1
|
Tian Y, Wang J, Chen H, Lin H, Wu S, Zhang Y, Tian M, Meng J, Saeed W, Liu W, Chen X. Electrospun multifunctional nanofibers for advanced wearable sensors. Talanta 2025; 283:127085. [PMID: 39490308 DOI: 10.1016/j.talanta.2024.127085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
The multifunctional extension of fiber-based wearable sensors determines their integration and sustainable development, with electrospinning technology providing reliable, efficient, and scalable support for fabricating these sensors. Despite numerous studies on electrospun fiber-based wearable sensors, further attention is needed to leverage composite structural engineering for functionalizing electrospun fibers. This paper systematically reviews the research progress on fiber-based multifunctional wearable sensors in terms of design concept, device fabrication, mechanism exploration, and application potential. Firstly, the basics of electrospinning are briefly introduced, including its development, principles, parameters, and material selection. Tactile sensors, as crucial components of wearable sensors, are discussed in detail, encompassing their performance parameters, transduction mechanisms, and preparation strategies for pressure, strain, temperature, humidity, and bioelectrical signal sensors. The main focus of the article is on the latest research progress in multifunctional sensing design concepts, multimodal decoupling mechanisms, sensing mechanisms, and functional extensions. These extensions include multimodal sensing, self-healing, energy harvesting, personal thermal management, EMI shielding, antimicrobial properties, and other capabilities. Furthermore, the review assesses existing challenges and outlines future developments for multifunctional wearable sensors, highlighting the need for continued research and innovation.
Collapse
Affiliation(s)
- Ye Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China; School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China; The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Junhao Wang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haojie Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Haibin Lin
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Shulei Wu
- Key Laboratory of Polymer Materials and Products, College of Materials Science and Engineering, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yifan Zhang
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Meng Tian
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Jiaqi Meng
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Waqas Saeed
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Wei Liu
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Xing Chen
- School of Mechanical and Electrical Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
2
|
Yang J, Liu W, Wang W. A supramolecular hydrogel leveraging hierarchical multi-strength hydrogen-bonds hinged strategy achieving a striking adhesive-mechanical balance. Bioact Mater 2025; 43:32-47. [PMID: 39318637 PMCID: PMC11421952 DOI: 10.1016/j.bioactmat.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
To obtain high-performance tissue-adhesive hydrogel embodying excellent mechanical integrity, a supramolecular hydrogel patch is fabricated through in situ copolymerization of a liquid-liquid phase separation precursor composed of self-complementary 2-2-ureido-4-pyrimidone-based monomer and acrylic acid coupled with subsequent corporation of bioactive epigallocatechin gallate. Remarkably, the prepared supramolecular hydrogel leverages hierarchical multi-strength hydrogen-bonds hinged strategy assisted by alkyl-based hydrophobic pockets, broadening the distribution of binding strength of physical junctions, striking a canonical balance between superb mechanical performance and robust adhesive capacity. Ultimately, the fabricated supramolecular hydrogel patch stands out as a high stretchability (1500 %), an excellent tensile strength (2.6 MPa), a superhigh toughness (12.6 MJ m-3), an instant and robust tissue adhesion strength (263.2 kPa for porcine skin), the considerable endurance under cyclic loading and reversible adhesion, a superior burst pressure tolerance (108 kPa) to those of commercially-available tissue sealants, and outstanding anti-swelling behavior. The resultant supramolecular hydrogel patch demonstrates the rapid hemorrhage control within 60 s in liver injury and efficient wound closure and healing effects with alleviated inflammation and reduced scarring in full-thickness skin incision, confirming its medical translation as a promising self-rescue tissue-adhesive patch for hemorrhage prevention and sutureless wound closure.
Collapse
Affiliation(s)
- Jumin Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
| | - Wei Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin, 300350, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
3
|
Sun F, Zhang J, Liu T, Yao H, Wang L, Meng H, Gao Y, Cao Y, Yao B, Xu J, Fu J. A Versatile Microporous Design toward Toughened yet Softened Self-Healing Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410650. [PMID: 39460439 DOI: 10.1002/adma.202410650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/09/2024] [Indexed: 10/28/2024]
Abstract
Realizing the full potential of self-healing materials in stretchable electronics necessitates not only low modulus to enable high adaptivity, but also high toughness to resist crack propagation. However, existing toughening strategies for soft self-healing materials have only modestly improves mechanical dissipation near the crack tip (ГD), and invariably compromise the material's inherent softness and autonomous healing capabilities. Here, a synthetic microporous architecture is demonstrated that unprecedently toughens and softens self-healing materials without impacting their intrinsic self-healing kinetics. This microporous structure spreads energy dissipation across the entire material through a bran-new dissipative mode of adaptable crack movement (ГA), which substantially increases the fracture toughness by 31.6 times, from 3.19 to 100.86 kJ m-2, and the fractocohesive length by 20.7 times, from 0.59 mm to 12.24 mm. This combination of unprecedented fracture toughness (100.86 kJ m-2) and centimeter-scale fractocohesive length (1.23 cm) surpasses all previous records for synthetic soft self-healing materials and even exceeds those of light alloys. Coupled with significantly enhanced softness (0.43 MPa) and nearly perfect autonomous self-healing efficiency (≈100%), this robust material is ideal for constructing durable kirigami electronics for wearable devices.
Collapse
Affiliation(s)
- FuYao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JingYi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Liu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hai Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - HengYu Meng
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - YunLong Gao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - YanFeng Cao
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - BoWen Yao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JianHua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - JiaJun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
4
|
Long Q, Jiang G, Zhou J, Zhao D, Yu H. A Cellulose Ionogel with Rubber-Like Stretchability for Low-Grade Heat Harvesting. RESEARCH (WASHINGTON, D.C.) 2024; 7:0533. [PMID: 39559347 PMCID: PMC11570788 DOI: 10.34133/research.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/20/2024]
Abstract
Achieving rubber-like stretchability in cellulose ionogels presents a substantial challenge due to the intrinsically extended chain configuration of cellulose. Inspired by the molecular configuration of natural rubber, we address this challenge by using cyanoethyl as a substitute for 1.5 hydroxyl on the D-glucose unit of cellulose. This strategy innovatively triggers the transformation of cellulose molecules into a coiled chain configuration, facilitating the creation of an ultra-stretchable ionogel free from any petrochemical polymers. The resultant ionogel demonstrates mechanical ductility comparable to that of a rubber band, achieving an elongation strain of nearly 1,000% while maintaining a tensile strength of up to 1.8 MPa and exhibiting a biomodulus akin to that of human skin, recorded at 63 kPa. Additionally, this stretchable ionogel presents skin-like self-healing behavior, favorable biocompatibility, and noteworthy thermoelectric properties, highlighted by a Seebeck coefficient of approximately 68 mV K-1. This study delineates a feasible molecular approach for developing stretchable ionogels from biomass resources, potentially revolutionizing self-powered stretchable electronics for integration with human tissues and skin.
Collapse
Affiliation(s)
- Qian Long
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education,
Shenyang University of Chemical Technology, Shenyang, China
| | - Geyuan Jiang
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education,
Shenyang University of Chemical Technology, Shenyang, China
| | - Jianfei Zhou
- College of Biomass Science and Engineering,
Sichuan University, Chengdu, China
| | - Dawei Zhao
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education,
Shenyang University of Chemical Technology, Shenyang, China
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education,
Northeast Forestry University, Harbin, China
| |
Collapse
|
5
|
Kong X, Zhu Y, Xu H, Ye J, Wang S, Xu H, Zhang R, Tang H, Wang D, Cai D. Three birds with one stone: Sewage sludge deep-drying in 1 hour using secondary aluminum ash to fabricate bricks. WATER RESEARCH 2024; 266:122346. [PMID: 39232256 DOI: 10.1016/j.watres.2024.122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Due to the high moisture, strong hydrophilicity, and hard compressibility of sewage sludge (SS), it is difficult to realize the high-efficiency drying. Herein, a novel SS drying technology was developed to quickly and deeply reduce the moisture of SS from 75.6% to 38.5% in 1 h. During the process, secondary aluminum ash (SAA), a solid waste, was added to SS and acted as skeletons to form plenty of channels. Subsequently, NaOH was added and reacted with SAA to produce a lot of heat, resulting in a rapid temperature rise of the system from 20 to 105°C in 60 s. The heat could effectively remove water from these channels, which could be proved by the T1-T2 maps of in-site Low-Field 1H nuclear magnetic resonance. In addition, the extracellular polymeric substances were decomposed by SAA/NaOH successfully, and thus the SS became hydrophobic, favoring the drying. Finally, the dried SS could be used to fabricate unburned bricks. Thus, this work provides a promising method to realize the rapid SS deep drying and high-efficiency utilization of SAA and dried SS.
Collapse
Affiliation(s)
- Xianghai Kong
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Jinghong Ye
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Shuang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Heliang Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China
| | - Rongjun Zhang
- Weifang Shangchang Ecological Agriculture Technology Co., LTD, Weifang, PR China
| | - Hongxia Tang
- Shanghai Solid Waste and Chemical Management Technology Center, Shanghai, 200235, PR China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
6
|
Ren Z, Guo F, Wen Y, Yang Y, Liu J, Cheng S. Strong and anti-swelling nanofibrous hydrogel composites inspired by biological tissue for amphibious motion sensors. MATERIALS HORIZONS 2024; 11:5600-5613. [PMID: 39229702 DOI: 10.1039/d4mh01025f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Conductive hydrogel-based sensors are increasingly favored for flexible electronics due to their skin-like characteristics. However, conventional hydrogels suffer from significant swelling in humid environments and poor mechanical properties which largely restrict their applications in wearable electronic devices, especially for underwater sensing. Herein, drawing inspiration from the extracellular matrix (ECM) structure, a TPU-PVAc@AgNPs/MXene nanofibrous hydrogel composite (TPAMH) with excellent mechanical robustness and anti-swelling properties is developed. The TPAMH nanofibrous hydrogel composite is created by integrating the silver nanoparticles (AgNPs) and MXene nanosheets into an interwoven network comprising of stiff TPU nanofibers as the fibril scaffold and formic acid-crosslinked PVA hydrogel fibers as the elastic matrix (PVAc). Benefiting from the unique ECM structure, the obtained nanofibrous hydrogel composites exhibit exceptional tensile strength (4.47 MPa), remarkable elongation at break (621%), excellent anti-swelling properties, and high detection sensitivity (maximum gauge factor = 105.02), which are sufficient to monitor body motions in both air and water environments effectively. They can detect large strain movements of fingers, elbows, wrists, and knees, as well as small strain physiological signals such as frown, smile, and pulse beats, with high accuracy. Particularly noteworthy is their ability to accurately identify underwater multidirectional motions and facilitate underwater smart alarms using Morse code.
