1
|
Liu X, Hu Z, Xing P, Guo J, Xing Y, Liu S, Wang C. Construction of iron-doped nickel cobalt phosphide nanoparticles via solvothermal phosphidization and their application in alkaline oxygen evolution. J Colloid Interface Sci 2025; 677:441-451. [PMID: 39153247 DOI: 10.1016/j.jcis.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Multi-metallic phosphides offer the possibility to combine the strategies of surface reconstruction, electronic interaction and mechanistic pathway tuning to achieve high electrocatalytic oxygen evolution activity. Here, iron-doped nickel cobalt phosphide nanoparticles (FexCoyNi2-x-yP) with the crystalline NiCoP phase are for the first time synthesized by the solvothermal phosphidization method via the reaction between metal-organic frameworks and white phosphorus. When used to electrochemically catalyze oxygen evolution reaction (OER), the Fe0.4Co0.8Ni0.8P supported by nickel foam requires only 248 mV overpotential to achieve 10 mA cm-2 current densities, and is robust towards the long-term OER in 1 M KOH. The higher number of electrochemically active sites can account for the good OER activity, along with the improved intrinsic activity which is caused by the electron interaction that optimizes the adsorption energy of hydroxyl intermediates, and that increases the acidity of high-valent metal centers. The OER mechanistic pathway involves both adsorbate and lattice oxygen. Surface conversion is observed after OER in alkaline solution, and metal phosphide layer transforms to metal oxides and (oxy)hydroxides.
Collapse
Affiliation(s)
- Xuan Liu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Zhikai Hu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Peize Xing
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Jiale Guo
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yichuang Xing
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shuling Liu
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Chao Wang
- Department of Chemistry and Chemical Engineering, The Youth Innovation Team of Shaanxi Universities, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
2
|
Li J, Du L, Guo S, Chang J, Wu D, Jiang K, Gao Z. Molybdenum iron carbide-copper hybrid as efficient electrooxidation catalyst for oxygen evolution reaction and synthesis of cinnamaldehyde/benzalacetone. J Colloid Interface Sci 2024; 673:616-627. [PMID: 38897063 DOI: 10.1016/j.jcis.2024.06.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Oxygen evolution reaction (OER) is the efficiency limiting half-reaction in water electrolysis for green hydrogen production due to the 4-electron multistep process with sluggish kinetics. The electrooxidation of thermodynamically more favorable organics accompanied by CC coupling is a promising way to synthesize value-added chemicals instead of OER. Efficient catalyst is of paramount importance to fulfill such a goal. Herein, a molybdenum iron carbide-copper hybrid (Mo2C-FeCu) was designed as anodic catalyst, which demonstrated decent OER catalytic capability with low overpotential of 238 mV at response current density of 10 mA cm-2 and fine stability. More importantly, the Mo2C-FeCu enabled electrooxidation assisted aldol condensation of phenylcarbinol with α-H containing alcohol/ketone in weak alkali electrolyte to selective synthesize cinnamaldehyde/benzalacetone at reduced potential. The hydroxyl and superoxide intermediate radicals generated at high potential are deemed to be responsible for the electrooxidation of phenylcarbinol and aldol condensation reactions to afford cinnamaldehyde/benzalacetone. The current work showcases an electrochemical-chemical combined CC coupling reaction to prepare organic chemicals, we believe more widespread organics can be synthesized by tailored electrochemical reactions.
Collapse
Affiliation(s)
- Jinzhou Li
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Lan'ge Du
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Songtao Guo
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, College of International Education, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| |
Collapse
|
3
|
Wang Z, Li J, Zhang Q, Wu C, Meng H, Tang Y, Zou A, Zhang Y, Ma R, Lv X, Yu Z, Xi S, Xue J, Wang X, Wu J. Facilitating Formate Selectivity via Optimizing e g* Band Broadening in NiMn Hydroxides for Ethylene Glycol Electro-Oxidation. Angew Chem Int Ed Engl 2024; 63:e202411517. [PMID: 39039784 DOI: 10.1002/anie.202411517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Ethylene glycol electro-oxidation reaction (EGOR) on nickel-based hydroxides (Ni(OH)2) represents a promising strategy for generating value-added chemicals, i.e. formate and glycolate, and coupling water-electrolytic hydrogen production. The high product selectivity was one of the most significant area of polyols electro-oxidation process. Yet, developing Ni(OH)2-based EGOR electrocatalyst with highly selective product remains a challenge due to the unclear cognition about the EGOR mechanism. Herein, Mn-doped Ni(OH)2 catalysts were utilized to investigate the EGOR mechanism. Experimental and calculation results reveal that the electronic states of eg* band play an important role in the catalytic performance and the product selectivity for EGOR. Broadening the eg* band could effectively enhance the adsorption capacity of glyoxal intermediates. On the other hand, this enhanced adsorption could lead to reduced side reactions associated with glycolate formation, simultaneously promoting the cleavage of C-C bonds. Consequently, the selectivity for formate was notably augmented by these enhancements. This work offers new insights into the regulation of catalyst electronic states for improving polyol electrocatalytic activity and product selectivity.
