1
|
Pakkir Shah AK, Walter A, Ottosson F, Russo F, Navarro-Diaz M, Boldt J, Kalinski JCJ, Kontou EE, Elofson J, Polyzois A, González-Marín C, Farrell S, Aggerbeck MR, Pruksatrakul T, Chan N, Wang Y, Pöchhacker M, Brungs C, Cámara B, Caraballo-Rodríguez AM, Cumsille A, de Oliveira F, Dührkop K, El Abiead Y, Geibel C, Graves LG, Hansen M, Heuckeroth S, Knoblauch S, Kostenko A, Kuijpers MCM, Mildau K, Papadopoulos Lambidis S, Portal Gomes PW, Schramm T, Steuer-Lodd K, Stincone P, Tayyab S, Vitale GA, Wagner BC, Xing S, Yazzie MT, Zuffa S, de Kruijff M, Beemelmanns C, Link H, Mayer C, van der Hooft JJJ, Damiani T, Pluskal T, Dorrestein P, Stanstrup J, Schmid R, Wang M, Aron A, Ernst M, Petras D. Statistical analysis of feature-based molecular networking results from non-targeted metabolomics data. Nat Protoc 2024:10.1038/s41596-024-01046-3. [PMID: 39304763 DOI: 10.1038/s41596-024-01046-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 07/02/2024] [Indexed: 09/22/2024]
Abstract
Feature-based molecular networking (FBMN) is a popular analysis approach for liquid chromatography-tandem mass spectrometry-based non-targeted metabolomics data. While processing liquid chromatography-tandem mass spectrometry data through FBMN is fairly streamlined, downstream data handling and statistical interrogation are often a key bottleneck. Especially users new to statistical analysis struggle to effectively handle and analyze complex data matrices. Here we provide a comprehensive guide for the statistical analysis of FBMN results, focusing on the downstream analysis of the FBMN output table. We explain the data structure and principles of data cleanup and normalization, as well as uni- and multivariate statistical analysis of FBMN results. We provide explanations and code in two scripting languages (R and Python) as well as the QIIME2 framework for all protocol steps, from data clean-up to statistical analysis. All code is shared in the form of Jupyter Notebooks ( https://github.com/Functional-Metabolomics-Lab/FBMN-STATS ). Additionally, the protocol is accompanied by a web application with a graphical user interface ( https://fbmn-statsguide.gnps2.org/ ) to lower the barrier of entry for new users and for educational purposes. Finally, we also show users how to integrate their statistical results into the molecular network using the Cytoscape visualization tool. Throughout the protocol, we use a previously published environmental metabolomics dataset for demonstration purposes. Together, the protocol, code and web application provide a complete guide and toolbox for FBMN data integration, cleanup and advanced statistical analysis, enabling new users to uncover molecular insights from their non-targeted metabolomics data. Our protocol is tailored for the seamless analysis of FBMN results from Global Natural Products Social Molecular Networking and can be easily adapted to other mass spectrometry feature detection, annotation and networking tools.
Collapse
Affiliation(s)
- Abzer K Pakkir Shah
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Axel Walter
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany
| | - Filip Ottosson
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Francesco Russo
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark
| | - Marcelo Navarro-Diaz
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Judith Boldt
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- German Center for Infection Research, Partner Site Braunschweig-Hannover, Braunschweig, Germany
| | - Jarmo-Charles J Kalinski
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Biochemistry and Microbiology, Rhodes University, Makhanda, South Africa
| | - Eftychia Eva Kontou
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- The Novo Nordisk Foundation for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - James Elofson
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Alexandros Polyzois
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Carolina González-Marín
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Universidad EAFIT, Medellín, Antioquia, Colombia
| | - Shane Farrell
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA
- School of Marine Sciences, Darling Marine Center, University of Maine, Walpole, ME, USA
| | - Marie R Aggerbeck
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Thapanee Pruksatrakul
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Thailand Science Park, Pathum Thani, Thailand
| | - Nathan Chan
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Yunshu Wang
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Magdalena Pöchhacker
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Food Chemistry and Toxicology, University of Vienna, Vienna, Austria
| | - Corinna Brungs
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | | | - Andres Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Centro de Biotecnología DAL, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Fernanda de Oliveira
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo, Brazil
| | - Kai Dührkop
- Department of Bioinformatics, University of Jena, Jena, Germany
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Christian Geibel
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Lana G Graves
- Department of Environmental Systems Analysis, University of Tübingen, Tübingen, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Martin Hansen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Steffen Heuckeroth
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Simon Knoblauch
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Anastasiia Kostenko
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Mirte C M Kuijpers
- Department of Ecology, Behavior and Evolution, University of California San Diego, San Diego, CA, USA
| | - Kevin Mildau
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
| | | | - Paulo Wender Portal Gomes
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Tilman Schramm
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Karoline Steuer-Lodd
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA
| | - Paolo Stincone
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Sibgha Tayyab
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Giovanni Andrea Vitale
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Berenike C Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Shipei Xing
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Marquis T Yazzie
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Simone Zuffa
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Martinus de Kruijff
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
| | - Christine Beemelmanns
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarbrücken, Germany
- Saarland University, Saarbrücken, Germany
| | - Hannes Link
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Christoph Mayer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany
| | - Justin J J van der Hooft
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Bioinformatics Group, Wageningen University and Research, Wageningen, the Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Tito Damiani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomáš Pluskal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, USA
| | - Jan Stanstrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg C, Denmark
| | - Robin Schmid
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mingxun Wang
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Computer Science, University of California Riverside, Riverside, CA, USA
| | - Allegra Aron
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, CO, USA
| | - Madeleine Ernst
- Section for Clinical Mass Spectrometry, Danish Center for Neonatal Screening, Department of Congenital Disorders, Statens Serum Institut, Copenhagen S, Denmark.