Collapse
Affiliation(s)
- Zheng Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Fang Guo
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Yong Wen
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Yang Yang
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Jinxin Liu
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| | - Si Cheng
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
7
|
Dang C, Shao Y, Ding S, Qi H, Zhai W. Polyfunctional and Multisensory Bio-Ionoelastomers Enabled by Covalent Adaptive Networks With Hierarchically Dynamic Bonding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406967. [PMID: 39248650 DOI: 10.1002/adma.202406967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Developing versatile ionoelastomers, the alternatives to hydrogels and ionogels, will boost the advancement of high-performance ionotronic devices. However, meeting the requirements of bio-derivation, high toughness, high stretchability, autonomous self-healing ability, high ionic conductivity, reprocessing, and favorable recyclability in a single ionoelastomer remains a challenging endeavor. Herein, a dynamic covalent and supramolecular design, lipoic acid (LA)-based dynamic covalent ionoelastomer (DCIE), is proposed via melt building covalent adaptive networks with hierarchically dynamic bonding (CAN-HDB), wherein lithium bonds aid in the dissociation of ions and the integration of dynamic disulfide metathesis, lithium bonds, and binary hydrogen bonds enhances the mechanical performances, self-healing capability, reprocessing, and recyclability. Therefore, the trade-off among mechanical versatility, ionic conductivity, self-healing capability, reprocessing, and recyclability is successfully handled. The obtained DCIE demonstrates remarkable stretchability (1011.7%), high toughness (3877 kJ m-3), high ionic conductivity (3.94 × 10-4 S m-1), outstanding self-healing capability, reprocessing for 3D printing, and desirable recyclability. Significantly, the selective ion transport endows the DCIE with multisensory feature capable of generating continuous electrical signals for high-quality sensations towards temperature, humidity, and strain. Coupled with the straightforward methodology, abundant availability of LA and HPC, as well as multifunction, the DCIEs present new concept of advanced ionic conductors for developing soft ionotronics.
Collapse
Affiliation(s)
- Chao Dang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Yizhe Shao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
- State Key Laboratory for Strength and Vibration of Mechanical Structure, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Shuwei Ding
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| |
Collapse
|
8
|
Chu C, Sun W, Chen S, Jia Y, Ni Y, Wang S, Han Y, Zuo H, Chen H, You Z, Zhu M. Squid-Inspired Anti-Salt Skin-Like Elastomers With Superhigh Damage Resistance for Aquatic Soft Robots. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406480. [PMID: 39267419 DOI: 10.1002/adma.202406480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Indexed: 09/17/2024]
Abstract
Cephalopod skins evolve multiple functions in response to environmental adaptation, encompassing nonlinear mechanoreponse, damage tolerance property, and resistance to seawater. Despite tremendous progress in skin-mimicking materials, the integration of these desirable properties into a single material system remains an ongoing challenge. Here, drawing inspiration from the structure of reflectin proteins in cephalopod skins, a long-term anti-salt elastomer with skin-like nonlinear mechanical properties and extraordinary damage resistance properties is presented. Cation-π interaction is incorporated to induce the geometrically confined nanophases of hydrogen bond domains, resulting in elastomers with exceptional true tensile strength (456.5 ± 68.9 MPa) and unprecedently high fracture energy (103.7 ± 45.7 kJ m-2). Furthermore, the cation-π interaction effectively protects the hydrogen bond domains from corrosion by high-concentration saline solution. The utilization of the resultant skin-like elastomer has been demonstrated by aquatic soft robotics capable of grasping sharp objects. The combined advantages render the present elastomer highly promising for salt enviroment applications, particularly in addressing the challenges posed by sweat, in vivo, and harsh oceanic environments.
Collapse
Affiliation(s)
- Chengzhen Chu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shuo Chen
- College of Biological Science and Medical Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yujie Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufeng Ni
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Shaofan Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Yufei Han
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Han Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Huifang Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Zhengwei You
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Institute of Functional Materials, College of Materials Science and Engineering, Research Base of Textile Materials for Flexible Electronics and Biomedical Applications (China Textile Engineering Society), Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
9
|
Zhang J, Sun F, Xu J, Zhao ZH, Fu J. Research Progress of Human Biomimetic Self-Healing Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408199. [PMID: 39466995 DOI: 10.1002/smll.202408199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/14/2024] [Indexed: 10/30/2024]
Abstract
Humans can heal themselves after injury, which inspires researchers to develop bionic self-healing materials. Such materials not only equipped with the self-repair capacities akin to those of the human body, but also emulate the mechanical properties of human organs, including the tensile resilience of muscles, the fatigue resistance of skin, and the elevated modulus typical of cartilage. Based on the design concept of imitating the structure of human organs, the bionic self-healing material perfectly solves the problem of poor mechanical properties of self-healing materials caused by weak bond energy and inter-chain flow. This review discusses various organ-inspired self-healing materials in detail, summarizes their synthetic principles and introduces their fascinating mechanical properties. Finally, the application prospects of bionic self-healing polymer materials, such as bio-strain sensors, self-healing anticorrosive coatings, biomedical detection, etc., are outlined. Considering the excellent comprehensive performance and multi-functions of human biomimetic self-healing polymers, more outstanding sustainable materials will be developed, accelerating research progress in self-healing materials and realizing environmentally friendly products in multiple fields.
Collapse
Affiliation(s)
- Jingyi Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Fuyao Sun
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jianhua Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Zi-Han Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Jiajun Fu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| |
Collapse
|
10
|
Jiang X, Cheng Y, Shi L, Sun J, Wang R. A Soft, Fatigue-free, and Self-healable Ionic Elastomer via the Synergy of Skin-like Assembly and Bouligand Structure. Angew Chem Int Ed Engl 2024; 63:e202411418. [PMID: 38984508 DOI: 10.1002/anie.202411418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Soft ionic elastomers that are self-healable, fatigue-free, and environment-tolerant are ideal structural and sensing materials for artificial prosthetics, soft electronics, and robotics to survive unpredictable service conditions. However, most synthetic strategies failed to unite rapid healing, fatigue resistance, and environmental robustness, limited by their singular compositional/structural designs. Here, we present a soft, tough, fatigue-resistant, and self-healable ionic elastomer (STFSI elastomer), which fuses skin-like binary assembly and Bouligand helicoidal structure into a composite of thermoplastic polyurethane (TPU) fibers and a supramolecular ionic biopolymer. The interlocked binary assembly enables skin-like softness, high stretchability, and strain-adaptive stiffening through a matrix-to-scaffold stress transfer. The Bouligand structure contributes to superhigh fracture toughness (101.6 kJ m-2) and fatigue resistance (4937 J m-2) via mechanical toughening by interlayer slipping and twisted crack propagation path. Besides, the STFSI elastomer is self-healable through a "bridging" method and environment-tolerant (-20 °C, strong acid/alkali, saltwater). To demonstrate the versatile structural and sensing applications, we showcase a safety cushion with efficient damping and suppressed rebounding, and a robotic sensor with excellent fatigue crack tolerance and instant sensation recovery upon cutting-off damage. Our presented synthetic strategy is generalizable to other fiber-reinforced tough polymers for applications involving demanding mechanical/environmental conditions.
Collapse
Affiliation(s)
- Xinyuan Jiang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Beijing, 100049, China
| | - Yin Cheng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai, 200050, China
| | - Liangjing Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai, 200050, China
| | - Jing Sun
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai, 200050, China
| | - Ranran Wang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai, 200050, China
- School of Chemistry and Materials Science, Hangzhou Institute of Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| |
Collapse
|
11
|
Yan X, Chen Y, Tan J, Zhang C, Xie Z, Zheng SY, Wang Q, Zhou Z, Yang J. Tough and stretchable ionic polyurethane foam for use in wearable devices. SOFT MATTER 2024; 20:8136-8143. [PMID: 39364663 DOI: 10.1039/d4sm00926f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Developing tough and conductive materials is crucial for the fields of wearable devices. However, soft materials like polyurethane (PU) are usually non-conductive, whereas conductive materials like carbon nanotubes (CNTs) are usually brittle. Besides, their composites usually face poor interfacial interactions, leading to a decline in performance in practical use. Here, we develop a stretchable PU/CNTs composite foam for use as a strain sensor. A cationic chain extender is incorporated to afford PU cationic groups and to regulate its mechanical properties, whose tensile strength is up to 12.30 MPa and breaking strain exceeds 1000%, and which shows considerable adhesion capability. Furthermore, porous PU foam is prepared via a salt-templating method and carboxylic CNTs with negative groups are loaded to afford the foam conductivity. The obtained foam shows high sensitivity to small strain (GF = 5.2) and exhibits outstanding long-term cycling performance, which is then used for diverse motion detection. The strategy illustrated here should provide new insights into the design of highly efficient PU-based sensors.
Collapse
Affiliation(s)
- Xuefeng Yan
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Yong Chen
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Jun Tan
- College of Biological, Chemical Science and Technology, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Cailiang Zhang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zeming Xie
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Si Yu Zheng
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Qi Wang
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
- Hexin Kuraray Micro Fiber Leather (Jiaxing) Co., Ltd., Jiaxing 314000, P. R. China
| | - Zhijun Zhou
- Zhejiang Hexin New Material Co., Ltd., Jiaxing 314000, P. R. China.
| | - Jintao Yang
- Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science & Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
12
|
Lee S, Ho DH, Jekal J, Cho SY, Choi YJ, Oh S, Choi YY, Lee T, Jang KI, Cho JH. Fabric-based lamina emergent MXene-based electrode for electrophysiological monitoring. Nat Commun 2024; 15:5974. [PMID: 39358330 PMCID: PMC11446925 DOI: 10.1038/s41467-024-49939-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 06/20/2024] [Indexed: 10/04/2024] Open
Abstract
Commercial wearable biosignal sensing technologies encounter challenges associated with irritation or discomfort caused by unwanted objects in direct contact with the skin, which can discourage the widespread adoption of wearable devices. To address this issue, we propose a fabric-based lamina emergent MXene-based electrode, a lightweight and flexible shape-morphing wearable bioelectrode. This work offers an innovative approach to biosignal sensing by harnessing the high electrical conductivity and low skin-to-electrode contact impedance of MXene-based dry electrodes. Its design, inspired by Nesler's pneumatic interference actuator, ensures stable skin-to-electrode contact, enabling robust biosignal detection in diverse situations. Extensive research is conducted on key design parameters, such as the width and number of multiple semicircular legs, the radius of the anchoring frame, and pneumatic pressure, to accommodate a wide range of applications. Furthermore, a real-time wireless electrophysiological monitoring system has been developed, with a signal-to-noise ratio and accuracy comparable to those of commercial bioelectrodes. This work excels in recognizing various hand gestures through a convolutional neural network, ultimately introducing a shape-morphing electrode that provides reliable, high-performance biosignal sensing for dynamic users.
