang311121China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative MedicineDr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative MedicineHangzhouZhejiang310058China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310000China
| |
Collapse
|
8
|
Chae S, Park TJ, Kwon T. Convergent differentiation of multiciliated cells. Sci Rep 2023; 13:23028. [PMID: 38155158 PMCID: PMC10754865 DOI: 10.1038/s41598-023-50077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023] Open
Abstract
Multiciliated cells (MCCs) are epithelial cells that control body fluid flow and contribute to the clearance of pathogenic microbes and other particles from the airways, egg transport in oviducts, and circulation of cerebrospinal fluid in the central nervous system. Although MCCs have shared functions to control fluid flow via coordinated motility of multiple ciliary structures, they are found in multiple mammalian tissues originating from distinct germ layers and differentiate via distinct developmental pathways. To understand the similarities and differences of MCCs in multiple tissues, we investigated single-cell transcriptome data of nasal epithelial cells, bronchial tubes, fallopian tubes, and ependymal cells in the subventricular zone from humans and mice by cross-species data integration. Expression of cilia-associated genes was indistinguishable between these MCCs, although cell populations had unique properties by the species and tissue, demonstrating that they share the same final differentiation status for ciliary functions. We further analyzed the final differentiation step of MCCs from their distinctive progenitors and confirmed their convergent gene set expression for ciliogenesis at the final step. These results may provide new insight into understanding ciliogenesis during the developmental process.
Collapse
Affiliation(s)
- Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
9
|
Song Y, Miao Z, Brazma A, Papatheodorou I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat Commun 2023; 14:6495. [PMID: 37838716 PMCID: PMC10576752 DOI: 10.1038/s41467-023-41855-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/21/2023] [Indexed: 10/16/2023] Open
Abstract
The growing number of available single-cell gene expression datasets from different species creates opportunities to explore evolutionary relationships between cell types across species. Cross-species integration of single-cell RNA-sequencing data has been particularly informative in this context. However, in order to do so robustly it is essential to have rigorous benchmarking and appropriate guidelines to ensure that integration results truly reflect biology. Here, we benchmark 28 combinations of gene homology mapping methods and data integration algorithms in a variety of biological settings. We examine the capability of each strategy to perform species-mixing of known homologous cell types and to preserve biological heterogeneity using 9 established metrics. We also develop a new biology conservation metric to address the maintenance of cell type distinguishability. Overall, scANVI, scVI and SeuratV4 methods achieve a balance between species-mixing and biology conservation. For evolutionarily distant species, including in-paralogs is beneficial. SAMap outperforms when integrating whole-body atlases between species with challenging gene homology annotation. We provide our freely available cross-species integration and assessment pipeline to help analyse new data and develop new algorithms.
Collapse
Affiliation(s)
- Yuyao Song
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| | - Zhichao Miao
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China
| | - Alvis Brazma
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom
| | - Irene Papatheodorou
- European Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SA, United Kingdom.
| |
Collapse
|
10
|
Zhang R, Liu Q, Pan S, Zhang Y, Qin Y, Du X, Yuan Z, Lu Y, Song Y, Zhang M, Zhang N, Ma J, Zhang Z, Jia X, Wang K, He S, Liu S, Ni M, Liu X, Xu X, Yang H, Wang J, Seim I, Fan G. A single-cell atlas of West African lungfish respiratory system reveals evolutionary adaptations to terrestrialization. Nat Commun 2023; 14:5630. [PMID: 37699889 PMCID: PMC10497629 DOI: 10.1038/s41467-023-41309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 08/30/2023] [Indexed: 09/14/2023] Open
Abstract
The six species of lungfish possess both lungs and gills and are the closest extant relatives of tetrapods. Here, we report a single-cell transcriptome atlas of the West African lungfish (Protopterus annectens). This species manifests the most extreme form of terrestrialization, a life history strategy to survive dry periods that can last for years, characterized by dormancy and reversible adaptive changes of the gills and lungs. Our atlas highlights the cell type diversity of the West African lungfish, including gene expression consistent with phenotype changes of terrestrialization. Comparison with terrestrial tetrapods and ray-finned fishes reveals broad homology between the swim bladder and lung cell types as well as shared and idiosyncratic changes of the external gills of the West African lungfish and the internal gills of Atlantic salmon. The single-cell atlas presented here provides a valuable resource for further exploration of the respiratory system evolution in vertebrates and the diversity of lungfish terrestrialization.