| | - Daniel Petras
- Virtual Multi-Omics Laboratory, The Internet, Riverside, CA, USA.
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine, Tübingen, Germany.
- Department of Biochemistry, University of California Riverside, Riverside, CA, USA.
| |
Collapse
|
2
|
Shahriar A, Lokesh S, Timilsina A, Numan T, Schramm T, Stincone P, Nyarko L, Dewey C, Petras D, Boiteau R, Yang Y. High-Resolution Tandem Mass Spectrometry-Based Analysis of Model Lignin-Iron Complexes: Novel Pipeline and Complex Structures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39116213 DOI: 10.1021/acs.est.4c03608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Understanding the chemical nature of soil organic carbon (SOC) with great potential to bind iron (Fe) minerals is critical for predicting the stability of SOC. Organic ligands of Fe are among the top candidates for SOCs able to strongly sorb on Fe minerals, but most of them are still molecularly uncharacterized. To shed insights into the chemical nature of organic ligands in soil and their fate, this study developed a protocol for identifying organic ligands using ultrahigh-performance liquid chromatography-high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) and metabolomic tools. The protocol was used for investigating the Fe complexes formed by model compounds of lignin-derived organic ligands, namely, caffeic acid (CA), p-coumaric acid (CMA), vanillin (VNL), and cinnamic acid (CNA). Isotopologue analysis of 54/56Fe was used to screen out the potential UHPLC-HRMS (m/z) features for complexes formed between organic ligands and Fe, with multiple features captured for CA, CMA, VNL, and CNA when 35/37Cl isotopologue analysis was used as supplementary evidence for the complexes with Cl. MS/MS spectra, fragment analysis, and structure prediction with SIRIUS were used to annotate the structures of mono/bidentate mono/biligand complexes. The analysis determined the structures of monodentate and bidentate complexes of FeLxCly (L: organic ligand, x = 1-4, y = 0-3) formed by model compounds. The protocol developed in this study can be used to identify unknown organic ligands occurring in complex environmental samples and shed light on the molecular-level processes governing the stability of the SOC.
Collapse
Affiliation(s)
- Abrar Shahriar
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
- Nuclear and Chemical Sciences Division, Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Srinidhi Lokesh
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| | - Anil Timilsina
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| | - Travis Numan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| | - Tilman Schramm
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, United States
| | - Paolo Stincone
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
| | - Laurinda Nyarko
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christian Dewey
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Daniel Petras
- CMFI Cluster of Excellence, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, California 92521, United States
| | - Rene Boiteau
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon 97331, United States
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Yu Yang
- Department of Civil and Environmental Engineering, University of Nevada, Reno, 1664 N Virginia St, Reno, Nevada 89557, United States
| |
Collapse
|
3
|
Avalon N, Reis MA, Thornburg CC, Williamson RT, Petras D, Aron AT, Neuhaus GF, Al-Hindy M, Mitrevska J, Ferreira L, Morais J, El Abiead Y, Glukhov E, Alexander KL, Vulpanovici FA, Bertin MJ, Whitner S, Choi H, Spengler G, Blinov K, Almohammadi AM, Shaala LA, Kew WR, Paša-Tolić L, Youssef DTA, Dorrestein PC, Vasconcelos V, Gerwick L, McPhail KL, Gerwick WH. Leptochelins A-C, Cytotoxic Metallophores Produced by Geographically Dispersed Leptothoe Strains of Marine Cyanobacteria. J Am Chem Soc 2024; 146:18626-18638. [PMID: 38918178 PMCID: PMC11240249 DOI: 10.1021/jacs.4c05399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024]
Abstract
Metals are important cofactors in the metabolic processes of cyanobacteria, including photosynthesis, cellular respiration, DNA replication, and the biosynthesis of primary and secondary metabolites. In adaptation to the marine environment, cyanobacteria use metallophores to acquire trace metals when necessary as well as to reduce potential toxicity from excessive metal concentrations. Leptochelins A-C were identified as structurally novel metallophores from three geographically dispersed cyanobacteria of the genus Leptothoe. Determination of the complex structures of these metabolites presented numerous challenges, but they were ultimately solved using integrated data from NMR, mass spectrometry and deductions from the biosynthetic gene cluster. The leptochelins are comprised of halogenated linear NRPS-PKS hybrid products with multiple heterocycles that have potential for hexadentate and tetradentate coordination with metal ions. The genomes of the three leptochelin producers were sequenced, and retrobiosynthetic analysis revealed one candidate biosynthetic gene cluster (BGC) consistent with the structure of leptochelin. The putative BGC is highly homologous in all three Leptothoe strains, and all possess genetic signatures associated with metallophores. Postcolumn infusion of metals using an LC-MS metabolomics workflow performed with leptochelins A and B revealed promiscuous binding of iron, copper, cobalt, and zinc, with greatest preference for copper. Iron depletion and copper toxicity experiments support the hypothesis that leptochelin metallophores may play key ecological roles in iron acquisition and in copper detoxification. In addition, the leptochelins possess significant cytotoxicity against several cancer cell lines.