Collapse
Affiliation(s)
- Sanghyun Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong Hae Ho
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Janghwan Jekal
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Soo Young Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Young Jin Choi
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea
| | - Saehyuck Oh
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Yoon Young Choi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
- Department of Bio and Brain Engineering, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
13
|
Zhao X, Zhou Y, Kwak W, Li A, Wang S, Dallenger M, Chen S, Zhang Y, Lium A, Chen J. A reconfigurable and conformal liquid sensor for ambulatory cardiac monitoring. Nat Commun 2024; 15:8492. [PMID: 39353899 PMCID: PMC11445489 DOI: 10.1038/s41467-024-52462-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 09/09/2024] [Indexed: 10/03/2024] Open
Abstract
The severe mismatch between solid bioelectronics and dynamic biological tissues has posed enduring challenges in the biomonitoring community. Here, we developed a reconfigurable liquid cardiac sensor capable of adapting to dynamic biological tissues, facilitating ambulatory cardiac monitoring unhindered by motion artifacts or interference from other biological activities. We employed an ultrahigh-resolution 3D scanning technique to capture tomographic images of the skin on the wrist. Then, we established a theoretical model to gain a deep understanding of the intricate interaction between our reconfigurable sensor and dynamic biological tissues. To properly elucidate the advantages of this sensor, we conducted cardiac monitoring alongside benchmarks such as the electrocardiogram. The liquid cardiac sensor was demonstrated to produce stable signals of high quality (23.1 dB) in ambulatory settings.
Collapse
Affiliation(s)
- Xun Zhao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - William Kwak
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aaron Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shaolei Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marklin Dallenger
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Songyue Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuqi Zhang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Allison Lium
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Dong Y, Ding Z, Bai Y, Lu L, Dong T, Li Q, Liu J, Chen S. Core-Shell Gel Nanofiber Scaffolds Constructed by Microfluidic Spinning toward Wound Repair and Tissue Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404433. [PMID: 39005186 PMCID: PMC11497022 DOI: 10.1002/advs.202404433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Growing demand for wound care resulting from the increasing chronic diseases and trauma brings intense pressure to global medical health service system. Artificial skin provides mechanical and microenvironmental support for wound, which is crucial in wound healing and tissue regeneration. However, challenges still remain in the clinical application of artificial skin since the lack of the synergy effect of necessary performance. In this study, a multi-functional artificial skin is fabricated through microfluidic spinning technology by using core-shell gel nanofiber scaffolds (NFSs). This strategy can precisely manipulate the microstructure of artificial skin under microscale. The as-prepared artificial skin demonstrates superior characteristics including surface wettability, breathability, high mechanical strength, strain sensitivity, biocompatibility and biodegradability. Notably, this artificial skin has the capability to deliver medications in a controlled and sustained manner, thereby accelerating the wound healing process. This innovative approach paves the way for the development of a new generation of artificial skin and introduces a novel concept for the structural design of the unique core-shell gel NFSs.
Collapse
Affiliation(s)
- Yue Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Zongkun Ding
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Yuting Bai
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ling‐Yu Lu
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ting Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Qing Li
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| | - Ji‐Dong Liu
- School of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Su Chen
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Chemical EngineeringJiangsu Key Laboratory of Fine Chemicals and Functional Polymer MaterialsNanjing Tech UniversityNanjing210009P. R. China
| |
Collapse
|
15
|
Li C, Tan Z, Shi X, Song D, Zhao Y, Zhang Y, Zhao Z, Zhang W, Qi J, Wang Y, Wang X, Tan Z, Liu N. Breathable, Adhesive, and Biomimetic Skin-Like Super Tattoo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406706. [PMID: 39206685 PMCID: PMC11515898 DOI: 10.1002/advs.202406706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Electronic tattoo, capable of imperceivably acquiring bio-electrical signals from the body, is broadly applied in healthcare and human-machine interface. Tattoo substrate, the foundation of electronic tattoo, is expected to be mechanically mimetic to skin, adhesive, and breathable, and yet remains highly challenging to achieve. Herein, the study mimics human skin and design a breathable, adhesive, and mechanically skin-like super tattoo substrate based on an ultra-thin film (≈2 µm). Similar to skin, super tattoo demonstrates strain-adaptive stiffening properties with high tear energy (5.4 kJ·m-2) and toughness (1.3 MJ·m-3). Superior to skin, it exhibits high adhesion, ionic conductivity, and permeability. A variety of conductive electrodes can be processed on it, showing the universality toward an ideal platform for electronic tattoo with stable and low contact impedance. Super tattoo-based electrodes can imperceivably and accurately monitor weak electromyography (EMG) of swallowing on the junction, providing effective guidance for rehabilitation training of dysphagia.
Collapse
Affiliation(s)
- Chuqi Li
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical EngineeringDalian University of TechnologyPanjinLiaoning124221P. R. China
| | - Zhiyuan Tan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xiaohu Shi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Dekui Song
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yan Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Zihan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Weifeng Zhang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Jiongyang Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yifang Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xin Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Zhenquan Tan
- State Key Laboratory of Fine Chemicals, Panjin Branch of School of Chemical EngineeringDalian University of TechnologyPanjinLiaoning124221P. R. China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
16
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
17
|
Xie Z, Zhu J, Dou Z, Zhang Y, Wang K, Wu K, Fu Q. Liquid metal interface mechanochemistry disentangles energy density and biaxial stretchability tradeoff in composite capacitor film. Nat Commun 2024; 15:7817. [PMID: 39242564 PMCID: PMC11379682 DOI: 10.1038/s41467-024-52234-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
Dielectric polymer composites for film capacitors have advanced significantly in recent decades, yet their practical implementation in industrial-scale, thin-film processing faces challenges, particularly due to limited biaxial stretchability. Here, we introduce a mechanochemical solution that applies liquid metal onto rigid dielectric fillers (e.g. boron nitride), dramatically transforming polymer-filler interface characteristics. This approach significantly reduces modulus mismatch and stress concentration at the interface region, enabling polypropylene composites to achieve biaxial stretching ratio up to 450 × 450%. Furthermore, liquid metal integration enhances boron nitride's dielectric polarization while maintaining inherent insulation, producing high-dielectric-constant, low-loss films. These films, only microns thick yet quasi square meters in area, achieve a 55% increase in energy density over commercial biaxially-oriented polypropylene (from 2.9 to 4.5 J cm-3 at 550 MV/m), keeping 90% discharge efficiency. Coupled with improved thermal conductivity, durability, and device capacitance, this distinctive interface engineering approach makes these composites promising for high-performance film capacitors.
Collapse
Affiliation(s)
- Zilong Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianan Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhengli Dou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yongzheng Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Ke Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Kai Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
18
|
Liu S, Wu Y, Jiang L, Xie W, Davis B, Wang M, Zhang L, Liu Y, Xing S, Dickey MD, Bai W. Highly Stretchable, Tissue-like Ag Nanowire-Enhanced Ionogel Nanocomposites as an Ionogel-Based Wearable Sensor for Body Motion Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46538-46547. [PMID: 39087831 DOI: 10.1021/acsami.4c10539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of wearable electronic devices for human health monitoring requires materials with high mechanical performance and sensitivity. In this study, we present a novel transparent tissue-like ionogel-based wearable sensor based on silver nanowire-reinforced ionogel nanocomposites, P(AAm-co-AA) ionogel-Ag NWs composite. The composite exhibits a high stretchability of 605% strain and a moderate fracture stress of about 377 kPa. The sensor also demonstrates a sensitive response to temperature changes and electrostatic adsorption. By encapsulating the nanocomposite in a polyurethane transparent film dressing, we address issues such as skin irritation and enable multidirectional stretching. Measuring resistive changes of the ionogel nanocomposite in response to corresponding strain changes enables its utility as a highly stretchable wearable sensor with excellent performance in sensitivity, stability, and repeatability. The fabricated pressure sensor array exhibits great proficiency in stress distribution, capacitance sensing, and discernment of fluctuations in both external electric fields and stress. Our findings suggest that this material holds promise for applications in wearable and flexible strain sensors, temperature sensors, pressure sensors, and actuators.
Collapse
Affiliation(s)
- Siyuan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yizhang Wu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Lai Jiang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Wanrong Xie
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Brayden Davis
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Meixiang Wang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Lin Zhang
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Yihan Liu
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| | - Sicheng Xing
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill & North Carolina State University, Chapel Hill, North Carolina 27514, United States
| | - Michael D Dickey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Wubin Bai
- Department of Applied Physical Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, United States
| |
Collapse
|
19
|
Huang Z, Xu L, Liu P, Peng J. Transparent, mechanically robust, conductive, self-healable, and recyclable ionogels for flexible strain sensors and electroluminescent devices. RSC Adv 2024; 14:28234-28243. [PMID: 39234525 PMCID: PMC11372454 DOI: 10.1039/d4ra05446f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024] Open
Abstract
A mechanically robust, self-healable, and recyclable PVP-based ionogel was achieved through a simple one-pot photoinitiated polymerization process. This ionogel exhibits a combination of excellent properties, including transparency, high mechanical strength, good ionic conductivity, self healability, and recyclability. A wearable resistive strain sensor based on the ionogel is successfully assembled and demonstrated accurate response to human motion. Moreover, a flexible electroluminescent device has been fabricated based on our ionogel, which can maintain optimal luminescence functionality even when subjected to bending. Considering the simple preparation method and excellent applications, we believe that our PVP-based ionogel has promising applications in many fields such as in wearable devices, electronic skin, implantable materials, robotics and human-machine interfaces.
Collapse
Affiliation(s)
- Zhenkai Huang
- School of Materials and Energy, Foshan University Foshan 528000 China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic Foshan 528333 China
| | - Peijiang Liu
- Reliability Physics and Application Technology of Electronic Component Key Laboratory, The 5th Electronics Research Institute of the Ministry of Industry and Information Technology Guangzhou 510610 China
| | - Jianping Peng
- School of Environmental and Chemical Engineering, Foshan University Foshan 528000 China
| |
Collapse
|
20
|
Wu X, Li M, Li H, Gao H, Wang Z, Wang Z. Autonomous Underwater Self-Healable Adhesive Elastomers Enabled by Dynamical Hydrophobic Phase-Separated Microdomains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311131. [PMID: 38644339 DOI: 10.1002/smll.202311131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/01/2024] [Indexed: 04/23/2024]
Abstract
High-efficient underwater self-healing materials with reliable mechanical attributes hold great promise for applications in ocean explorations and diverse underwater operations. Nevertheless, achieving these functions in aquatic environments is challenging because the recombination of dynamic interactions will suffer from resistance to interfacial water molecules. Herein, an ultra-robust and all-environment stable self-healable polyurethane-amide supramolecular elastomer is developed through rational engineering of hydrophobic domains and multistrength hydrogen bonding interactions to provide mechanical and healing compatibility as well as efficient suppression of water ingress. The coupling of hydrophobic chains and hierarchical hydrogen bonds within a multiphase matrix self-assemble to generate dynamical hydrophobic hard-phase microdomains, which synergistically realize high stretchability (1601%), extreme toughness (87.1 MJ m-3), and outstanding capability to autonomous self-healing in various harsh aqueous conditions with an efficiency of 58% and healed strength of 12.7 MPa underwater. Furthermore, the self-aggregation of hydrophobic clusters with sufficient dynamic interactions endows the resultant elastomer with effective instantaneous adhesion (6.2 MPa, 941.9 N m-1) in extremely harsh aqueous conditions. It is revealed that the dynamical hydrophobic hard-phase microdomain composed of hydrophobic barriers and cooperative reversible interactions allows for regulating its mechanical enhancement and underwater self-healing efficiency, enabling the elastomers as intelligent sealing devices in marine applications.
