1
|
Huang H, Zhu W, Huang B, Fu Z, Xiong Y, Cao D, Ye Y, Chang Q, Li W, Li L, Zhou H, Niu X, Zhang W. Structural insights into the biochemical mechanism of the E2/E3 hybrid enzyme UBE2O. Structure 2024:S0969-2126(24)00537-9. [PMID: 39740670 DOI: 10.1016/j.str.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025]
Abstract
The E2/E3 hybrid enzyme UBE2O plays important roles in key biological events, but its autoubiquitination mechanism remains largely unclear. In this study, we determined the crystal structures of full-length (FL) UBE2O from Trametes pubescens (tp) and its ubiquitin-conjugating (UBC) domain. The dimeric FL-tpUBE2O structure revealed interdomain interactions between the conserved regions (CR1-CR2) and UBC. The dimeric intermolecular and canonical ubiquitin/UBC interactions are mechanistically important for UBE2O functions in catalyzing the formation of free polyubiquitin chains and substrate ubiquitination. Beyond dimerization, autoubiquitination within the CR1-CR2 domain also regulates tpUBE2O activity. Additionally, we show that tpUBE2O catalyzes the formation of all seven types of polyubiquitin chains in vitro. The CR1-CR2/UBC and canonical ubiquitin/UBC interactions are important for the polyubiquitination of AMP-activated protein kinase α2 (AMPKα2) by human UBE2O (hUBE2O), which leads to tumorigenesis. These structural insights lay the groundwork for understanding UBE2O's mechanisms and developing structure-based therapeutics targeting UBE2O.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China.
| | - Wenning Zhu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bin Huang
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ziyang Fu
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Dan Cao
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuxin Ye
- State Key Laboratory of Chemical Oncogenomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Qing Chang
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenqi Li
- Beijing Advanced Innovation Center for Structural Biology, Technology Center for Protein Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long Li
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| | - Huan Zhou
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Xiaogang Niu
- College of Chemistry and Molecular Engineering, Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China
| | - Wei Zhang
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
2
|
Liu M, Long X, Fu S, Zhang Y, Liu Z, Xu X, Wu M. Mitochondrial DNA copy number and the risk of autoimmune diseases: A Mendelian randomization study with meta-analysis. J Transl Autoimmun 2024; 9:100251. [PMID: 39434801 PMCID: PMC11491893 DOI: 10.1016/j.jtauto.2024.100251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/23/2024] Open
Abstract
Background Mitochondrial DNA plays a crucial role in the pathophysiology of autoimmune diseases (ADs). However, the association between mitochondrial DNA copy number (mtDNA-CN) and ADs risk is controversial. In this study, Mendelian randomization (MR) analysis and meta-analysis were performed using three sets of independent instrumental variables (IVs) to investigate the potential association between mtDNA-CN and 20 types of ADs. Methods The three sets of IVs were drawn primarily from participants in the UK Biobank and the Cohorts for Heart and Aging Research in Genomic Epidemiology consortium using different methods. Outcome data for ADs were investigated using summary statistics from the FinnGen cohort. The potential causal associations were assessed using inverse-variance weighting (IVW), MR-Egger, and weighted median methods. Sensitivity analysis and the Steiger test were used to verify the robustness of the MR estimates. In addition, a meta-analysis was conducted to pool the results from three IV groups. Results Overall, genetically predicted mtDNA-CN was not associated with ADs risk (OR = 1.046, 95 % CI: 0.964-1.135, P = 0.283). However, subgroup analyses showed positive causal associations of mtDNA-CN with autoimmune hypothyroidism (OR = 1.133, 95 % CI: 1.016-1.262, P = 0.024) and rheumatoid arthritis (OR = 1.219, 95 % CI: 1.028-1.445, P = 0.023). In contrast, there was no causal association between mtDNA-CN and atopic dermatitis as well as psoriasis, ulcerative colitis, adult-onset Still disease, type1 diabetes, Crohn disease, sarcoidosis, ankylosing spondylitis, multiple sclerosis, autoimmune hyperthyroidism, primary sclerosing cholangitis, systemic lupus erythematosus, systemic sclerosis, alopecia areata, myasthenia gravis, Guillain-Barre syndrome, dermatopolymyositis, and vitiligo. Conclusions This MR analysis showed mtDNA-CN is causally associated with an increased risk of autoimmune hypothyroidism and rheumatoid arthritis at the genetic level. The findings have important implications for the use of mtDNA-CN as a biomarker for risk assessment of autoimmune hypothyroidism and rheumatoid arthritis in clinical practice.