Collapse
Affiliation(s)
- Nicole
E. Avalon
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Mariana A. Reis
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | | | - R. Thomas Williamson
- Department
of Chemistry and Biochemistry, University
of North Carolina Wilmington, Wilmington, North Carolina 28403, United States
| | - Daniel Petras
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Biochemistry, University of California
Riverside, Riverside, California 92507, United States
- CMFI Cluster
of Excellence, University of Tuebingen, Tuebingen 72706, Germany
| | - Allegra T. Aron
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of Denver, Denver, Colorado 80210, United States
| | - George F. Neuhaus
- College
of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Momen Al-Hindy
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Jana Mitrevska
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Leonor Ferreira
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - João Morais
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - Yasin El Abiead
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Evgenia Glukhov
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kelsey L. Alexander
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California San Diego, La Jolla, California 92093, United States
| | | | - Matthew J. Bertin
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Syrena Whitner
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Hyukjae Choi
- College
of Pharmacy, Yeungnam University, Gyeongsan, Gyeong-buk 38541, South Korea
| | - Gabriella Spengler
- Department
of Medical Microbiology, Albert Szent-Györgyi Health Center
and Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6725, Hungary
| | - Kirill Blinov
- Molecule
Apps, LLC, Corvallis, Oregon 97330, United States
| | - Ameen M. Almohammadi
- Department
of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
| | - Lamiaa A. Shaala
- Suez Canal
University Hospital, Suez Canal University, Ismailia 41522, Egypt
| | - William R. Kew
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Ljiljana Paša-Tolić
- Environmental
Molecular Sciences Laboratory, Pacific Northwest
National Laboratory, Richland, Washington 99354, United States
| | - Diaa T. A. Youssef
- Department
of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Kingdom
of Saudi Arabia
- Department
of Pharmacognosy, Faculty of Pharmacy, Suez
Canal University, Ismailia 41522, Egypt
| | - Pieter C. Dorrestein
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Vitor Vasconcelos
- CIIMAR/CIMAR,
Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Matosinhos 4450-208, Portugal
| | - Lena Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kerry L. McPhail
- College
of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - William H. Gerwick
- Center
for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs
School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
4
|
Vitale GA, Geibel C, Minda V, Wang M, Aron AT, Petras D. Connecting metabolome and phenotype: recent advances in functional metabolomics tools for the identification of bioactive natural products. Nat Prod Rep 2024; 41:885-904. [PMID: 38351834 PMCID: PMC11186733 DOI: 10.1039/d3np00050h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Indexed: 06/20/2024]
Abstract
Covering: 1995 to 2023Advances in bioanalytical methods, particularly mass spectrometry, have provided valuable molecular insights into the mechanisms of life. Non-targeted metabolomics aims to detect and (relatively) quantify all observable small molecules present in a biological system. By comparing small molecule abundances between different conditions or timepoints in a biological system, researchers can generate new hypotheses and begin to understand causes of observed phenotypes. Functional metabolomics aims to investigate the functional roles of metabolites at the scale of the metabolome. However, most functional metabolomics studies rely on indirect measurements and correlation analyses, which leads to ambiguity in the precise definition of functional metabolomics. In contrast, the field of natural products has a history of identifying the structures and bioactivities of primary and specialized metabolites. Here, we propose to expand and reframe functional metabolomics by integrating concepts from the fields of natural products and chemical biology. We highlight emerging functional metabolomics approaches that shift the focus from correlation to physical interactions, and we discuss how this allows researchers to uncover causal relationships between molecules and phenotypes.
Collapse
Affiliation(s)
- Giovanni Andrea Vitale
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Christian Geibel
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
| | - Vidit Minda
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri - Kansas City, Kansas City, USA
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, USA.
| | - Allegra T Aron
- Department of Chemistry and Biochemistry, University of Denver, Denver, USA.