Collapse
Affiliation(s)
- Xiankun Wu
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Min Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Haonan Li
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Huihui Gao
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhongkai Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Zhong Wang
- Biomass Molecular Engineering Center, Anhui Provincial Engineering Center for High Performance Biobased Nylons, School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui, 230036, China
| |
Collapse
|
21
|
Zhang M, Zhao L, Tian F, Zhao X, Zhang Y, Yang X, Huang W, Yu R. Bionic Artificial Skin Based on Self-Healable Ionogel Composites with Tailored Mechanics and Robust Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405776. [PMID: 38966888 DOI: 10.1002/adma.202405776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/28/2024] [Indexed: 07/06/2024]
Abstract
Bionic artificial skin which imitates the features and functions of human skin, has broad applications in wearable human-machine interfaces. However, equipping artificial materials with skin-like mechanical properties, self-healing ability, and high sensitivity remains challenging. Here, inspired by the structure of human skin, an artificial skin based on ionogel composites with tailored mechanical properties and robust interface is prepared. Combining finite element analysis and direct ink writing (DIW) 3D printing technology, an ionogel composite with a rigid skeleton and an ionogel matrix is precisely designed and fabricated, realizing the mechanical anisotropy and nonlinear mechanical response that accurately mimic human skin. Robust interface is created through co-curing of the skeleton and matrix resins, significantly enhancing the stability of the composite. The realization of self-healing ability and resistance to crack growth further ensure the remarkable durability of the artificial skin for sensing application. In summary, the bionic artificial skin mimics the characteristics of human skin, including mechanical anisotropy, nonlinear mechanical response, self-healing capability, durability and high sensitivity when applied as flexible sensors. These strategies provide strong support for the fabrication of tissue-like materials with adaptive mechanical behaviors.
Collapse
Affiliation(s)
- Manwen Zhang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Lingyu Zhao
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Feng Tian
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xiaojuan Zhao
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ying Zhang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Xin Yang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Wei Huang
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| | - Ran Yu
- Key laboratory of science and technology on high-tech polymer materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 101408, P. R. China
| |
Collapse
|
22
|
Gao H, Zhao F, Liu J, Meng Z, Han Z, Liu Y. What Exactly Can Bionic Strategies Achieve for Flexible Sensors? ACS APPLIED MATERIALS & INTERFACES 2024; 16:38811-38831. [PMID: 39031068 DOI: 10.1021/acsami.4c06905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Flexible sensors have attracted great attention in the field of wearable electronic devices due to their deformability, lightness, and versatility. However, property improvement remains a key challenge. Fortunately, natural organisms exhibit many unique response mechanisms to various stimuli, and the corresponding structures and compositions provide advanced design ideas for the development of flexible sensors. Therefore, this Review highlights recent advances in sensing performance and functional characteristics of flexible sensors from the perspective of bionics for the first time. First, the "twins" of bionics and flexible sensors are introduced. Second, the enhancements in electrical and mechanical performance through bionic strategies are summarized according to the prototypes of humans, plants, and animals. Third, the functional characteristics of bionic strategies for flexible sensors are discussed in detail, including self-healing, color-changing, tangential force, strain redistribution, and interfacial resistance. Finally, we summarize the challenges and development trends of bioinspired flexible sensors. This Review aims to deepen the understanding of bionic strategies and provide innovative ideas and references for the design and manufacture of next-generation flexible sensors.
Collapse
Affiliation(s)
- Hanpeng Gao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Fangyi Zhao
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Jiaxi Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
| | - Zong Meng
- School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, P. R. China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin130022, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, Liaoning 110167, China
| |
Collapse
|
23
|
Li J, Wang H, Luo Y, Zhou Z, Zhang H, Chen H, Tao K, Liu C, Zeng L, Huo F, Wu J. Design of AI-Enhanced and Hardware-Supported Multimodal E-Skin for Environmental Object Recognition and Wireless Toxic Gas Alarm. NANO-MICRO LETTERS 2024; 16:256. [PMID: 39073674 PMCID: PMC11286924 DOI: 10.1007/s40820-024-01466-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/16/2024] [Indexed: 07/30/2024]
Abstract
Post-earthquake rescue missions are full of challenges due to the unstable structure of ruins and successive aftershocks. Most of the current rescue robots lack the ability to interact with environments, leading to low rescue efficiency. The multimodal electronic skin (e-skin) proposed not only reproduces the pressure, temperature, and humidity sensing capabilities of natural skin but also develops sensing functions beyond it-perceiving object proximity and NO2 gas. Its multilayer stacked structure based on Ecoflex and organohydrogel endows the e-skin with mechanical properties similar to natural skin. Rescue robots integrated with multimodal e-skin and artificial intelligence (AI) algorithms show strong environmental perception capabilities and can accurately distinguish objects and identify human limbs through grasping, laying the foundation for automated post-earthquake rescue. Besides, the combination of e-skin and NO2 wireless alarm circuits allows robots to sense toxic gases in the environment in real time, thereby adopting appropriate measures to protect trapped people from the toxic environment. Multimodal e-skin powered by AI algorithms and hardware circuits exhibits powerful environmental perception and information processing capabilities, which, as an interface for interaction with the physical world, dramatically expands intelligent robots' application scenarios.
Collapse
Affiliation(s)
- Jianye Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- State Key Laboratory of Transducer Technology, Shanghai, 200050, People's Republic of China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zijing Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - He Zhang
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People's Republic of China
| | - Huizhi Chen
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs and School of Pharmacy, Guangdong Medical University, Dongguan, 523808, People's Republic of China
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, 523808, People's Republic of China
| | - Kai Tao
- Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, 518063, People's Republic of China.
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Fujian Normal University, Fuzhou, 350007, People's Republic of China
| | - Fengwei Huo
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, People's Republic of China.
- Key Laboratory of Flexible Electronics (KLOFE), School of Flexible Electronics (Future Technologies), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, People's Republic of China.
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- State Key Laboratory of Transducer Technology, Shanghai, 200050, People's Republic of China.
- Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Guangzhou, 510641, People's Republic of China.
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China.
| |
Collapse
|
24
|
Jiang Z, Tran BH, Jolfaei MA, Abbasi BBA, Spinks GM. Crack-Resistant and Tissue-Like Artificial Muscles with Low Temperature Activation and High Power Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402278. [PMID: 38657958 DOI: 10.1002/adma.202402278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/11/2024] [Indexed: 04/26/2024]
Abstract
Constructing soft robotics with safe human-machine interactions requires low-modulus, high-power-density artificial muscles that are sensitive to gentle stimuli. In addition, the ability to resist crack propagation during long-term actuation cycles is essential for a long service life. Herein, a material design is proposed to combine all these desirable attributes in a single artificial muscle platform. The design involves the molecular engineering of a liquid crystalline network with crystallizable segments and an ethylene glycol flexible spacer. A high degree of crystallinity can be afforded by utilizing aza-Michael chemistry to produce a low covalent crosslinking density, resulting in crack-insensitivity with a high fracture energy of 33 720 J m-2 and a high fatigue threshold of 2250 J m-2. Such crack-resistant artificial muscle with tissue-matched modulus of 0.7 MPa can generate a high power density of 450 W kg-1 at a low temperature of 40 °C. Notably, because of the presence of crystalline domains in the actuated state, no crack propagation is observed after 500 heating-cooling actuation cycles under a static load of 220 kPa. This study points to a pathway for the creation of artificial muscles merging seemingly disparate, but desirable properties, broadening their application potential in smart devices.
Collapse
Affiliation(s)
- Zhen Jiang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Bach H Tran
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Maryam Adavoudi Jolfaei
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Burhan Bin Asghar Abbasi
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Geoffrey M Spinks
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
25
|
Pu L, Yuan Z, Cai Y, Li X, Xue Z, Niu Y, Li Y, Ma S, Xu W. Multiperformance PAM/PVA/CaCO 3 Hydrogel for Flexible Sensing and Information Encryption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32762-32772. [PMID: 38867400 DOI: 10.1021/acsami.4c06282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Currently, the development of hydrogels with excellent mechanical properties (elasticity, fatigue resistance, etc.) and conductive properties can better meet their needs in the field of flexible sensor device applications. Generally, hydrogels with a denser cross-linking density tend to have better mechanical properties, but the improvement in mechanical properties comes at the expense of reduced electrical conductivity. Directly generating CaCO3 in the hydrogel prepolymer can not only increase the cross-linking density of its network but also introduce additional ions to enhance its internal ionic strength, which is beneficial to improving the conductivity of the hydrogel. It is still a big challenge to directly generate CaCO3 in the static prepolymer solution and ensure its uniform dispersion in the hydrogel. Herein, we adopted an improved preparation method to ensure that the directly generated CaCO3 particles can be evenly dispersed in the static prepolymer solution until the polymerization is completed. Finally, a PAM/PVA/CaCO3 hydrogel with supertensile, compressive, toughness, and fatigue resistance properties was prepared. In addition, the presence of free Na+ and Cl- gives the hydrogel excellent conductivity and sensing performance to monitor daily human activities. On the basis of the application of hydrogels in information communication, we have further deepened this application by combining the characteristics of hydrogels themselves. Combined with ASCII code, the hydrogel can also be applied in information exchange and information encryption and decryption, achieving the antitheft function in smart locks. A variety of excellent performance integrated PAM/PVA/CaCO3 hydrogels have broad application prospects for flexible sensors, highlighting great potential in human-computer interaction and intelligent information protection.