Collapse
Affiliation(s)
- Ruihua Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Qun Liu
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- Department of Biology, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Shanshan Pan
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yingying Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yating Qin
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Xiao Du
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
- BGI Research, 518083, Shenzhen, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Yongrui Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Yue Song
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Nannan Zhang
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | - Jie Ma
- BGI Research, 266555, Qingdao, China
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China
| | | | - Xiaodong Jia
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, 252000, Liaocheng, Shandong, P.R. China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, 430072, Wuhan, China
| | - Shanshan Liu
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Ming Ni
- BGI Research, 518083, Shenzhen, China
- MGI Tech, 518083, Shenzhen, China
| | - Xin Liu
- BGI Research, 518083, Shenzhen, China
| | - Xun Xu
- BGI Research, 518083, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, 518083, Shenzhen, China
| | | | - Jian Wang
- BGI Research, 518083, Shenzhen, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, China.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, 4000, Australia.
| | - Guangyi Fan
- BGI Research, 266555, Qingdao, China.
- Qingdao Key Laboratory of Marine Genomics, BGI Research, 266555, Qingdao, China.
- BGI Research, 518083, Shenzhen, China.
| |
Collapse
|
11
|
Mizukami K, Higashiyama H, Arima Y, Ando K, Okada N, Kose K, Yamada S, Takeuchi JK, Koshiba-Takeuchi K, Fukuhara S, Miyagawa-Tomita S, Kurihara H. Coronary artery established through amniote evolution. eLife 2023; 12:e83005. [PMID: 37605519 PMCID: PMC10444023 DOI: 10.7554/elife.83005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 07/17/2023] [Indexed: 08/23/2023] Open
Abstract
Coronary arteries are a critical part of the vascular system and provide nourishment to the heart. In humans, even minor defects in coronary arteries can be lethal, emphasizing their importance for survival. However, some teleosts survive without coronary arteries, suggesting that there may have been some evolutionary changes in the morphology and function of coronary arteries in the tetrapod lineage. Here, we propose that the true ventricular coronary arteries were newly established during amniote evolution through remodeling of the ancestral coronary vasculature. In mouse (Mus musculus) and Japanese quail (Coturnix japonica) embryos, the coronary arteries unique to amniotes are established by the reconstitution of transient vascular plexuses: aortic subepicardial vessels (ASVs) in the outflow tract and the primitive coronary plexus on the ventricle. In contrast, amphibians (Hyla japonica, Lithobates catesbeianus, Xenopus laevis, and Cynops pyrrhogaster) retain the ASV-like vasculature as truncal coronary arteries throughout their lives and have no primitive coronary plexus. The anatomy and development of zebrafish (Danio rerio) and chondrichthyans suggest that their hypobranchial arteries are ASV-like structures serving as the root of the coronary vasculature throughout their lives. Thus, the ventricular coronary artery of adult amniotes is a novel structure that has acquired a new remodeling process, while the ASVs, which occur transiently during embryonic development, are remnants of the ancestral coronary vessels. This evolutionary change may be related to the modification of branchial arteries, indicating considerable morphological changes underlying the physiological transition during amniote evolution.
Collapse
Affiliation(s)
- Kaoru Mizukami
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Hiroki Higashiyama
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| | - Yuichiro Arima
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Developmental Cardiology Laboratory, International Research Center for Medical Science, Kumamoto UniversityKumamotoJapan
| | - Koji Ando
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | | | - Katsumi Kose
- Institute of Applied Physics, University of TsukubaTsukubaJapan
| | - Shigehito Yamada
- Congenital Anomaly Research Center, Kyoto University Graduate School of MedicineKyotoJapan
| | - Jun K Takeuchi
- Molecular Craniofacial Embryology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute of Advanced Medical Sciences, Nippon Medical SchoolTokyoJapan
| | - Sachiko Miyagawa-Tomita
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
- Heart Center, Department of Pediatric Cardiology, Tokyo Women’s Medical UniversityTokyoJapan
- Department of Animal Nursing Science, Yamazaki University of Animal Health TechnologyTokyoJapan
| | - Hiroki Kurihara
- Department of Physiological Chemistry and Metabolism, Graduate School of Medicine, The University of TokyoTokyoJapan
| |
Collapse
|
12
|
Keum BR, Yeo I, Koo Y, Han W, Choi SC, Kim GH, Han JK. Transmembrane protein 150b attenuates BMP signaling in the Xenopus organizer. J Cell Physiol 2023; 238:1850-1866. [PMID: 37435758 DOI: 10.1002/jcp.31059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 05/03/2023] [Accepted: 05/06/2023] [Indexed: 07/13/2023]
Abstract