Collapse
Affiliation(s)
- Mingzhu Liu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Xiongquan Long
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Shuangshuang Fu
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, 410005, China
| | - Yuyang Zhang
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Zihao Liu
- Department of Endoscopic Diagnosis and Treatment Center, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410005, China
| | - Xiaoping Xu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| | - Minghao Wu
- Department of Gastroenterology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Hunan, 410005, China
| |
Collapse
|
3
|
Chen X, Wang L, Cheng Q, Deng Z, Tang Y, Yan Y, Xie L, Li X. Multiple myeloma exosomal miRNAs suppress cGAS-STING antiviral immunity. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167457. [PMID: 39134287 DOI: 10.1016/j.bbadis.2024.167457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024]
Abstract
DNA virus infection is a significant cause of morbidity and mortality in patients with multiple myeloma (MM). Monocyte dysfunction in MM patients plays a central role in infectious complications, but the precise molecular mechanism underlying the reduced resistance of monocytes to viruses in MM patients remains to be elucidated. Here, we found that MM cells were able to transfer microRNAs (miRNAs) to host monocytes/macrophages via MM cell-derived exosomes, resulting in the inhibition of innate antiviral immune responses. The screening of miRNAs enriched in exosomes derived from the bone marrow (BM) of MM patients revealed five miRNAs that negatively regulate the cGAS-STING antiviral immune response. Notably, silencing these miRNAs with antagomiRs in MM-bearing C57BL/KaLwRijHsd mice markedly reduced viral replication. These findings identify a novel mechanism whereby MM cells possess the capacity to inhibit the innate immune response of the host, thereby rendering patients susceptible to viral infection. Consequently, targeting the aberrant expression patterns of characteristic miRNAs in MM patients is a promising avenue for therapeutic intervention. Considering the miRNA score and relevant clinical factors, we formulated a practical and efficient model for the optimal assessment of susceptibility to DNA viral infection in patients with MM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Liwen Wang
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Qian Cheng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Zuqun Deng
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Yishu Tang
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Yuhan Yan
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Linzhi Xie
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China
| | - Xin Li
- Department of Hematology, the Third Xiangya Hospital of Central South University, Changsha 412000, China.
| |
Collapse
|
4
|
Zhou J, Li D, Xu M, Zhu T, Li Z, Fu Z, Wang M, Li S, Gu D. Interactions between polycyclic aromatic hydrocarbons and genetic variants in the cGAS-STING pathway affect the risk of colorectal cancer. Arch Toxicol 2024; 98:4117-4129. [PMID: 39287666 DOI: 10.1007/s00204-024-03862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The cGAS-STING pathway plays an essential role in the activation of tumor immune cells. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with potential carcinogenicity, and their exposure is associated with the development of colorectal cancer. However, the impacts of genetic factors in the cGAS‒STING pathway and gene‒environment interactions on colorectal cancer remain understudied. We used logistic regression models and interaction analysis to evaluate the impact of genetic variants on colorectal cancer risk and gene‒environment interactions. We analysed the expression patterns of candidate genes based on the RNA-seq data. Molecular biology experiments were performed to investigate the impact of PAHs exposure on candidate gene expression and the progression of colorectal cancer. We identified the susceptibility locus rs3750511 in the cGAS‒STING pathway, which is associated with colorectal cancer risk. A negative interaction between TRAF2 rs3750511 and PAHs exposure was also identified. Single-cell RNA-seq analysis revealed significantly elevated expression of TRAF2 in colorectal cancer tissues compared with normal tissues, especially in T cells. BPDE exposure increased TRAF2 expression and the malignant phenotype of colorectal cancer cells. The treatment also further increased the expression of the TRAF2 downstream gene NF-κB and decreased the expression of Caspase8. Our results suggest that the genetic variant of rs3750511 affects the expression of TRAF2, thereby increasing the risk of colorectal cancer through interaction with PAHs. Our study provides new insights into the influence of gene‒environment interactions on the risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Jieyu Zhou
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Dongzheng Li
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianru Zhu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyi Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
5
|
Mittra N, He S, Bao H, Bhattacharjee A, Dodds SG, Dupree JL, Han X. Sulfatide deficiency-induced astrogliosis and myelin lipid dyshomeostasis are independent of Trem2-mediated microglial activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623651. [PMID: 39605561 PMCID: PMC11601472 DOI: 10.1101/2024.11.14.623651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Disrupted lipid homeostasis and neuroinflammation often co-exist in neurodegenerative disorders including Alzheimer's disease (AD). However, the intrinsic connection and causal relationship between these deficits remain elusive. Our previous studies show that the loss of sulfatide (ST), a class of myelin-enriched lipids, causes AD-like neuroinflammatory responses, cognitive impairment, bladder enlargement, as well as lipid dyshomeostasis. To better understand the relationship between neuroinflammation and lipid disruption induced by ST deficiency, we established a ST-deficient mouse model with constitutive Trem2 knockout and studied the impact of Trem2 in regulating ST deficiency-induced microglia-mediated neuroinflammation, astrocyte activation and lipid disruption. Our study demonstrates that Trem2 regulates ST deficiency-induced microglia-mediated neuroinflammatory pathways and astrogliosis at the transcriptomic level, but not astrocyte activation at the protein level, suggesting that Trem2 is indispensable for ST deficiency-induced microglia-mediated neuroinflammation but not astrogliosis. Meanwhile, ST loss-induced lipidome disruption and free water retention were consistently observed in the absence of Trem2 . Collectively, these results emphasize the essential role of Trem2 in mediating lipid loss-associated microglia-mediated neuroinflammation, but not both astrogliosis and myelin lipid disruption. Moreover, we demonstrated that attenuating neuroinflammation has a limited impact on brain ST loss-induced lipidome alteration or AD-like peripheral disorders. Our findings suggest that preserving lipidome and astrocyte balance may be crucial in decelerating the progression of AD.