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Tuebingen, Germany
- Department of Biochemistry, University of California Riverside, Riverside, USA.
| |
Collapse
|
5
|
Guo A, Jia W, Wang X. Selenium-Mediated (-)-Epigallocatechin-3-Gallate Dynamics via Flavanone-3-Hydroxylase Regulation of Flavonoid Biosynthesis in Fu Tea ( Camellia sinensis (L.) O. Kuntze). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38840526 DOI: 10.1021/acs.jafc.4c02987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Tea (Camellia sinensis (L.) O. Kuntze) is a highly selenium enrichment capacity plant; high selenium concentration contributes to the occurrence of oxidative stress and protein misfolding in tea plants, whereas flavonoids can chelate heavy metals to protect plants from oxidative stress caused by metal exposure. Nevertheless, the role of catechins in flavonoid synthesis and nutrient metabolism under selenium stress remains unidentified. Combining Word2vec and HNSW utilizing UHPLC-Q-Orbitrap HRMS-MS/MS to implement rapid matching annotation of the structural information on metabolites in Fu tea, we found that selenium-mediated changes in catechins in Fu tea were mainly associated with flavonoid biosynthesis pathways. The results demonstrated that selenium treatment increased benign selenol analogues (glutathioselenol) in tea and identified the novel selenopeptide PRSeMW (m/z 636.22571, Pro-Arg-SeMet-Trp) in selenium-enriched Fu tea samples to enhance the health benefits of tea. The selenium levels were negatively correlated with N5-ethyl-l-glutamine (11.63 to 4.26 mg kg-1) and (-)-epigallocatechin (13.26 to 11.19 mg kg-1), increasing the accumulation of tea polyphenols ((-)-catechin gallate, (-)-epigallocatechin 3-gallate, and (+)-gallocatechin), and decreasing the level of caffeine. These discoveries provide new insights into the mechanism of tea polyphenol-mediated transformation of selenium in Fu tea and theoretical support for the quality assessment of selenium-enriched tea.
Collapse
Affiliation(s)
- Aiai Guo
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wei Jia
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China
| | - Xin Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
6
|
Stincone P, Naimi A, Saviola AJ, Reher R, Petras D. Decoding the molecular interplay in the central dogma: An overview of mass spectrometry-based methods to investigate protein-metabolite interactions. Proteomics 2024; 24:e2200533. [PMID: 37929699 DOI: 10.1002/pmic.202200533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
With the emergence of next-generation nucleotide sequencing and mass spectrometry-based proteomics and metabolomics tools, we have comprehensive and scalable methods to analyze the genes, transcripts, proteins, and metabolites of a multitude of biological systems. Despite the fascinating new molecular insights at the genome, transcriptome, proteome and metabolome scale, we are still far from fully understanding cellular organization, cell cycles and biology at the molecular level. Significant advances in sensitivity and depth for both sequencing as well as mass spectrometry-based methods allow the analysis at the single cell and single molecule level. At the same time, new tools are emerging that enable the investigation of molecular interactions throughout the central dogma of molecular biology. In this review, we provide an overview of established and recently developed mass spectrometry-based tools to probe metabolite-protein interactions-from individual interaction pairs to interactions at the proteome-metabolome scale.
Collapse
Affiliation(s)
- Paolo Stincone
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of Tuebingen, Center for Plant Molecular Biology, Tuebingen, Germany
| | - Amira Naimi
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | | | - Raphael Reher
- University of Marburg, Institute of Pharmaceutical Biology and Biotechnology, Marburg, Germany
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Infection Medicine, Tuebingen, Germany
- University of California Riverside, Department of Biochemistry, Riverside, USA
| |
Collapse
|
7
|
Berger T, Alenfelder J, Steinmüller S, Heimann D, Gohain N, Petras D, Wang M, Berger R, Kostenis E, Reher R. A MassQL-Integrated Molecular Networking Approach for the Discovery and Substructure Annotation of Bioactive Cyclic Peptides. JOURNAL OF NATURAL PRODUCTS 2024; 87:692-704. [PMID: 38385767 DOI: 10.1021/acs.jnatprod.3c00750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The marine sponge-derived fungus Stachylidium bicolor 293 K04 is a prolific producer of specialized metabolites, including certain cyclic tetrapeptides called endolides, which are characterized by the presence of the unusual amino acid N-methyl-3-(3-furyl)-alanine. This rare feature can be used as bait to detect new endolide-like analogs through customized fragment pattern searches of tandem mass spectrometry data using the Mass Spec Query Language (MassQL). Here, we integrate endolide-specific MassQL queries with molecular networking to obtain substructural information guiding the targeted isolation and structure elucidation of the new proline-containing endolides E (1) and F (2). We showed that endolide F (but not E) is a moderate antagonist of the arginine vasopressin V1A receptor, a member of the G protein-coupled receptor superfamily.