Collapse
Affiliation(s)
- Lisha Pu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Zhiang Yuan
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuting Cai
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Xusheng Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Zhongxin Xue
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yuzhong Niu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Yan Li
- Center of Advanced Carbon Materials, School of Chemical Engineering, University of New South Wales, Sydney NSW2052, Australia
| | - Songmei Ma
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
| | - Wenlong Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, P. R. China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| |
Collapse
|
26
|
Ye H, Wu B, Sun S, Wu P. A Solid-Liquid Bicontinuous Fiber with Strain-Insensitive Ionic Conduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402501. [PMID: 38562038 DOI: 10.1002/adma.202402501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/23/2024] [Indexed: 04/04/2024]
Abstract
Stretchable ionic conductors are crucial for enabling advanced iontronic devices to operate under diverse deformation conditions. However, when employed as interconnects, existing ionic conductors struggle to maintain stable ionic conduction under strain, hindering high-fidelity signal transmission. Here, it is shown that strain-insensitive ionic conduction can be achieved by creating a solid-liquid bicontinuous microstructure. A bicontinuous fiber from polymerization-induced phase separation, which contains a solid elastomer phase interpenetrated by a liquid ion-conducting phase, is fabricated. The spontaneous partitioning of dissolved salts leads to the formation of a robust self-wrinkled interface, fostering the development of highly tortuous ionic channels. Upon stretch, these meandering ionic channels are straightened, effectively enhancing ionic conductivity to counteract the strain effect. Remarkably, the fiber retains highly stable ionic conduction till fracture, with only 7% resistance increase at 200% strain. This approach presents a promising avenue for designing durable ionic cables capable of signal transmission with minimal strain-induced distortion.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| |
Collapse
|
27
|
Wang XQ, Xie AQ, Cao P, Yang J, Ong WL, Zhang KQ, Ho GW. Structuring and Shaping of Mechanically Robust and Functional Hydrogels toward Wearable and Implantable Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309952. [PMID: 38389497 DOI: 10.1002/adma.202309952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 02/16/2024] [Indexed: 02/24/2024]
Abstract
Hydrogels possess unique features such as softness, wetness, responsiveness, and biocompatibility, making them highly suitable for biointegrated applications that have close interactions with living organisms. However, conventional man-made hydrogels are usually soft and brittle, making them inferior to the mechanically robust biological hydrogels. To ensure reliable and durable operation of biointegrated wearable and implantable devices, mechanical matching and shape adaptivity of hydrogels to tissues and organs are essential. Recent advances in polymer science and processing technologies have enabled mechanical engineering and shaping of hydrogels for various biointegrated applications. In this review, polymer network structuring strategies at micro/nanoscales for toughening hydrogels are summarized, and representative mechanical functionalities that exist in biological materials but are not easily achieved in synthetic hydrogels are further discussed. Three categories of processing technologies, namely, 3D printing, spinning, and coating for fabrication of tough hydrogel constructs with complex shapes are reviewed, and the corresponding hydrogel toughening strategies are also highlighted. These developments enable adaptive fabrication of mechanically robust and functional hydrogel devices, and promote application of hydrogels in the fields of biomedical engineering, bioelectronics, and soft robotics.
Collapse
Affiliation(s)
- Xiao-Qiao Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - An-Quan Xie
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Pengle Cao
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Jian Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Wei Li Ong
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Ke-Qin Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, China
| | - Ghim Wei Ho
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| |
Collapse
|
28
|
Zhang L, Chen L, Wang S, Wang S, Wang D, Yu L, Xu X, Liu H, Chen C. Cellulose nanofiber-mediated manifold dynamic synergy enabling adhesive and photo-detachable hydrogel for self-powered E-skin. Nat Commun 2024; 15:3859. [PMID: 38719821 PMCID: PMC11078967 DOI: 10.1038/s41467-024-47986-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
Self-powered skin attachable and detachable electronics are under intense development to enable the internet of everything and everyone in new and useful ways. Existing on-demand separation strategies rely on complicated pretreatments and physical properties of the adherends, achieving detachable-on-demand in a facile, rapid, and universal way remains challenging. To overcome this challenge, an ingenious cellulose nanofiber-mediated manifold dynamic synergy strategy is developed to construct a supramolecular hydrogel with both reversible tough adhesion and easy photodetachment. The cellulose nanofiber-reinforced network and the coordination between Fe ions and polymer chains endow the dynamic reconfiguration of supramolecular networks and the adhesion behavior of the hydrogel. This strategy enables the simple and rapid fabrication of strong yet reversible hydrogels with tunable toughness ((Valuemax-Valuemin)/Valuemax of up to 86%), on-demand adhesion energy ((Valuemax-Valuemin)/Valuemax of up to 93%), and stable conductivity up to 12 mS cm-1. We further extend this strategy to fabricate different cellulose nanofiber/Fe3+-based hydrogels from various biomacromolecules and petroleum polymers, and shed light on exploration of fundamental dynamic supramolecular network reconfiguration. Simultaneously, we prepare an adhesive-detachable triboelectric nanogenerator as a human-machine interface for a self-powered wireless monitoring system based on this strategy, which can acquire the real-time, self-powered monitoring, and wireless whole-body movement signal, opening up possibilities for diversifying potential applications in electronic skins and intelligent devices.
Collapse
Affiliation(s)
- Lei Zhang
- Jiangsu Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 210042, Nanjing, China
| | - Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China
| | - Siheng Wang
- Jiangsu Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 210042, Nanjing, China
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China
| | - Shanshan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
| | - Dan Wang
- Jiangsu Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 210042, Nanjing, China
| | - Le Yu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, 210037, Nanjing, China
| | - He Liu
- Jiangsu Key Laboratory of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, 210042, Nanjing, China.
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Sciences, Wuhan University, 430079, Wuhan, China.
| |
Collapse
|
29
|
Ou F, Xie T, Li X, Zhang Z, Ning C, Tuo L, Pan W, Wang C, Duan X, Liang Q, Gao W, Li Z, Zhao S. Liquid-free ionic conductive elastomers with high mechanical properties and ionic conductivity for multifunctional sensors and triboelectric nanogenerators. MATERIALS HORIZONS 2024; 11:2191-2205. [PMID: 38410914 DOI: 10.1039/d3mh02217j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Liquid-free ionic conductive elastomers (ICEs) are ideal materials for constructing flexible electronic devices by avoiding the limitations of liquid components. However, developing all-solid-state ionic conductors with high mechanical strength, high ionic conductivity, excellent healing, and recyclability remains a great challenge. Herein, a series of liquid-free polyurethane-based ICEs with a double dynamic crosslinked structure are reported. As a result of interactions between multiple dynamic bonds (multi-level hydrogen bonds, disulfide bonds, and dynamic D-A bonds) and lithium-oxygen bonds, the optimal ICE exhibited a high mechanical strength (1.18 MPa), excellent ionic conductivity (0.14 mS cm-1), desirable healing capacity (healing efficiency >95%), and recyclability. A multi-functional wearable sensor based on the novel ICE enabled real-time and rapid detection of various human activities and enabled recognizing writing signals and encrypted information transmission. A triboelectric nanogenerator based on the novel ICE exhibited an excellent open-circuit voltage of 464 V, a short-circuit current of 16 μA, a transferred charge of 50 nC, and a power density of 720 mW m-2, enabling powering of small-scale electronic products. This study provides a feasible strategy for designing flexible sensor products and healing, self-powered devices, with promising prospects for application in soft ionic electronics.
Collapse
Affiliation(s)
- Fangyan Ou
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Ting Xie
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Xinze Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Zhichao Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Chuang Ning
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Liang Tuo
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
| | - Wenyu Pan
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Changsheng Wang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Xueying Duan
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Qihua Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
| | - Wei Gao
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Zequan Li
- School of Resources, Environment and Materials, Guangxi University, Nanning, Guangxi 530004, China.
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- Guangxi Engineering and Technology Research Center for High Quality Structural Panels from Biomass Wastes, Nanning, Guangxi 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
| | - Shuangliang Zhao
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
- College of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
30
|
Yang C, Ji C, Guo F, Mi H, Wang Y, Qiu J. Wireless Sensor System Based on Organohydrogel Ionic Skin for Physiological Activity Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38698676 DOI: 10.1021/acsami.3c19473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Supermolecular hydrogel ionic skin (i-skin) linked with smartphones has attracted widespread attention in physiological activity detection due to its good stability in complex scenarios. However, the low ionic conductivity, inferior mechanical properties, poor contact adhesion, and insufficient freeze resistance of most used hydrogels limit their practical application in flexible electronics. Herein, a novel multifunctional poly(vinyl alcohol)-based conductive organohydrogel (PCEL5.0%) with a supermolecular structure was constructed by innovatively employing sodium carboxymethyl cellulose (CMC-Na) as reinforcement material, ethylene glycol as antifreeze, and lithium chloride as a water retaining agent. Thanks to the synergistic effect of these components, the PCEL5.0% organohydrogel shows excellent performance in terms of ionic conductivity (1.61 S m-1), mechanical properties (tensile strength of 70.38 kPa and elongation at break of 537.84%), interfacial adhesion (1.06 kPa to pig skin), frost resistance (-50.4 °C), water retention (67.1% at 22% relative humidity), and remoldability. The resultant PCEL5.0%-based i-skin delivers satisfactory sensitivity (GF = 1.38) with fast response (348 ms) and high precision under different deformations and low temperature (-25 °C). Significantly, the wireless sensor system based on the PCEL5.0% organohydrogel i-skin can transmit signals from physiological activities and sign language to a smartphone by Bluetooth technology and dynamically displays the status of these movements. The organohydrogel i-skin shows great potential in diverse fields of physiological activity detection, human-computer interaction, and rehabilitation medicine.
Collapse
Affiliation(s)
- Congcong Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Fengjiao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Yongwei Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
31
|
Chen S, Chen X, Luo K, Yang W, Yan X, Liu L. Thermo-growing ion clusters enabled healing strengthening and tough adhesion for highly reliable skin electronics. MATERIALS HORIZONS 2024; 11:1923-1933. [PMID: 38343364 DOI: 10.1039/d3mh01975f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Self-healing and self-adhesion capacities are essential for many modern applications such as skin-interfaced electronics for improving longevity and reliability. However, the self-healing efficiency and adhesive toughness of most synthetic polymers are limited to their original network, making reliability under dynamic deformation still challenging. Herein, inspired by the growth of living organisms, a highly stretchable supramolecular elastomer based on thermo-responsive ion clusters and a dynamic polysulfide backbone was developed. Attributed to the synergic growth of ion clusters and dynamic exchange of disulfide bonds, the elastomer exhibited unique healing strengthening (healing efficiency >200%) and thermo-enhanced tough adhesion (interfacial toughness >500 J m-2) performances. To prove its practical application in highly reliable skin electronics, we further composited the elastomer with a zwitterion to prepare a highly conductive ionic elastomer and applied it in wearable strain sensing and long-term electrophysiological detection. This work provides a new avenue to realize high reliability in skin interfaced electronics.