Collapse
|
6
|
Liu H, Sheng Q, Dan J, Xie X. Crosstalk and Prospects of TBK1 in Inflammation. Immunol Invest 2024; 53:1205-1233. [PMID: 39194013 DOI: 10.1080/08820139.2024.2392587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
BACKGROUND TANK-binding kinase 1 (TBK1) is a pivotal mediator of innate immunity, activated by receptors such as mitochondrial antiviral signaling protein (MAVS), stimulator of interferon genes (STING), and TIR-domain-containing adaptor inducing interferon-β (TRIF). It modulates immune responses by exerting influence on the type I interferons (IFN-Is) signaling and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) pathways, Over the past few years, TBK1 multifaceted role in both immune and inflammatory responses is increasingly recognized. METHODS AND RESULTS This review aims to scrutinize how TBK1 operates within the NF-κB pathway and the interferon regulatory transcription factor 3 (IRF3)-dependent IFN-I pathways, highlighting the kinases and other molecules involved in these processes. This analysis reveals the distinctive characteristics of TBK1's involvement in these pathways. Furthermore, it has been observed that the role of TBK1 in exerting anti-inflammatory or pro-inflammatory effects is contingent upon varying pathological conditions, indicating a multifaceted role in immune regulation. DISCUSSION TBK1's evolving role in various diseases and the potential of TBK1 inhibitors as therapeutic agents are explored. Targeting TBK1 may provide new strategies for treating inflammatory disorders and autoimmune diseases associated with IFN-Is, warranting further investigation.
Collapse
Affiliation(s)
- Huan Liu
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Qihuan Sheng
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Juhua Dan
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Xiaoli Xie
- Laboratory of Molecular Genetics of Aging and Tumor, Medical School, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
7
|
Zeng C, Zhu X, Li H, Huang Z, Chen M. The Role of Interferon Regulatory Factors in Liver Diseases. Int J Mol Sci 2024; 25:6874. [PMID: 38999981 PMCID: PMC11241258 DOI: 10.3390/ijms25136874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
The interferon regulatory factors (IRFs) family comprises 11 members that are involved in various biological processes such as antiviral defense, cell proliferation regulation, differentiation, and apoptosis. Recent studies have highlighted the roles of IRF1-9 in a range of liver diseases, including hepatic ischemia-reperfusion injury (IRI), alcohol-induced liver injury, Con A-induced liver injury, nonalcoholic fatty liver disease (NAFLD), cirrhosis, and hepatocellular carcinoma (HCC). IRF1 is involved in the progression of hepatic IRI through signaling pathways such as PIAS1/NFATc1/HDAC1/IRF1/p38 MAPK and IRF1/JNK. The regulation of downstream IL-12, IL-15, p21, p38, HMGB1, JNK, Beclin1, β-catenin, caspase 3, caspase 8, IFN-γ, IFN-β and other genes are involved in the progression of hepatic IRI, and in the development of HCC through the regulation of PD-L1, IL-6, IL-8, CXCL1, CXCL10, and CXCR3. In addition, IRF3-PPP2R1B and IRF4-FSTL1-DIP2A/CD14 pathways are involved in the development of NAFLD. Other members of the IRF family also play moderately important functions in different liver diseases. Therefore, given the significance of IRFs in liver diseases and the lack of a comprehensive compilation of their molecular mechanisms in different liver diseases, this review is dedicated to exploring the molecular mechanisms of IRFs in various liver diseases.
Collapse
Affiliation(s)
- Chuanfei Zeng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Xiaoqin Zhu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Huan Li
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Ziyin Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| | - Mingkai Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No. 99 Zhang Zhidong Road, Wuhan 430060, China
| |
Collapse
|
8
|
Wu Z, Xu J, Hu Y, Peng X, Zhang Z, Yao X, Peng Q. The roles of IRF8 in nonspecific orbital inflammation: an integrated analysis by bioinformatics and machine learning. J Ophthalmic Inflamm Infect 2024; 14:29. [PMID: 38900395 PMCID: PMC11190126 DOI: 10.1186/s12348-024-00410-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Nonspecific Orbital Inflammation (NSOI) represents a persistent and idiopathic proliferative inflammatory disorder, characterized by polymorphous lymphoid infiltration within the orbit. The transcription factor Interferon Regulatory Factor 8 (IRF8), integral to the IRF protein family, was initially identified as a pivotal element for the commitment and differentiation of myeloid cell lineage. Serving as a central regulator of innate immune receptor signaling, IRF8 orchestrates a myriad of functions in hematopoietic cell development. However, the intricate mechanisms underlying IRF8 production remain to be elucidated, and its potential role as a biomarker for NSOI is yet to be resolved. METHODS IRF8 was extracted from the intersection analysis of common DEGs of GSE58331 and GSE105149 from the GEO and immune- related gene lists in the ImmPort database using The Lasso regression and SVM-RFE analysis. We performed GSEA and GSVA with gene sets coexpressed with IRF8, and observed that gene sets positively related to IRF8 were enriched in immune-related pathways. To further explore the correlation between IRF8 and immune-related biological process, the CIBERSORT algorithm and ESTIMATE method were employed to evaluate TME characteristics of each sample and confirmed that high IRF8 expression might give rise to high immune cell infiltration. Finally, the GSE58331 was utilized to confirm the levels of expression of IRF8. RESULTS Among the 314 differentially expressed genes (DEGs), some DEGs were found to be significantly different. With LASSO and SVM-RFE algorithms, we obtained 15 hub genes. For biological function analysis in IRF8, leukocyte mediated immunity, leukocyte cell-cell adhesion, negative regulation of immune system process were emphasized. B cells naive, Macrophages M0, Macrophages M1, T cells CD4 memory activated, T cells CD4 memory resting, T cells CD4 naive, and T cells gamma delta were shown to be positively associated with IRF8. While, Mast cells resting, Monocytes, NK cells activated, Plasma cells, T cells CD8, and T cells regulatory (Tregs) were shown to be negatively linked with IRF8. The diagnostic ability of the IRF8 in differentiating NSOI exhibited a good value. CONCLUSIONS This study discovered IRF8 that are linked to NSOI. IRF8 shed light on potential new biomarkers for NSOI and tracking its progression.