Collapse
Affiliation(s)
- Tim Berger
- Institute for Pharmaceutical Biology and Biotechnology, Department of Pharmacy, Philipps-University Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| | - Judith Alenfelder
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Sophie Steinmüller
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Dominik Heimann
- Department of Chemical Biology, Helmholtz Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Namrata Gohain
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Daniel Petras
- Interfaculty of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Germany
| | - Mingxun Wang
- Department of Computer Science, University of California Riverside, Riverside, California 92507, United States
| | - Robert Berger
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Raphael Reher
- Institute for Pharmaceutical Biology and Biotechnology, Department of Pharmacy, Philipps-University Marburg, Robert-Koch-Straße 4, 35037 Marburg, Germany
| |
Collapse
|
8
|
Gribble GW. A Survey of Recently Discovered Naturally Occurring Organohalogen Compounds. JOURNAL OF NATURAL PRODUCTS 2024; 87:1285-1305. [PMID: 38375796 DOI: 10.1021/acs.jnatprod.3c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The discovery of naturally occurring organohalogen compounds has increased astronomically in the 55 years since they were first discovered─from fewer than 50 in 1968 to a combined 7,958 described examples in three comprehensive reviews. The present survey, which covers the period 2021-2023, brings the number of known natural organohalogens to approximately 8,400. The organization is according to species origin, and coverage includes marine and terrestrial plants, fungi, bacteria, marine sponges, corals, cyanobacteria, tunicates, and other marine organisms.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
9
|
Thukral M, Allen AE, Petras D. Progress and challenges in exploring aquatic microbial communities using non-targeted metabolomics. THE ISME JOURNAL 2023; 17:2147-2159. [PMID: 37857709 PMCID: PMC10689791 DOI: 10.1038/s41396-023-01532-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023]
Abstract
Advances in bioanalytical technologies are constantly expanding our insights into complex ecosystems. Here, we highlight strategies and applications that make use of non-targeted metabolomics methods in aquatic chemical ecology research and discuss opportunities and remaining challenges of mass spectrometry-based methods to broaden our understanding of environmental systems.
Collapse
Affiliation(s)
- Monica Thukral
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA
- J. Craig Venter Institute, Microbial and Environmental Genomics Group, La Jolla, CA, USA
| | - Andrew E Allen
- University of California San Diego, Scripps Institution of Oceanography, La Jolla, CA, USA
- J. Craig Venter Institute, Microbial and Environmental Genomics Group, La Jolla, CA, USA
| | - Daniel Petras
- University of Tuebingen, CMFI Cluster of Excellence, Tuebingen, Germany.
- University of California Riverside, Department of Biochemistry, Riverside, CA, USA.
| |
Collapse
|
10
|
Mullowney MW, Duncan KR, Elsayed SS, Garg N, van der Hooft JJJ, Martin NI, Meijer D, Terlouw BR, Biermann F, Blin K, Durairaj J, Gorostiola González M, Helfrich EJN, Huber F, Leopold-Messer S, Rajan K, de Rond T, van Santen JA, Sorokina M, Balunas MJ, Beniddir MA, van Bergeijk DA, Carroll LM, Clark CM, Clevert DA, Dejong CA, Du C, Ferrinho S, Grisoni F, Hofstetter A, Jespers W, Kalinina OV, Kautsar SA, Kim H, Leao TF, Masschelein J, Rees ER, Reher R, Reker D, Schwaller P, Segler M, Skinnider MA, Walker AS, Willighagen EL, Zdrazil B, Ziemert N, Goss RJM, Guyomard P, Volkamer A, Gerwick WH, Kim HU, Müller R, van Wezel GP, van Westen GJP, Hirsch AKH, Linington RG, Robinson SL, Medema MH. Artificial intelligence for natural product drug discovery. Nat Rev Drug Discov 2023; 22:895-916. [PMID: 37697042 DOI: 10.1038/s41573-023-00774-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Developments in computational omics technologies have provided new means to access the hidden diversity of natural products, unearthing new potential for drug discovery. In parallel, artificial intelligence approaches such as machine learning have led to exciting developments in the computational drug design field, facilitating biological activity prediction and de novo drug design for molecular targets of interest. Here, we describe current and future synergies between these developments to effectively identify drug candidates from the plethora of molecules produced by nature. We also discuss how to address key challenges in realizing the potential of these synergies, such as the need for high-quality datasets to train deep learning algorithms and appropriate strategies for algorithm validation.