The vertebrate organizer is a specified embryonic tissue that regulates dorsoventral patterning and axis formation. Although numerous cellular signaling pathways have been identified as regulators of the organizer's dynamic functions, the process remains incompletely understood, and as-yet unknown pathways remain to be explored for sophisticated mechanistic understanding of the vertebrate organizer. To identify new potential key factors of the organizer, we performed complementary DNA (cDNA) microarray screening using organizer-mimicking Xenopus laevis tissue. This analysis yielded a list of prospective organizer genes, and we determined the role of six-transmembrane domain containing transmembrane protein 150b (Tmem150b) in organizer function. Tmem150b was expressed in the organizer region and induced by Activin/Nodal signaling. In X. laevis, Tmem150b knockdown resulted in head defects and a shortened body axis. Moreover, Tmem150b negatively regulated bone morphogenetic protein (BMP) signaling, likely via physical interaction with activin receptor-like kinase 2 (ALK2). These findings demonstrated that Tmem150b functions as a novel membrane regulatory factor of BMP signaling with antagonistic effects, contributing to the understanding of regulatory molecular mechanisms of organizer axis function. Investigation of additional candidate genes identified in the cDNA microarray analysis could further delineate the genetic networks of the organizer during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Byeong-Rak Keum
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
- Research Center for drug development, CYPHARMA, Daejeon, Korea
| | - Inchul Yeo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Youngmu Koo
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| | - Wonhee Han
- Department of Neurology, F. M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sun-Cheol Choi
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul, Korea
| | - Gun-Hwa Kim
- Research Center for drug development, CYPHARMA, Daejeon, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Korea
| | - Jin-Kwan Han
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk, Korea
| |
Collapse
|
13
|
Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN. A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development. SCIENCE ADVANCES 2023; 9:eadd5745. [PMID: 37027470 PMCID: PMC10081853 DOI: 10.1126/sciadv.add5745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The specialized cell types of the mucociliary epithelium (MCE) lining the respiratory tract enable continuous airway clearing, with its defects leading to chronic respiratory diseases. The molecular mechanisms driving cell fate acquisition and temporal specialization during mucociliary epithelial development remain largely unknown. Here, we profile the developing Xenopus MCE from pluripotent to mature stages by single-cell transcriptomics, identifying multipotent early epithelial progenitors that execute multilineage cues before specializing into late-stage ionocytes and goblet and basal cells. Combining in silico lineage inference, in situ hybridization, and single-cell multiplexed RNA imaging, we capture the initial bifurcation into early epithelial and multiciliated progenitors and chart cell type emergence and fate progression into specialized cell types. Comparative analysis of nine airway atlases reveals an evolutionary conserved transcriptional module in ciliated cells, whereas secretory and basal types execute distinct function-specific programs across vertebrates. We uncover a continuous nonhierarchical model of MCE development alongside a data resource for understanding respiratory biology.
Collapse
Affiliation(s)
- Julie Lee
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andreas Fønss Møller
- Danish Institute of Advanced Study (DIAS) and Functional Genomics and Metabolism Research Unit, University of Southern Denmark, Odense, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Alexandra Bussek
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tune H. Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jakub Sedzinski
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Kedar Nath Natarajan
- Danish Institute of Advanced Study (DIAS) and Functional Genomics and Metabolism Research Unit, University of Southern Denmark, Odense, Denmark
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Jonas-Closs RA, Peshkin L. Effective Rapid Blood Perfusion in Xenopus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526649. [PMID: 36778320 PMCID: PMC9915651 DOI: 10.1101/2023.02.01.526649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Xenopus has been a powerful model organism for understanding vertebrate development and disease for over a hundred years. Here we define a rapid blood perfusion protocol in Xenopus aimed at a consistent and drastic reduction of blood across tissues. Perfusion is done by inserting a needle directly into the ventricle and pumping heparin in PBS through the vascular system. The whole procedure should take about 10 minutes per frog. Blood is dominated by a few highly abundant proteins and cell types which create numerous issues by masking most other molecules and cell types of interest. Reproducible characterization of adult Xenopus tissues with quantitative proteomics and single cell transcriptomics will gain from applying this protocol prior to organ dissections defined in companion papers. The procedure is aimed at standardization of practice across the animals of different gender, age and Xenopus species, specifically X.laevis and X.tropicalis . SUMMARY An effective rapid blood perfusion protocol to prepare tissue samples for transcriptomics and proteomics studies.