Collapse
Affiliation(s)
- Zixuan Wu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Jinfeng Xu
- Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, 257091, PR China
| | - Yi Hu
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xin Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Zheyuan Zhang
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan Province, China
| | - Xiaolei Yao
- Department of Ophthalmology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan Province, China
- Ophthalmology Department, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410011, China
| | - Qinghua Peng
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, Hunan Province, China.
- Department of Ophthalmology, the First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, Changsha, 410007, Hunan Province, China.
| |
Collapse
|
9
|
Li L, Liu F, Feng C, Chen Z, Zhang N, Mao J. Role of mitochondrial dysfunction in kidney disease: Insights from the cGAS-STING signaling pathway. Chin Med J (Engl) 2024; 137:1044-1053. [PMID: 38445370 PMCID: PMC11062705 DOI: 10.1097/cm9.0000000000003022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Indexed: 03/07/2024] Open
Abstract
ABSTRACT Over the past decade, mitochondrial dysfunction has been investigated as a key contributor to acute and chronic kidney disease. However, the precise molecular mechanisms linking mitochondrial damage to kidney disease remain elusive. The recent insights into the cyclic guanosine monophosphate-adenosine monophosphate (GMP-AMP) synthetase (cGAS)-stimulator of interferon gene (STING) signaling pathway have revealed its involvement in many renal diseases. One of these findings is that mitochondrial DNA (mtDNA) induces inflammatory responses via the cGAS-STING pathway. Herein, we provide an overview of the mechanisms underlying mtDNA release following mitochondrial damage, focusing specifically on the association between mtDNA release-activated cGAS-STING signaling and the development of kidney diseases. Furthermore, we summarize the latest findings of cGAS-STING signaling pathway in cell, with a particular emphasis on its downstream signaling related to kidney diseases. This review intends to enhance our understanding of the intricate relationship among the cGAS-STING pathway, kidney diseases, and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lu Li
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Fei Liu
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Chunyue Feng
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Zhenjie Chen
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Nan Zhang
- Department of Pediatric Intensive Care Unit, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| | - Jianhua Mao
- Department of Nephrology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang 310052, China
| |
Collapse
|
10
|
Gewaid H, Bowie AG. Regulation of type I and type III interferon induction in response to pathogen sensing. Curr Opin Immunol 2024; 87:102424. [PMID: 38761566 DOI: 10.1016/j.coi.2024.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 02/19/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Type I and III interferons (IFN-I and IFN-III) have a central role in the early antimicrobial response against invading pathogens. Induction of IFN-Is and IFN-IIIs arises due to the sensing by pattern recognition receptors of pathogen-associated molecular patterns (from micro-organisms) or of damage-associated molecular patterns (DAMPs; produced by host cells). Here, we review recent developments on how IFN-I and IFN-III expression is stimulated by different pathogens and how the signalling pathways leading to IFN induction are tightly regulated. We also summarise the growing knowledge of the sensing pathways that lead to IFN-I and IFN-III induction in response to severe acute respiratory syndrome coronavirus 2.
Collapse
Affiliation(s)
- Hossam Gewaid
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
11
|
Han J, Zheng J, Li Q, Hong H, Yao J, Wang J, Zhao RC. An Antibody-directed and Immune Response Modifier-augmented Photothermal Therapy Strategy Relieves Aging via Rapid Immune Clearance of Senescent Cells. Aging Dis 2024; 15:787-803. [PMID: 38447216 PMCID: PMC10917526 DOI: 10.14336/ad.2023.0628-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/28/2023] [Indexed: 03/08/2024] Open
Abstract
Cellular senescence is an irreversible and multifaceted process inducing tissue dysfunction and organismal aging, and thus the clearance of senescent cells can prevent or delay the onset of aging-related pathologies. Herein, we developed an augmented photothermal therapy strategy integrated with an antibody against β2-microglobulin (aB2MG) and an immune adjuvant imiquimod (R837) to effectively accelerate senescent cell apoptosis and clearance under a near-infrared light. With this strategy, the designed CroR@aB2MG enables the targeting of senescent cells and the application of photothermal therapy concomitantly, the initiation of immune clearance subsequently, and finally the realization of protective effects against senescence. Our results showed that the photo-induced heating effect caused senescent cells to quickly undergo apoptosis and the synchronous immune response accelerated the clearance of senescent cells in vitro and in vivo. Therefore, this photoactivated speedy clearing strategy may provide an efficient way for the treatment of senescence-related diseases by eliminating senescent cells with biomaterials.