Collapse
Affiliation(s)
| | - Katherine R Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Somayah S Elsayed
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Neha Garg
- School of Chemistry and Biochemistry, Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Justin J J van der Hooft
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nathaniel I Martin
- Biological Chemistry Group, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - David Meijer
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Barbara R Terlouw
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Friederike Biermann
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Kai Blin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Marina Gorostiola González
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
- ONCODE institute, Leiden, The Netherlands
| | - Eric J N Helfrich
- Institute of Molecular Bio Science, Goethe-University Frankfurt, Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Florian Huber
- Center for Digitalization and Digitality, Hochschule Düsseldorf, Düsseldorf, Germany
| | - Stefan Leopold-Messer
- Institut für Mikrobiologie, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Kohulan Rajan
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University Jena, Jena, Germany
| | - Tristan de Rond
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Jeffrey A van Santen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria Sorokina
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller University, Jena, Germany
- Pharmaceuticals R&D, Bayer AG, Berlin, Germany
| | - Marcy J Balunas
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Mehdi A Beniddir
- Équipe "Chimie des Substances Naturelles", Université Paris-Saclay, CNRS, BioCIS, Orsay, France
| | - Doris A van Bergeijk
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Laura M Carroll
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
| | - Chase M Clark
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Chao Du
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | - Francesca Grisoni
- Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | | | - Willem Jespers
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Drug Bioinformatics, Medical Faculty, Saarland University, Homburg, Germany
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | | | - Hyunwoo Kim
- College of Pharmacy and Integrated Research Institute for Drug Development, Dongguk University Seoul, Goyang-si, Republic of Korea
| | - Tiago F Leao
- Center for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Joleen Masschelein
- Center for Microbiology, VIB-KU Leuven, Heverlee, Belgium
- Department of Biology, KU Leuven, Heverlee, Belgium
| | - Evan R Rees
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Raphael Reher
- Institute of Pharmaceutical Biology and Biotechnology, University of Marburg, Marburg, Germany
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel Reker
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Duke Microbiome Center, Duke University, Durham, NC, USA
| | - Philippe Schwaller
- Laboratory of Artificial Chemical Intelligence, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | | | - Michael A Skinnider
- Adapsyn Bioscience, Hamilton, Ontario, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Allison S Walker
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Egon L Willighagen
- Department of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Maastricht, The Netherlands
| | - Barbara Zdrazil
- European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridgeshire, UK
| | - Nadine Ziemert
- Interfaculty Institute for Microbiology and Infection Medicine Tuebingen (IMIT), Institute for Bioinformatics and Medical Informatics (IBMI), University of Tuebingen, Tuebingen, Germany
| | | | - Pierre Guyomard
- Bonsai team, CRIStAL - Centre de Recherche en Informatique Signal et Automatique de Lille, Université de Lille, Villeneuve d'Ascq Cedex, France
| | - Andrea Volkamer
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
- In silico Toxicology and Structural Bioinformatics, Institute of Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - William H Gerwick
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Korea
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for infection research (DZIF), Braunschweig, Germany
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
- Netherlands Institute of Ecology, NIOO-KNAW, Wageningen, The Netherlands
| | - Gerard J P van Westen
- Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden, The Netherlands.
| | - Anna K H Hirsch
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
- Department of Pharmacy, Saarland University, Saarbrücken, Germany.
- German Center for infection research (DZIF), Braunschweig, Germany.
- Helmholtz International Lab for Anti-Infectives, Saarbrücken, Germany.
| | - Roger G Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada.
| | - Serina L Robinson
- Department of Environmental Microbiology, Eawag: Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
11
|
Holland DC, Carroll AR. Marine indole alkaloid diversity and bioactivity. What do we know and what are we missing? Nat Prod Rep 2023; 40:1595-1607. [PMID: 36790012 DOI: 10.1039/d2np00085g] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Covering: marine indole alkaloids (n = 2048) and their reported bioactivities up to the end of 2021Despite increasing numbers of marine natural products (MNPs) reported each year, most have only been examined for cytotoxic, antibacterial, and/or antifungal biological activities with the majority found to be inactive in these assays. In this context, why are natural products continuing to be examined in assays they are unlikely to show significant activity in, and what targets might be more useful for expanding knowledge of their biologically relevant chemical space? We have undertaken a meta-analysis of the biological activities for 2048 marine indole alkaloids (MIAs), a diverse sub-class of MNPs reported up to the end of 2021, and this has highlighted that the bioactivity potentials for up to 86% of published MIAs remains underexplored and/or undefined. Although most published MIAs are not cytotoxic or antimicrobial, there is a continued focus on using these assays to evaluate new structurally related analogues. Using cheminformatics analyses, the chemical diversity of the 2048 MIAs were clustered using fragment based fingerprints and their reported bioactivity potency towards specific disease targets was assessed for structure activity trends. These analyses showed that there are groups of MIAs that possess potent and diverse activities and that many analogues, previously tested only in cellular toxicity assays, could be better exploited to generate structure activity relationships associated with leads to treat emerging diseases. A collection of indole drug and drug-lead structures from non-natural sources were also incorporated into the dataset providing complementary bioactivity profiles that were further used to predict underexplored areas of potential new activity and to better direct future testing of MIAs. Our findings clearly suggest the biological evaluation of MIAs continues to be conducted on a narrow range of bioassays and disease targets, and that shifting the focus to non-toxic disease targets should provide expanded knowledge of biologically relevant chemical space aimed at maximising the potential of MIAs for drug discovery.
Collapse
Affiliation(s)
- Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia.
| |
Collapse
|
12
|
Bader CD, Nichols AL, Yang D, Shen B. Interplay of emerging and established technologies drives innovation in natural product antibiotic discovery. Curr Opin Microbiol 2023; 75:102359. [PMID: 37517368 DOI: 10.1016/j.mib.2023.102359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
A continued rise of antibiotic resistance and shortages of effective antibiotics necessitate the discovery and development of new antibiotics with novel modes of action (MoAs) against resistant pathogens. While natural products remain the best resource for antibiotic discovery, their exploration faces many challenges, including (i) unknown MoAs, (ii) high rediscovery rates, (iii) tedious isolation and structure elucidation, and (iv) insufficient production for further development. We have identified recent innovations in screening methods, microbiology, bioinformatics, and metabolomics technologies, as well as natural product-inspired synthesis and synthetic biology, that have contributed to new natural product antibiotics in the past two years. We highlight their interplay as the key element for successful applications, driving future opportunities to increase the pool of natural product-based antibacterial antibiotics.