Collapse
Affiliation(s)
| | - Leonid Peshkin
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Wang R, Zhang P, Wang J, Ma L, E W, Suo S, Jiang M, Li J, Chen H, Sun H, Fei L, Zhou Z, Zhou Y, Chen Y, Zhang W, Wang X, Mei Y, Sun Z, Yu C, Shao J, Fu Y, Xiao Y, Ye F, Fang X, Wu H, Guo Q, Fang X, Li X, Gao X, Wang D, Xu PF, Zeng R, Xu G, Zhu L, Wang L, Qu J, Zhang D, Ouyang H, Huang H, Chen M, NG SC, Liu GH, Yuan GC, Guo G, Han X. Construction of a cross-species cell landscape at single-cell level. Nucleic Acids Res 2023; 51:501-516. [PMID: 35929025 PMCID: PMC9881150 DOI: 10.1093/nar/gkac633] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/30/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023] Open
Abstract
Individual cells are basic units of life. Despite extensive efforts to characterize the cellular heterogeneity of different organisms, cross-species comparisons of landscape dynamics have not been achieved. Here, we applied single-cell RNA sequencing (scRNA-seq) to map organism-level cell landscapes at multiple life stages for mice, zebrafish and Drosophila. By integrating the comprehensive dataset of > 2.6 million single cells, we constructed a cross-species cell landscape and identified signatures and common pathways that changed throughout the life span. We identified structural inflammation and mitochondrial dysfunction as the most common hallmarks of organism aging, and found that pharmacological activation of mitochondrial metabolism alleviated aging phenotypes in mice. The cross-species cell landscape with other published datasets were stored in an integrated online portal-Cell Landscape. Our work provides a valuable resource for studying lineage development, maturation and aging.
Collapse
Affiliation(s)
- Renying Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Peijing Zhang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jingjing Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Lifeng Ma
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Weigao E
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | | | - Mengmeng Jiang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Jiaqi Li
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Haide Chen
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Huiyu Sun
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Lijiang Fei
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ziming Zhou
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yincong Zhou
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China
| | - Xinru Wang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yuqing Mei
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Zhongyi Sun
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Chengxuan Yu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Jikai Shao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yuting Fu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Yanyu Xiao
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Fang Ye
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Xing Fang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Hanyu Wu
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Qile Guo
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
| | - Xiunan Fang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Xia Li
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Xianzhi Gao
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Dan Wang
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Peng-Fei Xu
- Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Rui Zeng
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gang Xu
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lijun Zhu
- Zhejiang Provincial Key Laboratory for Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, PR China
| | - Hongwei Ouyang
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China
| | - He Huang
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
| | - Ming Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shyh-Chang NG
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guang-Hui Liu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, NY, NY 10029, USA
| | - Guoji Guo
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 314400, China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaoping Han
- Center for Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
16
|
Yan H, Wang R, Ma S, Huang D, Wang S, Ren J, Lu C, Chen X, Lu X, Zheng Z, Zhang W, Qu J, Zhou Y, Liu GH. Lineage Landscape: a comprehensive database that records lineage commitment across species. Nucleic Acids Res 2022; 51:D1061-D1066. [PMID: 36305824 PMCID: PMC9825468 DOI: 10.1093/nar/gkac951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 01/30/2023] Open
Abstract
Commitment to specific cell lineages is critical for mammalian embryonic development. Lineage determination, differentiation, maintenance, and organogenesis result in diverse life forms composed of multiple cell types. To understand the formation and maintenance of living individuals, including human beings, a comprehensive database that integrates multi-omic information underlying lineage differentiation across multiple species is urgently needed. Here, we construct Lineage Landscape, a database that compiles, analyzes and visualizes transcriptomic and epigenomic information related to lineage development in a collection of species. This landscape draws together datasets that capture the ongoing changes in cell lineages from classic model organisms to human beings throughout embryonic, fetal, adult, and aged stages, providing comprehensive, open-access information that is useful to researchers of a broad spectrum of life science disciplines. Lineage Landscape contains single-cell gene expression and bulk transcriptomic, DNA methylation, histone modifications, and chromatin accessibility profiles. Using this database, users can explore genes of interest that exhibit dynamic expression patterns at the transcriptional or epigenetic levels at different stages of lineage development. Lineage Landscape currently includes over 6.6 million cells, 15 million differentially expressed genes and 36 million data entries across 10 species and 34 organs. Lineage Landscape is free to access, browse, search, and download at http://data.iscr.ac.cn/lineage/#/home.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Changfa Lu
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xin Chen
- Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoyong Lu
- University of Chinese Academy of Sciences, Beijing 100049, China,China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, Beijing 100049, China,China National Center for Bioinformation, Beijing 100101, China,CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- Correspondence may also be addressed to Weiqi Zhang. Tel: +86 10 8409 7838;
| | - Jing Qu
- Correspondence may also be addressed to Jing Qu. Tel: +86 10 6480 7768;
| | - Yuanchun Zhou
- Correspondence may also be addressed to Yuanchun Zhou. Tel: +86 10 5881 2561;
| | - Guang-Hui Liu
- To whom correspondence should be addressed. Tel: +86 10 6480 7583;
| |
Collapse
|
17
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|