Collapse
Affiliation(s)
- Jiamei Han
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Qian Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
- Cell Energy Life Sciences Group Co. LTD, Qingdao, Shandong, China.
| | - Huanle Hong
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jing Yao
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy (BZ0381), Beijing, China.
| |
Collapse
|
12
|
Lapp T, Kammrath Betancor P, Schlunck G, Auw-Hädrich C, Maier P, Lange C, Reinhard T, Wolf J. Transcriptional profiling specifies the pathogen-specific human host response to infectious keratitis. Front Cell Infect Microbiol 2024; 13:1285676. [PMID: 38274739 PMCID: PMC10808294 DOI: 10.3389/fcimb.2023.1285676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Purpose Corneal infections are a leading cause of visual impairment and blindness worldwide. Here we applied high-resolution transcriptomic profiling to assess the general and pathogen-specific molecular and cellular mechanisms during human corneal infection. Methods Clinical diagnoses of herpes simplex virus (HSV) (n=5) and bacterial/fungal (n=5) keratitis were confirmed by histology. Healthy corneas (n=7) and keratoconus (n=4) samples served as controls. Formalin-fixed, paraffin-embedded (FFPE) human corneal specimens were analyzed using the 3' RNA sequencing method Massive Analysis of cDNA Ends (MACE RNA-seq). The cellular host response was investigated using comprehensive bioinformatic deconvolution (xCell and CYBERSORTx) analyses and by integration with published single cell RNA-seq data of the human cornea. Results Our analysis identified 216 and 561 genes, that were specifically overexpressed in viral or bacterial/fungal keratitis, respectively, and allowed to distinguish the two etiologies. The virus-specific host response was driven by adaptive immunity and associated molecular signaling pathways, whereas the bacterial/fungal-specific host response mainly involved innate immunity signaling pathways and cell types. We identified several genes and pathways involved in the host response to infectious keratitis, including CXCL9, CXCR3, and MMP9 for viral, and S100A8/A9, MMP9, and the IL17 pathway for bacterial/fungal keratitis. Conclusions High-resolution molecular profiling provides new insights into the human corneal host response to viral and bacterial/fungal infection. Pathogen-specific molecular profiles may provide the foundation for novel diagnostic biomarker and therapeutic approaches that target inflammation-induced damage to corneal host cells with the goal to improve the outcome of infectious keratitis.
Collapse
Affiliation(s)
- Thabo Lapp
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany
| | - Paola Kammrath Betancor
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Günther Schlunck
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Claudia Auw-Hädrich
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philip Maier
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Clemens Lange
- Ophtha-Lab, Department of Ophthalmology, St. Franziskus Hospital, Münster, Germany
| | - Thomas Reinhard
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
- Omics Laboratory, Stanford University, Palo Alto, CA, United States
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, United States
| |
Collapse
|
13
|
Xu R, Xie H, Shen X, Huang J, Zhang H, Fu Y, Zhang P, Guo S, Wang D, Li S, Zheng K, Sun W, Liu L, Cheng J, Jiang H. Impaired Efferocytosis Enables Apoptotic Osteoblasts to Escape Osteoimmune Surveillance During Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303946. [PMID: 37897313 PMCID: PMC10754079 DOI: 10.1002/advs.202303946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Indexed: 10/30/2023]
Abstract
Macrophage efferocytosis of apoptotic osteoblasts (apoOBs) is a key osteoimmune process for bone homeostasis. However, apoOBs frequently accumulate in aged bone marrow, where they may mount proinflammatory responses and progressive bone loss. The reason why apoOBs are not cleared during aging remains unclear. In this study, it is demonstrated that aged apoOBs upregulate the immune checkpoint molecule CD47, which is controlled by SIRT6-regulated transcriptional pausing, to evade clearance by macrophages. Using osteoblast- and myeloid-specific gene knockout mice, SIRT6 is further revealed to be a critical modulator for apoOBs clearance via targeting CD47-SIRPα checkpoint. Moreover, apoOBs activate SIRT6-mediated chemotaxis to recruit macrophages by releasing apoptotic vesicles. Two targeting delivery strategies are developed to enhance SIRT6 activity, resulting in rejuvenated apoOBs clearance and delayed age-related bone loss. Collectively, the findings reveal a previously unknown linkage between immune surveillance and bone homeostasis and targeting the SIRT6-regulated mechanism can be a promising therapeutic strategy for age-related bone diseases.