Collapse
Affiliation(s)
- Song Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
- School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xinyu Chen
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Kaiying Luo
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Wenwei Yang
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Xueling Yan
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| | - Lan Liu
- School of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology, Guangzhou, 510641, P. R. China.
| |
Collapse
|
32
|
Kosgallana C, Wijesinghe S, Senanayake M, Mohottalalage SS, Ohl M, Zolnierczuk P, Grest GS, Perahia D. From Molecular Constraints to Macroscopic Dynamics in Associative Networks Formed by Ionizable Polymers: A Neutron Spin Echo and Molecular Dynamics Simulations Study. ACS POLYMERS AU 2024; 4:149-156. [PMID: 38618001 PMCID: PMC11010251 DOI: 10.1021/acspolymersau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 04/16/2024]
Abstract
The association of ionizable polymers strongly affects their motion in solutions, where the constraints arising from clustering of the ionizable groups alter the macroscopic dynamics. The interrelation between the motion on multiple length and time scales is fundamental to a broad range of complex fluids including physical networks, gels, and polymer-nanoparticle complexes where long-lived associations control their structure and dynamics. Using neutron spin echo and fully atomistic, multimillion atom molecular dynamics (MD) simulations carried out to times comparable to that of chain segmental motion, the current study resolves the dynamics of networks formed by suflonated polystryene solutions for sulfonation fractions 0 ≤ f ≤ 0.09 across time and length scales. The experimental dynamic structure factors were measured and compared with computational ones, calculated from MD simulations, and analyzed in terms of a sum of two exponential functions, providing two distinctive time scales. These time constants capture confined motion of the network and fast dynamics of the highly solvated segments. A unique relationship between the polymer dynamics and the size and distribution of the ionic clusters was established and correlated with the number of polymer chains that participate in each cluster. The correlation of dynamics in associative complex fluids across time and length scales, enabled by combining the understanding attained from reciprocal space through neutron spin echo and real space, through large scale MD studies, addresses a fundamental long-standing challenge that underline the behavior of soft materials and affect their potential uses.
Collapse
Affiliation(s)
- Chathurika Kosgallana
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of ChemistryAppalachian State University, Boone, North Carolina 26808, United States
| | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Supun S Mohottalalage
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| | - Michael Ohl
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, United States
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
- Department of Physics, Clemson University, Clemson, South Carolina 29631, United States
| |
Collapse
|
33
|
Lv D, Li X, Huang X, Cao C, Ai L, Wang X, Ravi SK, Yao X. Microphase-Separated Elastic and Ultrastretchable Ionogel for Reliable Ionic Skin with Multimodal Sensation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309821. [PMID: 37993105 DOI: 10.1002/adma.202309821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Indexed: 11/24/2023]
Abstract
Bioinspired artificial skins integrated with reliable human-machine interfaces and stretchable electronic systems have attracted considerable attention. However, the current design faces difficulties in simultaneously achieving satisfactory skin-like mechanical compliance and self-powered multimodal sensing. Here, this work reports a microphase-separated bicontinuous ionogel which possesses skin-like mechanical properties and mimics the multimodal sensing ability of biological skin by ion-driven stimuli-electricity conversion. The ionogel exhibits excellent elasticity and ionic conductivity, high toughness, and ultrastretchability, as well as a Young's modulus similar to that of human skin. Leveraging the ion-polymer interactions enabled selective ion transport, the ionogel can output pulsing or continuous electrical signals in response to diverse stimuli such as strain, touch pressure, and temperature sensitively, demonstrating a unique self-powered multimodal sensing. Furthermore, the ionogel-based I-skin can concurrently sense different stimuli and decouple the variations of the stimuli from the voltage signals with the assistance of a machine-learning model. The ease of fabrication, wide tunability, self-powered multimodal sensing, and the excellent environmental tolerance of the ionogels demonstrate a new strategy in the development of next-generation soft smart mechano-transduction devices.
Collapse
Affiliation(s)
- Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics (CAEP), Mianyang, 621900, China
| | - Chunyan Cao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Liqing Ai
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Xuejiao Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong, 999077, China
| | - Xi Yao
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
- City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518075, China
| |
Collapse
|
34
|
Wang Z, Yang F, Liu X, Han X, Li X, Huyan C, Liu D, Chen F. Hydrogen Bonds-Pinned Entanglement Blunting the Interfacial Crack of Hydrogel-Elastomer Hybrids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313177. [PMID: 38272488 DOI: 10.1002/adma.202313177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Anchoring a layer of amorphous hydrogel on an antagonistic elastomer holds potential applications in surface aqueous lubrication. However, the interfacial crack propagation usually occurs under continuous loads for amorphous hydrogel, leading to the failure of hydrogel interface. This work presents a universal strategy to passivate the interfacial cracks by designing a hydrogen bonds-pinned entanglement (Hb-En) structure of amorphous hydrogel on engineering elastomers. The unique Hb-En structure is created by pinning well-tailored entanglements via covalent-like hydrogen bonds, which can amplify the delocalization of interfacial stress concentration and elevate the necessary fracture energy barrier within hydrogel interface. Therefore, the interfacial crack propagation can be suppressed under single and cyclic loads, resulting in a high interfacial toughness over 1650 J m-2 and an excellent interfacial fatigue threshold of 423 J m-2. Such a strategy universally works on blunting the interfacial crack between hydrogel coating and various elastomer materials with arbitrary shapes. The superb fatigue-crack insensitivity at the interface allows for durable aqueous lubrication of hydrogel coating with low friction.
Collapse
Affiliation(s)
- Zibi Wang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Fahu Yang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xiaoxu Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xiang Han
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Xinxin Li
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Chenxi Huyan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Dong Liu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| | - Fei Chen
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
35
|
Liu K, Wang M, Huang C, Yuan Y, Ning Y, Zhang L, Wan P. Flexible Bioinspired Healable Antibacterial Electronics for Intelligent Human-Machine Interaction Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305672. [PMID: 38140748 PMCID: PMC10933681 DOI: 10.1002/advs.202305672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/04/2023] [Indexed: 12/24/2023]
Abstract
Flexible electronic sensors are receiving numerous research interests for their potential in electronic skins (e-skins), wearable human-machine interfacing, and smart diagnostic healthcare sensing. However, the preparation of multifunctional flexible electronics with high sensitivity, broad sensing range, fast response, efficient healability, and reliable antibacterial capability is still a substantial challenge. Herein, bioinspired by the highly sensitive human skin microstructure (protective epidermis/spinous sensing structure/nerve conduction network), a skin bionic multifunctional electronics is prepared by face-to-face assembly of a newly prepared healable, recyclable, and antibacterial polyurethane elastomer matrix with conductive MXene nanosheets-coated microdome array after ingenious templating method as protective epidermis layer/sensing layer, and an interdigitated electrode as signal transmission layer. The polyurethane elastomer matrix functionalized with triple dynamic bonds (reversible hydrogen bonds, oxime carbamate bonds, and copper (II) ion coordination bonds) is newly prepared, demonstrating excellent healability with highly healing efficiency, robust recyclability, and reliable antibacterial capability, as well as good biocompatibility. Benefiting from the superior mechanical performance of the polyurethane elastomer matrix and the unique skin bionic microstructure of the sensor, the as-assembled flexible electronics exhibit admirable sensing performances featuring ultrahigh sensitivity (up to 1573.05 kPa-1 ), broad sensing range (up to 325 kPa), good reproducibility, the fast response time (≈4 ms), and low detection limit (≈0.98 Pa) in diagnostic human healthcare monitoring, excellent healability, and reliable antibacterial performance.
Collapse
Affiliation(s)
- Kuo Liu
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Mingcheng Wang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Chenlin Huang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Yue Yuan
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Yao Ning
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Liqun Zhang
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| | - Pengbo Wan
- College of Materials Science and Engineering, State Key Laboratory of Organic–Inorganic CompositesBeijing University of Chemical TechnologyBeijing100029China
| |
Collapse
|
36
|
Chen C, Wang Y, Wang H, Wang X, Tian M. Electronic Skin Based on Polydopamine-Modified Superelastic Fibers with Superior Conductivity and Durability. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:438. [PMID: 38470769 DOI: 10.3390/nano14050438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Owing to their excellent elasticities and adaptability as sensing materials, ionic hydrogels exhibit significant promise in the field of intelligent wearable devices. Nonetheless, molecular chains within the polymer network of hydrogels are susceptible to damage, leading to crack extension. Hence, we drew inspiration from the composite structure of the human dermis to engineer a composite hydrogel, incorporating dopamine-modified elastic fibers as a reinforcement. This approach mitigates crack expansion and augments sensor sensitivity by fostering intermolecular forces between the dopamine on the fibers, the hydrogel backbone, and water molecules. The design of this composite hydrogel elevates its breaking tensile capacity from 35 KJ to 203 KJ, significantly enhancing the fatigue resistance of the hydrogel. Remarkably, its electrical properties endure stability even after 2000 cycles of testing, and it manifests heightened sensitivity compared to conventional hydrogel configurations. This investigation unveils a novel method for crafting composite-structured hydrogels.
Collapse
Affiliation(s)
- Chengfeng Chen
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Shandong Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Yimiao Wang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Hang Wang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
- Shandong Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao 266071, China
| | - Xinqing Wang
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| | - Mingwei Tian
- Intelligent Wearable Engineering Research Center of Qingdao, College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
| |
Collapse
|
37
|
Zhu C, Zheng J, Fu J. Electrospinning Nanofibers as Stretchable Sensors for Wearable Devices. Macromol Biosci 2024; 24:e2300274. [PMID: 37653597 DOI: 10.1002/mabi.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Indexed: 09/02/2023]
Abstract
Wearable devices attract great attention in intelligent medicine, electronic skin, artificial intelligence robots, and so on. However, boundedness of traditional sensors based on rigid materials unconstrained self-multilayer structure assembly and dense substrate in stretchability and permeability limits their applications. The network structure of the elastomeric nanofibers gives them excellent air permeability and stretchability. By introducing metal nanofillers, intrinsic conductive polymers, carbon materials, and other methods to construct conductive paths, stretchable conductors can be effectively prepared by elastomeric nanofibers, showing great potential in the field of flexible sensors. This perspective briefly introduces the representative preparations of conductive thermoplastic polyurethane, nylon, and hydrogel nanofibers by electrospinning and the application of integrated electronic devices in biological signal detection. The main challenge is to unify the stretchability and conductivity of the fiber structure.