Collapse
Affiliation(s)
- Chantal D Bader
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States
| | - Angela L Nichols
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, Florida 33458, United States; Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, Florida 33458, United States.
| |
Collapse
|
13
|
Reid DJ, Thibert S, Zhou M. Dissecting the structural heterogeneity of proteins by native mass spectrometry. Protein Sci 2023; 32:e4612. [PMID: 36851867 PMCID: PMC10031758 DOI: 10.1002/pro.4612] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/01/2023]
Abstract
A single gene yields many forms of proteins via combinations of posttranscriptional/posttranslational modifications. Proteins also fold into higher-order structures and interact with other molecules. The combined molecular diversity leads to the heterogeneity of proteins that manifests as distinct phenotypes. Structural biology has generated vast amounts of data, effectively enabling accurate structural prediction by computational methods. However, structures are often obtained heterologously under homogeneous states in vitro. The lack of native heterogeneity under cellular context creates challenges in precisely connecting the structural data to phenotypes. Mass spectrometry (MS) based proteomics methods can profile proteome composition of complex biological samples. Most MS methods follow the "bottom-up" approach, which denatures and digests proteins into short peptide fragments for ease of detection. Coupled with chemical biology approaches, higher-order structures can be probed via incorporation of covalent labels on native proteins that are maintained at the peptide level. Alternatively, native MS follows the "top-down" approach and directly analyzes intact proteins under nondenaturing conditions. Various tandem MS activation methods can dissect the intact proteins for in-depth structural elucidation. Herein, we review recent native MS applications for characterizing heterogeneous samples, including proteins binding to mixtures of ligands, homo/hetero-complexes with varying stoichiometry, intrinsically disordered proteins with dynamic conformations, glycoprotein complexes with mixed modification states, and active membrane protein complexes in near-native membrane environments. We summarize the benefits, challenges, and ongoing developments in native MS, with the hope to demonstrate an emerging technology that complements other tools by filling the knowledge gaps in understanding the molecular heterogeneity of proteins.
Collapse
Affiliation(s)
- Deseree J. Reid
- Chemical and Biological Signature SciencesPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Stephanie Thibert
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| | - Mowei Zhou
- Environmental Molecular Sciences LaboratoryPacific Northwest National LaboratoryRichlandWashingtonUSA
| |
Collapse
|
14
|
Hellinger R, Sigurdsson A, Wu W, Romanova EV, Li L, Sweedler JV, Süssmuth RD, Gruber CW. Peptidomics. NATURE REVIEWS. METHODS PRIMERS 2023; 3:25. [PMID: 37250919 PMCID: PMC7614574 DOI: 10.1038/s43586-023-00205-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/09/2023] [Indexed: 05/31/2023]
Abstract
Peptides are biopolymers, typically consisting of 2-50 amino acids. They are biologically produced by the cellular ribosomal machinery or by non-ribosomal enzymes and, sometimes, other dedicated ligases. Peptides are arranged as linear chains or cycles, and include post-translational modifications, unusual amino acids and stabilizing motifs. Their structure and molecular size render them a unique chemical space, between small molecules and larger proteins. Peptides have important physiological functions as intrinsic signalling molecules, such as neuropeptides and peptide hormones, for cellular or interspecies communication, as toxins to catch prey or as defence molecules to fend off enemies and microorganisms. Clinically, they are gaining popularity as biomarkers or innovative therapeutics; to date there are more than 60 peptide drugs approved and more than 150 in clinical development. The emerging field of peptidomics comprises the comprehensive qualitative and quantitative analysis of the suite of peptides in a biological sample (endogenously produced, or exogenously administered as drugs). Peptidomics employs techniques of genomics, modern proteomics, state-of-the-art analytical chemistry and innovative computational biology, with a specialized set of tools. The complex biological matrices and often low abundance of analytes typically examined in peptidomics experiments require optimized sample preparation and isolation, including in silico analysis. This Primer covers the combination of techniques and workflows needed for peptide discovery and characterization and provides an overview of various biological and clinical applications of peptidomics.
Collapse
Affiliation(s)
- Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Arnar Sigurdsson
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | - Wenxin Wu
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Elena V Romanova
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Lingjun Li
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Wang Z, Chen X, Liu Q, Zhang L, Liu S, Su Y, Ren Y, Yuan C. Untargeted metabolomics analysis based on LC-IM-QTOF-MS for discriminating geographical origin and vintage of Chinese red wine. Food Res Int 2023; 165:112547. [PMID: 36869536 DOI: 10.1016/j.foodres.2023.112547] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Identifying wine geographical origin and vintage is vital due to the abundance of fraudulent activity associated with wine mislabeling of region and vintage. In this study, an untargeted metabolomic approach based on liquid chromatography/ion mobility quadrupole time-of-flight mass spectrometry (LC-IM-QTOF-MS) was used to discriminate wine geographical origin and vintage. Wines were well discriminated according to region and vintage with orthogonal partial least squares-discriminant analysis (OPLS-DA). The differential metabolites subsequently were screened by OPLS-DA with pairwise modeling. 42 and 48 compounds in positive and negative ionization modes were screened as differential metabolitesfor the discrimination of different wine regions, and 37 and 35 compounds were screened for wine vintage. Furthermore, new OPLS-DA models were performed using these compounds, and the external verification trial showed excellent practicality with an accuracy over 84.2%. This study indicated that LC-IM-QTOF-MS-based untargeted metabolomics was a feasible tool for wine geographical origin and vintage discrimination.