Collapse
Affiliation(s)
- Rongyao Xu
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Hanyu Xie
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Xin Shen
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Jiadong Huang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Hengguo Zhang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Songsong Guo
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Dongmiao Wang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Sheng Li
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
- Department of Basic Science of StomatologyAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu211166China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
- Department of Basic Science of StomatologyAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu211166China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingJiangsu Province210029China
- Department of Oral and Maxillofacial SurgeryAffiliated Hospital of StomatologyNanjing Medical UniversityNanjingJiangsu Province210029China
- Jiangsu Province Engineering Research Center of Stomatological Translational MedicineNanjingJiangsu Province210029China
| |
Collapse
|
14
|
Alshebremi M, Tomchuck SL, Myers JT, Kingsley DT, Eid S, Abiff M, Bonner M, Saab ST, Choi SH, Huang AYC. Functional tumor cell-intrinsic STING, not host STING, drives local and systemic antitumor immunity and therapy efficacy following cryoablation. J Immunother Cancer 2023; 11:e006608. [PMID: 37553183 PMCID: PMC10414127 DOI: 10.1136/jitc-2022-006608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Despite its potential utility in delivering direct tumor killing and in situ whole-cell tumor vaccination, tumor cryoablation produces highly variable and unpredictable clinical response, limiting its clinical utility. The mechanism(s) driving cryoablation-induced local antitumor immunity and the associated abscopal effect is not well understood. METHODS The aim of this study was to identify and explore a mechanism of action by which cryoablation enhances the therapeutic efficacy in metastatic tumor models. We used the subcutaneous mouse model of the rhabdomyosarcoma (RMS) cell lines RMS 76-9STINGwt or RMS 76-9STING-/-, along with other murine tumor models, in C57BL/6 or STING-/- (TMEM173-/- ) mice to evaluate local tumor changes, lung metastasis, abscopal effect on distant tumors, and immune cell dynamics in the tumor microenvironment (TME). RESULTS The results show that cryoablation efficacy is dependent on both adaptive immunity and the STING signaling pathway. Contrary to current literature dictating an essential role of host-derived STING activation as a driver of antitumor immunity in vivo, we show that local tumor control, lung metastasis, and the abscopal effect on distant tumor are all critically dependent on a functioning tumor cell-intrinsic STING signaling pathway, which induces inflammatory chemokine and cytokine responses in the cryoablated TME. This reliance extends beyond cryoablation to include intratumoral STING agonist therapy. Additionally, surveys of gene expression databases and tissue microarrays of clinical tumor samples revealed a wide spectrum of expressions among STING-related signaling components. CONCLUSIONS Tumor cell-intrinsic STING pathway is a critical component underlying the effectiveness of cryoablation and suggests that expression of STING-related signaling components may serve as a potential therapy response biomarker. Our data also highlight an urgent need to further characterize tumor cell-intrinsic STING pathways and the associated downstream inflammatory response evoked by cryoablation and other STING-dependent therapy approaches.
Collapse
Affiliation(s)
- Mohammad Alshebremi
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Suzanne L Tomchuck
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jay T Myers
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Daniel T Kingsley
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Saada Eid
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Muta Abiff
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Melissa Bonner
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Shahrazad T Saab
- Department of Pathology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Sung Hee Choi
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alex Yee-Chen Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Center for Pediatric Immunotherapy, Angie Fowler AYA Cancer Institute, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
15
|
Kumar V, Bauer C, Stewart JH. Targeting cGAS/STING signaling-mediated myeloid immune cell dysfunction in TIME. J Biomed Sci 2023; 30:48. [PMID: 37380989 PMCID: PMC10304357 DOI: 10.1186/s12929-023-00942-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023] Open
Abstract
Myeloid immune cells (MICs) are potent innate immune cells serving as first responders to invading pathogens and internal changes to cellular homeostasis. Cancer is a stage of altered cellular homeostasis that can originate in response to different pathogens, chemical carcinogens, and internal genetic/epigenetic changes. MICs express several pattern recognition receptors (PRRs) on their membranes, cytosol, and organelles, recognizing systemic, tissue, and organ-specific altered homeostasis. cGAS/STING signaling is a cytosolic PRR system for identifying cytosolic double-stranded DNA (dsDNA) in a sequence-independent but size-dependent manner. The longer the cytosolic dsDNA size, the stronger the cGAS/STING signaling activation with increased type 1 interferon (IFN) and NF-κB-dependent cytokines and chemokines' generation. The present article discusses tumor-supportive changes occurring in the tumor microenvironment (TME) or tumor immune microenvironment (TIME) MICs, specifically emphasizing cGAS/STING signaling-dependent alteration. The article further discusses utilizing MIC-specific cGAS/STING signaling modulation as critical tumor immunotherapy to alter TIME.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
- Surgery, Section of Surgical Oncology, Louisiana State University New Orleans-Louisiana Children's Medical Center Cancer Center, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA, 70012, USA.
| |
Collapse
|
16
|
Cao D, Duan L, Huang B, Xiong Y, Zhang G, Huang H. The SARS-CoV-2 papain-like protease suppresses type I interferon responses by deubiquitinating STING. Sci Signal 2023; 16:eadd0082. [PMID: 37130168 DOI: 10.1126/scisignal.add0082] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 03/31/2023] [Indexed: 05/04/2023]
Abstract
The SARS-CoV-2 papain-like protease (PLpro), which has deubiquitinating activity, suppresses the type I interferon (IFN-I) antiviral response. We investigated the mechanism by which PLpro antagonizes cellular antiviral responses. In HEK392T cells, PLpro removed K63-linked polyubiquitin chains from Lys289 of the stimulator of interferon genes (STING). PLpro-mediated deubiquitination of STING disrupted the STING-IKKε-IRF3 complex that induces the production of IFN-β and IFN-stimulated cytokines and chemokines. In human airway cells infected with SARS-CoV-2, the combined treatment with the STING agonist diABZi and the PLpro inhibitor GRL0617 resulted in the synergistic inhibition of SARS-CoV-2 replication and increased IFN-I responses. The PLpros of seven human coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63) and four SARS-CoV-2 variants of concern (α, β, γ, and δ) all bound to STING and suppressed STING-stimulated IFN-I responses in HEK293T cells. These findings reveal how SARS-CoV-2 PLpro inhibits IFN-I signaling through STING deubiquitination and a general mechanism used by seven human coronaviral PLpros to dysregulate STING and to facilitate viral innate immune evasion. We also identified simultaneous pharmacological STING activation and PLpro inhibition as a potentially effective strategy for antiviral therapy against SARS-CoV-2.