Collapse
Affiliation(s)
- Canjie Zhu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jingxia Zheng
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| | - Jun Fu
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education, Guangdong Functional Biomaterials Engineering Technology Research Center, Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, China
| |
Collapse
|
38
|
Zhang M, Xing J, Zhong Y, Zhang T, Liu X, Xing D. Advanced function, design and application of skin substitutes for skin regeneration. Mater Today Bio 2024; 24:100918. [PMID: 38223459 PMCID: PMC10784320 DOI: 10.1016/j.mtbio.2023.100918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024] Open
Abstract
The development of skin substitutes aims to replace, mimic, or improve the functions of human skin, regenerate damaged skin tissue, and replace or enhance skin function. This includes artificial skin, scaffolds or devices designed for treatment, imitation, or improvement of skin function in wounds and injuries. Therefore, tremendous efforts have been made to develop functional skin substitutes. However, there is still few reports systematically discuss the relationship between the advanced function and design requirements. In this paper, we review the classification, functions, and design requirements of artificial skin or skin substitutes. Different manufacturing strategies for skin substitutes such as hydrogels, 3D/4D printing, electrospinning, microfluidics are summarized. This review also introduces currently available skin substitutes in clinical trials and on the market and the related regulatory requirements. Finally, the prospects and challenges of skin substitutes in the field of tissue engineering are discussed.
Collapse
Affiliation(s)
- Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Yingjie Zhong
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Tingting Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Cancer Institute, Qingdao University, Qingdao 266071, China
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
39
|
Tang N, Jiang Y, Wei K, Zheng Z, Zhang H, Hu J. Evolutionary Reinforcement of Polymer Networks: A Stepwise-Enhanced Strategy for Ultrarobust Eutectogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309576. [PMID: 37939373 DOI: 10.1002/adma.202309576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Gel materials are appealing due to their diverse applications in biomedicine, soft electronics, sensors, and actuators. Nevertheless, the existing synthetic gels are often plagued by feeble network structures and inherent defects associated with solvents, which compromise their mechanical load-bearing capacity and cast persistent doubts about their reliability. Herein, combined with attractive deep eutectic solvent (DES), a stepwise-enhanced strategy is presented to fabricate ultrarobust eutectogels. It focuses on the continuous modulation and optimization of polymer networks through complementary annealing and solvent exchange processes, which drives a progressive increase in both quantity and mass of the interconnected polymer chains at microscopic scale, hence contributing to the evolutionary enhancement of network structure. The resultant eutectogel exhibits superb mechanical properties, including record-breaking strength (31.8 MPa), toughness (76.0 MJ m-3 ), and Young's modulus (25.6 MPa), together with exceptional resistance ability to tear and crack propagation. Moreover, this eutectogel is able to be further programmed through photolithography to in situ create patterned eutectogel for imparting specific functionalities. Enhanced by its broad applicability to various DES combinations, this stepwise-enhanced strategy is poised to serve as a crucial template and methodology for the future development of robust gels.
Collapse
Affiliation(s)
- Ning Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Yujia Jiang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Kailun Wei
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Zhiran Zheng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| | - Hao Zhang
- Department of Mechanical Engineering, Tsinghua University, Shuangqing Road 30, Haidian District, Beijing, 100084, China
| | - Jun Hu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
40
|
Ye H, Wu B, Sun S, Wu P. Self-compliant ionic skin by leveraging hierarchical hydrogen bond association. Nat Commun 2024; 15:885. [PMID: 38287011 PMCID: PMC10825218 DOI: 10.1038/s41467-024-45079-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/15/2024] [Indexed: 01/31/2024] Open
Abstract
Robust interfacial compliance is essential for long-term physiological monitoring via skin-mountable ionic materials. Unfortunately, existing epidermal ionic skins are not compliant and durable enough to accommodate the time-varying deformations of convoluted skin surface, due to an imbalance in viscosity and elasticity. Here we introduce a self-compliant ionic skin that consistently works at the critical gel point state with almost equal viscosity and elasticity over a super-wide frequency range. The material is designed by leveraging hierarchical hydrogen bond association, allowing for the continuous release of polymer strands to create topological entanglements as complementary crosslinks. By embodying properties of rapid stress relaxation, softness, ionic conductivity, self-healability, flaw-insensitivity, self-adhesion, and water-resistance, this ionic skin fosters excellent interfacial compliance with cyclically deforming substrates, and facilitates the acquisition of high-fidelity electrophysiological signals with alleviated motion artifacts. The presented strategy is generalizable and could expand the applicability of epidermal ionic skins to more complex service conditions.
Collapse
Affiliation(s)
- Huating Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China
| | - Baohu Wu
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ) Forschungszentrum Jülich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Shengtong Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China.
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry and Chemical Engineering & Center for Advanced Low-dimension Materials, Donghua University, Shanghai, 201620, China.
| |
Collapse
|
41
|
Zhang Z, Yang J, Wang H, Wang C, Gu Y, Xu Y, Lee S, Yokota T, Haick H, Someya T, Wang Y. A 10-micrometer-thick nanomesh-reinforced gas-permeable hydrogel skin sensor for long-term electrophysiological monitoring. SCIENCE ADVANCES 2024; 10:eadj5389. [PMID: 38198560 PMCID: PMC10781413 DOI: 10.1126/sciadv.adj5389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hydrogel-enabled skin bioelectronics that can continuously monitor health for extended periods is crucial for early disease detection and treatment. However, it is challenging to engineer ultrathin gas-permeable hydrogel sensors that can self-adhere to the human skin for long-term daily use (>1 week). Here, we present a ~10-micrometer-thick polyurethane nanomesh-reinforced gas-permeable hydrogel sensor that can self-adhere to the human skin for continuous and high-quality electrophysiological monitoring for 8 days under daily life conditions. This research involves two key steps: (i) material design by gelatin-based thermal-dependent phase change hydrogels and (ii) robust thinness geometry achieved through nanomesh reinforcement. The resulting ultrathin hydrogels exhibit a thickness of ~10 micrometers with superior mechanical robustness, high skin adhesion, gas permeability, and anti-drying performance. To highlight the potential applications in early disease detection and treatment that leverage the collective features, we demonstrate the use of ultrathin gas-permeable hydrogels for long-term, continuous high-precision electrophysiological monitoring under daily life conditions up to 8 days.
Collapse
Affiliation(s)
- Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Haoyang Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Chunya Wang
- State Key Laboratory of Heavy Oil Processing, College of Carbon Neutrality Future Technology, China University of Petroleum (Beijing), Beijing 102249, China
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 112-8656, Japan
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- The Wolfson Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong 515063, China
- Guangdong Provincial Key Laboratory of Science and Engineering for Health and Medicine, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
42
|
Choi SG, Kang SH, Lee JY, Park JH, Kang SK. Recent advances in wearable iontronic sensors for healthcare applications. Front Bioeng Biotechnol 2023; 11:1335188. [PMID: 38162187 PMCID: PMC10757853 DOI: 10.3389/fbioe.2023.1335188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Abstract
Iontronic sensors have garnered significant attention as wearable sensors due to their exceptional mechanical performance and the ability to maintain electrical performance under various mechanical stimuli. Iontronic sensors can respond to stimuli like mechanical stimuli, humidity, and temperature, which has led to exploration of their potential as versatile sensors. Here, a comprehensive review of the recent researches and developments on several types of iontronic sensors (e.g., pressure, strain, humidity, temperature, and multi-modal sensors), in terms of their sensing principles, constituent materials, and their healthcare-related applications is provided. The strategies for improving the sensing performance and environmental stability of iontronic sensors through various innovative ionic materials and structural designs are reviewed. This review also provides the healthcare applications of iontronic sensors that have gained increased feasibility and broader applicability due to the improved sensing performance. Lastly, outlook section discusses the current challenges and the future direction in terms of the applicability of the iontronic sensors to the healthcare.
Collapse
Affiliation(s)
- Sung-Geun Choi
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Hun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju-Yong Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hyeon Park
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, Republic of Korea
- Nano Systems Institute SOFT Foundry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
43
|
Cui J, Xu R, Dong W, Kaneko T, Chen M, Shi D. Skin-Inspired Patterned Hydrogel with Strain-Stiffening Capability for Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48736-48743. [PMID: 37812680 DOI: 10.1021/acsami.3c12127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Flexible materials with ionic conductivity and stretchability are indispensable in emerging fields of flexible electronic devices as sensing and protecting layers. However, designing robust sensing materials with skin-like compliance remains challenging because of the contradiction between softness and strength. Herein, inspired by the modulus-contrast hierarchical structure of biological skin, we fabricated a biomimetic hydrogel with strain-stiffening capability by embedding the stiff array of poly(acrylic acid) (PAAc) in the soft polyacrylamide (PAAm) hydrogel. The stress distribution in both stiff and soft domains can be regulated by changing the arrangement of patterns, thus improving the mechanical properties of the patterned hydrogel. As expected, the resulting patterned hydrogel showed its nonlinear mechanical properties, which afforded a high strength of 1.20 MPa while maintaining a low initial Young's modulus of 31.0 kPa. Moreover, the array of PAAc enables the patterned hydrogel to possess protonic conductivity in the absence of additional ionic salts, thus endowing the patterned hydrogel with the ability to serve as a strain sensor for monitoring human motion.
Collapse
Affiliation(s)
- Jianbing Cui
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Ruisheng Xu
- Orthopedic Department, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Weifu Dong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Tatsuo Kaneko
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
44
|
Zhang Z, Jiang X, Ma Y, Lu X, Jiang Z. High-Performance Branched Polymer Elastomer Based on a Topological Network Structure and Dynamic Bonding. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43048-43059. [PMID: 37647234 DOI: 10.1021/acsami.3c11027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
High performance has always been the research focus of elastomers. However, there are inherent conflicts among properties of elastomers, such as strength and toughness, strength and damping performance, strength and self-healing ability, etc. Herein, first, we synthesized a unique structure of the dangling chain containing proton donors and receptors. Then, we design and fabricate a kind of high-performance elastomer with a gradient distribution of a dangling chain and a dynamic bond structure. The dangling chains of different lengths intertwine with each other and self-assemble to form a "dense accumulation" structure driven by hydrogen bonds, and the elastomer exhibits special micro/nano scale aggregated states and microphase separation. The "dense accumulation" structure plays a vital role in the increase of mechanical properties. Meanwhile, under the joint action of a dangling chain and a dynamic bond, the damping performance and self-healing performance of the elastomer are greatly enhanced. High strength (27.5 MPa), toughness (121.9 MJ·m-3), 94.8% healing efficiency and outstanding damping performance (tan δ ≥ 0.4, high damping temperature range up to 144 °C) are simultaneously achieved beyond the current state-of-the-art. This topoarchitected polymer with a gradient distribution of dangling chains successfully solves the defects of conventional branched polymers in deteriorating their mechanical properties. This material design provides a new strategy for the development of high-performance structural and functional integrated elastomers.