Collapse
Affiliation(s)
- Zhaoxiang Wang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Xiaoyi Chen
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Qianqian Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Lin Zhang
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Shuai Liu
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yingyue Su
- College of Enology, Northwest A&F University, Yangling 712100, China
| | - Yamei Ren
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China.
| | - Chunlong Yuan
- College of Enology, Northwest A&F University, Yangling 712100, China; Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station of Northwest A&F University, Yongning, Ningxia 750104, China.
| |
Collapse
|
16
|
Mass spectrometry of intact membrane proteins: shifting towards a more native-like context. Essays Biochem 2023; 67:201-213. [PMID: 36807530 PMCID: PMC10070488 DOI: 10.1042/ebc20220169] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/23/2023]
Abstract
Integral membrane proteins are involved in a plethora of biological processes including cellular signalling, molecular transport, and catalysis. Many of these functions are mediated by non-covalent interactions with other proteins, substrates, metabolites, and surrounding lipids. Uncovering such interactions and deciphering their effect on protein activity is essential for understanding the regulatory mechanisms underlying integral membrane protein function. However, the detection of such dynamic complexes has proven to be challenging using traditional approaches in structural biology. Native mass spectrometry has emerged as a powerful technique for the structural characterisation of membrane proteins and their complexes, enabling the detection and identification of protein-binding partners. In this review, we discuss recent native mass spectrometry-based studies that have characterised non-covalent interactions of membrane proteins in the presence of detergents or membrane mimetics. We additionally highlight recent progress towards the study of membrane proteins within native membranes and provide our perspective on how these could be combined with recent developments in instrumentation to investigate increasingly complex biomolecular systems.
Collapse
|
17
|
Gago F. Computational Approaches to Enzyme Inhibition by Marine Natural Products in the Search for New Drugs. Mar Drugs 2023; 21:100. [PMID: 36827141 PMCID: PMC9961086 DOI: 10.3390/md21020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/03/2023] Open
Abstract
The exploration of biologically relevant chemical space for the discovery of small bioactive molecules present in marine organisms has led not only to important advances in certain therapeutic areas, but also to a better understanding of many life processes. The still largely untapped reservoir of countless metabolites that play biological roles in marine invertebrates and microorganisms opens new avenues and poses new challenges for research. Computational technologies provide the means to (i) organize chemical and biological information in easily searchable and hyperlinked databases and knowledgebases; (ii) carry out cheminformatic analyses on natural products; (iii) mine microbial genomes for known and cryptic biosynthetic pathways; (iv) explore global networks that connect active compounds to their targets (often including enzymes); (v) solve structures of ligands, targets, and their respective complexes using X-ray crystallography and NMR techniques, thus enabling virtual screening and structure-based drug design; and (vi) build molecular models to simulate ligand binding and understand mechanisms of action in atomic detail. Marine natural products are viewed today not only as potential drugs, but also as an invaluable source of chemical inspiration for the development of novel chemotypes to be used in chemical biology and medicinal chemistry research.
Collapse
Affiliation(s)
- Federico Gago
- Department of Biomedical Sciences & IQM-CSIC Associate Unit, School of Medicine and Health Sciences, University of Alcalá, E-28805 Madrid, Alcalá de Henares, Spain
| |
Collapse
|
18
|
Microbiome and Metabolomics in Liver Cancer: Scientific Technology. Int J Mol Sci 2022; 24:ijms24010537. [PMID: 36613980 PMCID: PMC9820585 DOI: 10.3390/ijms24010537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/30/2022] Open
Abstract
Primary liver cancer is a heterogeneous disease. Liver cancer metabolism includes both the reprogramming of intracellular metabolism to enable cancer cells to proliferate inappropriately and adapt to the tumor microenvironment and fluctuations in regular tissue metabolism. Currently, metabolomics and metabolite profiling in liver cirrhosis, liver cancer, and hepatocellular carcinoma (HCC) have been in the spotlight in terms of cancer diagnosis, monitoring, and therapy. Metabolomics is the global analysis of small molecules, chemicals, and metabolites. Metabolomics technologies can provide critical information about the liver cancer state. Here, we review how liver cirrhosis, liver cancer, and HCC therapies interact with metabolism at the cellular and systemic levels. An overview of liver metabolomics is provided, with a focus on currently available technologies and how they have been used in clinical and translational research. We also list scalable methods, including chemometrics, followed by pathway processing in liver cancer. We conclude that important drivers of metabolomics science and scientific technologies are novel therapeutic tools and liver cancer biomarker analysis.
Collapse
|