Collapse
Affiliation(s)
- Dan Cao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Lian Duan
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Bin Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Yuxian Xiong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
| | - Guoliang Zhang
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen 518112, PR China
| | - Hao Huang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Laboratory of Structural Biology and Drug Discovery, Laboratory of Ubiquitination and Targeted Therapy, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, PR China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, China
| |
Collapse
|
17
|
Tian X, Zhou Y, Wang S, Gao M, Xia Y, Li Y, Zhong Y, Xu W, Bai L, Fu B, Zhou Y, Lee HR, Deng H, Lan K, Feng P, Zhang J. Genome-Wide CRISPR-Cas9 Screen Identifies SMCHD1 as a Restriction Factor for Herpesviruses. mBio 2023; 14:e0054923. [PMID: 37010434 PMCID: PMC10128004 DOI: 10.1128/mbio.00549-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 04/04/2023] Open
Abstract
Intrinsic immunity is the frontline of host defense against invading pathogens. To combat viral infection, mammalian hosts deploy cell-intrinsic effectors to block viral replication prior to the onset of innate and adaptive immunity. In this study, SMCHD1 is identified as a pivotal cellular factor that restricts Kaposi's sarcoma-associated herpesvirus (KSHV) lytic reactivation through a genome-wide CRISPR-Cas9 knockout screen. Genome-wide chromatin profiling revealed that SMCHD1 associates with the KSHV genome, most prominently the origin of lytic DNA replication (ORI-Lyt). SMCHD1 mutants defective in DNA binding could not bind ORI-Lyt and failed to restrict KSHV lytic replication. Moreover, SMCHD1 functioned as a pan-herpesvirus restriction factor that potently suppressed a wide range of herpesviruses, including alpha, beta, and gamma subfamilies. SMCHD1 deficiency facilitated the replication of a murine herpesvirus in vivo. These findings uncovered SMCHD1 as a restriction factor against herpesviruses, and this could be harnessed for the development of antiviral therapies to limit viral infection. IMPORTANCE Intrinsic immunity represents the frontline of host defense against invading pathogens. However, our understanding of cell-intrinsic antiviral effectors remains limited. In this study, we identified SMCHD1 as a cell-intrinsic restriction factor that controlled KSHV lytic reactivation. Moreover, SMCHD1 restricted the replication of a wide range of herpesviruses by targeting the origins of viral DNA replication (ORIs), and SMCHD1 deficiency facilitated the replication of a murine herpesvirus in vivo. This study helps us to better understand intrinsic antiviral immunity, which may be harnessed to develop new therapeutics for the treatment of herpesvirus infection and the related diseases.
Collapse
Affiliation(s)
- Xuezhang Tian
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yaru Zhou
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shaowei Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Ming Gao
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanlin Xia
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
| | - Yangyang Li
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Yunhong Zhong
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Wenhao Xu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Lei Bai
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Bishi Fu
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yu Zhou
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, South Korea
- Department of Lab Medicine, College of Medicine, Korea University, Seoul, South Korea
| | - Hongyu Deng
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ke Lan
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, China
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA
| | - Junjie Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, State Key Laboratory of Virology, Medical Research Institute, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| |
Collapse
|
18
|
Li T, Gao M, Wu Z, Yang J, Mo B, Yu S, Gong X, Liu J, Wang W, Luo S, Li R. Tantalum-Zirconium Co-Doped Metal-Organic Frameworks Sequentially Sensitize Radio-Radiodynamic-Immunotherapy for Metastatic Osteosarcoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206779. [PMID: 36739599 PMCID: PMC10074130 DOI: 10.1002/advs.202206779] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Due to radiation resistance and the immunosuppressive microenvironment of metastatic osteosarcoma, novel radiosensitizers that can sensitize radiotherapy (RT) and antitumor immunity synchronously urgently needed. Here, the authors developed a nanoscale metal-organic framework (MOF, named TZM) by co-doping high-atomic elements Ta and Zr as metal nodes and porphyrinic molecules (tetrakis(4-carboxyphenyl)porphyrin (TCPP)) as a photosensitizing ligand. Given the 3D arrays of ultra-small heavy metals, porous TZM serves as an efficient attenuator absorbing X-ray energy and sensitizing hydroxyl radical generation for RT. Ta-Zr co-doping narrowed the highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) energy gap and exhibited close energy levels between the singlet and triplet photoexcited states, facilitating TZM transfer energy to the photosensitizer TCPP to sensitize singlet oxygen (1 O2 ) generation for radiodynamic therapy (RDT). The sensitized RT-RDT effects of TZM elicit a robust antitumor immune response by inducing immunogenic cell death, promoting dendritic cell maturation, and upregulating programmed cell death protein 1 (PD-L1) expression via the cGAS-STING pathway. Furthermore, a combination of TZM, X-ray, and anti-PD-L1 treatments amplify antitumor immunotherapy and efficiently arrest osteosarcoma growth and metastasis. These results indicate that TZM is a promising radiosensitizer for the synergistic RT and immunotherapy of metastatic osteosarcoma.