Collapse
Affiliation(s)
- Zhenpeng Zhang
- South China University of Technology, Guangzhou 501641, China
| | - Xiaolin Jiang
- South China University of Technology, Guangzhou 501641, China
| | - Yuanhao Ma
- South China University of Technology, Guangzhou 501641, China
| | - Xun Lu
- South China University of Technology, Guangzhou 501641, China
| | - Zhijie Jiang
- South China University of Technology, Guangzhou 501641, China
| |
Collapse
|
45
|
Niu W, Tian Q, Liu Z, Liu X. Solvent-Free and Skin-Like Supramolecular Ion-Conductive Elastomers with Versatile Processability for Multifunctional Ionic Tattoos and On-Skin Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304157. [PMID: 37345560 DOI: 10.1002/adma.202304157] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/16/2023] [Indexed: 06/23/2023]
Abstract
The development of stable and biocompatible soft ionic conductors, alternatives to hydrogels and ionogels, will open up new avenues for the construction of stretchable electronics. Here, a brand-new design, encapsulating a naturally occurring ionizable compound by a biocompatible polymer via high-density hydrogen bonds, resulting in a solvent-free supramolecular ion-conductive elastomer (SF-supra-ICE) that eliminates the dehydration problem of hydrogels and possesses excellent biocompatibility, is reported. The SF-supra-ICE with high ionic conductivity (>3.3 × 10-2 S m-1 ) exhibits skin-like softness and strain-stiffening behaviors, excellent elasticity, breathability, and self-adhesiveness. Importantly, the SF-supra-ICE can be obtained by a simple water evaporation step to solidify the aqueous precursor into a solvent-free nature. Therefore, the aqueous precursor can act as inks to be painted and printed into customized ionic tattoos (I-tattoos) for the construction of multifunctional on-skin bioelectronics. The painted I-tattoos exhibit ultraconformal and seamless contact with human skin, enabling long-term and high-fidelity recording of various electrophysiological signals with extraordinary immunity to motion artifacts. Human-machine interactions are achieved by exploiting the painted I-tattoos to transmit the electrophysiological signals of human beings. Stretchable I-tattoo electrode arrays, manufactured by the printing method, are demonstrated for multichannel digital diagnosis of the health condition of human back muscles and spine.
Collapse
Affiliation(s)
- Wenwen Niu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiong Tian
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Zhiyuan Liu
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen, 518055, China
| | - Xiaokong Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
46
|
Zhu J, Tao J, Yan W, Song W. Pathways toward wearable and high-performance sensors based on hydrogels: toughening networks and conductive networks. Natl Sci Rev 2023; 10:nwad180. [PMID: 37565203 PMCID: PMC10411675 DOI: 10.1093/nsr/nwad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/02/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
Wearable hydrogel sensors provide a user-friendly option for wearable electronics and align well with the existing manufacturing strategy for connecting and communicating with large numbers of Internet of Things devices. This is attributed to their components and structures, which exhibit exceptional adaptability, scalability, bio-compatibility, and self-healing properties, reminiscent of human skin. This review focuses on the recent research on principal structural elements of wearable hydrogels: toughening networks and conductive networks, highlighting the strategies for enhancing mechanical and electrical properties. Wearable hydrogel sensors are categorized for an extensive exploration of their composition, mechanism, and design approach. This review provides a comprehensive understanding of wearable hydrogels and offers guidance for the design of components and structures in order to develop high-performance wearable hydrogel sensors.
Collapse
Affiliation(s)
- Junbo Zhu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jingchen Tao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wei Yan
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Weixing Song
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, China
| |
Collapse
|
47
|
Huang W, Ding Q, Wang H, Wu Z, Luo Y, Shi W, Yang L, Liang Y, Liu C, Wu J. Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat Commun 2023; 14:5221. [PMID: 37633989 PMCID: PMC10460451 DOI: 10.1038/s41467-023-40953-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023] Open
Abstract
Timely and remote biomarker detection is highly desired in personalized medicine and health protection but presents great challenges in the devices reported so far. Here, we present a cost-effective, flexible and self-powered sensing device for H2S biomarker analysis in various application scenarios based on the structure of galvanic cells. The sensing mechanism is attributed to the change in electrode potential resulting from the chemical adsorption of gas molecules on the electrode surfaces. Intrinsically stretchable organohydrogels are used as solid-state electrolytes to enable stable and long-term operation of devices under stretching deformation or in various environments. The resulting open-circuit sensing device exhibits high sensitivity, low detection limit, and excellent selectivity for H2S. Its application in the non-invasive halitosis diagnosis and identification of meat spoilage is demonstrated, emerging great commercial value in portable medical electronics and food security. A wireless sensory system has also been developed for remote H2S monitoring with the participation of Bluetooth and cloud technologies. This work breaks through the shortcomings in the traditional chemiresistive sensors, offering a direction and theoretical foundation for designing wearable sensors catering to other stimulus detection requirements.
Collapse
Affiliation(s)
- Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Qiongling Ding
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Hao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Yibing Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, 300384, Tianjin, China
| | - Le Yang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Yujie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, 56th Lingyuanxi Road, 510055, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Stomatology, No. 74, 2nd Zhongshan Road, 510080, Guangzhou, Guangdong, China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China
| | - Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, 510275, Guangzhou, China.
| |
Collapse
|
48
|
Wen J, Wu Y, Gao Y, Su Q, Liu Y, Wu H, Zhang H, Liu Z, Yao H, Huang X, Tang L, Shi Y, Song P, Xue H, Gao J. Nanofiber Composite Reinforced Organohydrogels for Multifunctional and Wearable Electronics. NANO-MICRO LETTERS 2023; 15:174. [PMID: 37420043 PMCID: PMC10328881 DOI: 10.1007/s40820-023-01148-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/11/2023] [Indexed: 07/09/2023]
Abstract
Composite organohydrogels have been widely used in wearable electronics. However, it remains a great challenge to develop mechanically robust and multifunctional composite organohydrogels with good dispersion of nanofillers and strong interfacial interactions. Here, multifunctional nanofiber composite reinforced organohydrogels (NCROs) are prepared. The NCRO with a sandwich-like structure possesses excellent multi-level interfacial bonding. Simultaneously, the synergistic strengthening and toughening mechanism at three different length scales endow the NCRO with outstanding mechanical properties with a tensile strength (up to 7.38 ± 0.24 MPa), fracture strain (up to 941 ± 17%), toughness (up to 31.59 ± 1.53 MJ m-3) and fracture energy (up to 5.41 ± 0.63 kJ m-2). Moreover, the NCRO can be used for high performance electromagnetic interference shielding and strain sensing due to its high conductivity and excellent environmental tolerance such as anti-freezing performance. Remarkably, owing to the organohydrogel stabilized conductive network, the NCRO exhibits superior long-term sensing stability and durability compared to the nanofiber composite itself. This work provides new ideas for the design of high-strength, tough, stretchable, anti-freezing and conductive organohydrogels with potential applications in multifunctional and wearable electronics.
Collapse
Affiliation(s)
- Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yuxin Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Qin Su
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Yuntao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Hang Yao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| | - Xuewu Huang
- Testing Center, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Longcheng Tang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, People's Republic of China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, 350116, People's Republic of China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, People's Republic of China.
| |
Collapse
|
49
|
Zhu H, Cheng Y, Li S, Xu M, Yang X, Li T, Du Y, Liu Y, Song H. Stretchable and recyclable gelatin Ionogel based ionic skin with extensive temperature tolerant, self-healing, UV-shielding, and sensing capabilities. Int J Biol Macromol 2023:125417. [PMID: 37331536 DOI: 10.1016/j.ijbiomac.2023.125417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Fabricating sustainable ionic skin with multi-functional outstanding performances using biocompatible natural polymer-based ionogel is highly desired but remains a great challenge up to now. Herein, a green and recyclable ionogel has been fabricated by in-situ cross-linking of gelatin with a green bio-based multifunctional cross-linker of Triglycidyl Naringenin in ionic liquid. Benefiting from the unique multifunctional chemical crosslinking networks along with multiple reversible non-covalent interactions, the as-prepared ionogels exhibit high stretchability (>1000 %), excellent elasticity, fast room-temperature self-healability (>98 % healing efficiency at 6 min), and good recyclability. These ionogels are also highly conductive (up to 30.7 mS/cm at 150 °C), and exhibit extensive temperature tolerance (-23 to 252 °C) and outstanding UV-shielding ability. As a result, the as-prepared ionogel can easily be applied as stretchable ionic skin for wearable sensors, which exhibits high sensitivity, fast response time (102 ms), excellent temperature tolerance, and stability over 5000 stretching-relaxing cycles. More importantly, the gelatin-based sensor can be used in signal monitor system for various human motion real-time detection. This sustainable and multifunctional ionogel provides a new idea for easy and green preparation of advanced ionic skins.
Collapse
Affiliation(s)
- Hongnan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Yan Cheng
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Shuaijie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Min Xu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Xuemeng Yang
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Tianci Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Yonggang Du
- School of Materials Science and Engineering, Shijiazhuang Tiedao University, Shijiazhuang, Hebei Province 050043, PR China.
| | - Yanfang Liu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China
| | - Hongzan Song
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province, 071002, PR China.
| |
Collapse
|
50
|
Zhang L, Wang S, Wang Z, Huang Z, Sun P, Dong F, Liu H, Wang D, Xu X. A sweat-pH-enabled strongly adhesive hydrogel for self-powered e-skin applications. MATERIALS HORIZONS 2023; 10:2271-2280. [PMID: 37022102 DOI: 10.1039/d3mh00174a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
On-skin hydrogel electrodes are poorly conformable in sweaty scenarios due to low electrode-skin adhesion resulting from the sweat film formed on the skin surface, which seriously hinders practical applications. In this study, we fabricated a tough adhesive cellulose-nanofibril/poly(acrylic acid) (CNF/PAA) hydrogel with tight hydrogen-bond (H-bond) networks based on a common monomer and a biomass resource. Furthermore, inherent H-bonded network structures can be disrupted through judicious engineering using excess hydronium ions produced through sweating, which facilitate the transition to protonation and modulate the release of active groups (i.e., hydroxyl and carboxyl groups) accompanied by a pH drop. The lower pH enhances adhesive performance, especially on skin, with a 9.7-fold higher interfacial toughness (453.47 vs. 46.74 J m-2), an 8.6-fold higher shear strength (600.14 vs. 69.71 kPa), and a 10.4-fold higher tensile strength (556.44 vs. 53.67 kPa) observed at pH 4.5 compared to the corresponding values at pH 7.5. Our prepared hydrogel electrode remains conformable on sweaty skin when assembled as a self-powered electronic skin (e-skin) and enables electrophysiological signals to be reliably collected with high signal-to-noise ratios when exercising. The strategy presented here promotes the design of high-performance adhesive hydrogels that may serve to record continuous electrophysiological signals under real-life conditions (beyond sweating) for various intelligent monitoring systems.
Collapse
Affiliation(s)
- Lei Zhang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Siheng Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Zhuomin Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Zhen Huang
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Penghao Sun
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Fuhao Dong
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - He Liu
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Dan Wang
- Institute of Chemical Industry of Forestry Products, Key Laboratory of Biomass Energy and Material, Jiangsu Province, Key Laboratory of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Xu Xu
- College of Chemical Engineering, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|