Collapse
Affiliation(s)
- Tao Li
- Institute of Combined InjuryState Key Laboratory of TraumaBurns and Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineThird Military Medical University (Army Medical University)Chongqing400038China
- Center for Joint SurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Mingquan Gao
- Institute of Combined InjuryState Key Laboratory of TraumaBurns and Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineThird Military Medical University (Army Medical University)Chongqing400038China
- Department of Radiation OncologySichuan Cancer Hospital & InstituteSichuan Key Laboratory of Radiation OncologyChengduSichuan610041China
| | - Zifei Wu
- Institute of Combined InjuryState Key Laboratory of TraumaBurns and Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineThird Military Medical University (Army Medical University)Chongqing400038China
- Department of Radiation OncologySichuan Cancer Hospital & InstituteSichuan Key Laboratory of Radiation OncologyChengduSichuan610041China
| | - Junjun Yang
- Center for Joint SurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Banghui Mo
- Department of OncologySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Songtao Yu
- Department of OncologySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Xiaoyuan Gong
- Center for Joint SurgerySouthwest HospitalThird Military Medical University (Army Medical University)Chongqing400038China
| | - Jing Liu
- Institute of Combined InjuryState Key Laboratory of TraumaBurns and Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineThird Military Medical University (Army Medical University)Chongqing400038China
| | - Weidong Wang
- Department of Radiation OncologySichuan Cancer Hospital & InstituteSichuan Key Laboratory of Radiation OncologyChengduSichuan610041China
| | - Shenglin Luo
- Institute of Combined InjuryState Key Laboratory of TraumaBurns and Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineThird Military Medical University (Army Medical University)Chongqing400038China
| | - Rong Li
- Institute of Combined InjuryState Key Laboratory of TraumaBurns and Combined InjuryChongqing Engineering Research Center for NanomedicineCollege of Preventive MedicineThird Military Medical University (Army Medical University)Chongqing400038China
| |
Collapse
|
19
|
Yu L, Zhu Z, Deng J, Tian K, Li X. Antagonisms of ASFV towards Host Defense Mechanisms: Knowledge Gaps in Viral Immune Evasion and Pathogenesis. Viruses 2023; 15:574. [PMID: 36851786 PMCID: PMC9963191 DOI: 10.3390/v15020574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
African swine fever (ASF) causes high morbidity and mortality of both domestic pigs and wild boars and severely impacts the swine industry worldwide. ASF virus (ASFV), the etiologic agent of ASF epidemics, mainly infects myeloid cells in swine mononuclear phagocyte system (MPS), including blood-circulating monocytes, tissue-resident macrophages, and dendritic cells (DCs). Since their significant roles in bridging host innate and adaptive immunity, these cells provide ASFV with favorable targets to manipulate and block their antiviral activities, leading to immune escape and immunosuppression. To date, vaccines are still being regarded as the most promising measure to prevent and control ASF outbreaks. However, ASF vaccine development is delayed and limited by existing knowledge gaps in viral immune evasion, pathogenesis, etc. Recent studies have revealed that ASFV can employ diverse strategies to interrupt the host defense mechanisms via abundant self-encoded proteins. Thus, this review mainly focuses on the antagonisms of ASFV-encoded proteins towards IFN-I production, IFN-induced antiviral response, NLRP3 inflammasome activation, and GSDMD-mediated pyroptosis. Additionally, we also make a brief discussion concerning the potential challenges in future development of ASF vaccine.
Collapse
Affiliation(s)
- Liangzheng Yu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Zhenbang Zhu
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Junhua Deng
- Luoyang Putai Biotech Co., Ltd., Luoyang 471003, China
| | - Kegong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangdong Li
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
20
|
Ge Z, Ding S. Regulation of cGAS/STING signaling and corresponding immune escape strategies of viruses. Front Cell Infect Microbiol 2022; 12:954581. [PMID: 36189363 PMCID: PMC9516114 DOI: 10.3389/fcimb.2022.954581] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is the first line of defense against invading external pathogens, and pattern recognition receptors (PRRs) are the key receptors that mediate the innate immune response. Nowadays, there are various PRRs in cells that can activate the innate immune response by recognizing pathogen-related molecular patterns (PAMPs). The DNA sensor cGAS, which belongs to the PRRs, plays a crucial role in innate immunity. cGAS detects both foreign and host DNA and generates a second-messenger cGAMP to mediate stimulator of interferon gene (STING)-dependent antiviral responses, thereby exerting an antiviral immune response. However, the process of cGAS/STING signaling is regulated by a wide range of factors. Multiple studies have shown that viruses directly target signal transduction proteins in the cGAS/STING signaling through viral surface proteins to impede innate immunity. It is noteworthy that the virus utilizes these cGAS/STING signaling regulators to evade immune surveillance. Thus, this paper mainly summarized the regulatory mechanism of the cGAS/STING signaling pathway and the immune escape mechanism of the corresponding virus, intending to provide targeted immunotherapy ideas for dealing with specific viral infections in the future.
Collapse
Affiliation(s)
- Zhe Ge
- School of Sport, Shenzhen University, Shenzhen, China
| | - Shuzhe Ding
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, China
- *Correspondence: Shuzhe Ding,
| |
Collapse
|