Collapse
Affiliation(s)
- Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research(A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Ma
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Lv
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhigen Yu
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research(A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research(A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Xiong T, Li X, Ma Z, Liu K, Li Y, Li C, Luo F, Yang Z. Modulation in work function of CoTe as bifunctional electrocatalyst for rechargeable zinc air battery. J Colloid Interface Sci 2024; 672:170-178. [PMID: 38838626 DOI: 10.1016/j.jcis.2024.05.232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
The sluggish kinetics and inferior stability of oxygen electrocatalyst in rechargeable zinc air battery (ZAB) hamper its industrialization. In this work, we activate cobalt telluride (CoTe) by introduction of metallic cobalt (Co) to modulate the work function to facilitate the electron transfer from Co to CoTe during oxygen catalysis; additionally, the three-dimensional porous carbon nanosheets (3DPC) are invited to reduce the resistance towards electrolyte/oxygen diffusion. Thereby, Co-CoTe@3DPC only demands 280 mV overpotential to reach 10 mA cm-2 under alkaline oxygen evolution reaction (OER) condition, relatively lower than commercial iridium oxides (IrO2); besides, the operando electrochemical impedance spectroscopy (EIS) indicates a better resistance towards surface reconstruction than Co@3DPC leading to a superior stability. A Pt-like oxygen reduction reaction (ORR) performance, half-wave potential associated with kinetic current density, is achieved for Co-CoTe@3DPC. A maximum power density of 203 mW cm-2 is achieved and sustains for 800 h. Furthermore, the all-solid-state ZAB offers 97 mW cm-2. Theoretical calculation suggests that the incorporation of metallic Co to CoTe maintains the superb ORR activity and promotes the OER catalysis.
Collapse
Affiliation(s)
- Tiantian Xiong
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China; Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Xianwei Li
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China
| | - Zhiyong Ma
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Kaiyi Liu
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Yi Li
- Shaanxi Coal Chemical Industry Technology Research Institute Co., Ltd., Xi'an 710065, China
| | - Chen Li
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Fang Luo
- College of Materials Science and Engineering, State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan 430200, China.
| | - Zehui Yang
- Hubei Hydrogen Energy Technology Innovation Center, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan 430074, China.
| |
Collapse
|
5
|
Li J, Wu C, Wang Z, Meng H, Zhang Q, Tang Y, Zou A, Zhang Y, Xi S, Xue J, Wang X, Wu J. Modification d x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ Orbital Electronic States in Nickel-Based Hydroxides Via Cobalt/Iron Co-Doping for High-Efficiency Methanol Electrooxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406829. [PMID: 39370665 DOI: 10.1002/smll.202406829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Indexed: 10/08/2024]
Abstract
The nickel hydroxide-based (Ni(OH)2) methanol-to-formate electrooxidation reaction (MOR) performance is greatly related to thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Hence, optimizing thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states to achieve enhanced MOR activities are highly desired. Here, cobalt (Co) and iron (Fe) doping are used to modify thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states. Although both dopants can broaden thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital; however, Co doping leads to an elevation in the energy level ofd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ highest occupied crystal orbital (HOCO), whereas Fe doping results in its reduction. Such a discrepancy in the regulation ofd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states stems from the disparate partial electron transfer mechanisms amongst these transition metal ions, which possess distinct energy level and occupancy of d orbitals. Motivated by this finding, the NiCoFe hydroxide is prepared and exhibited an excellent MOR performance. The results showed that the Co dopants effectively suppress the partial electron transfer from Ni to Fe, combined with thed x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital broadening induced by NiO6 octahedra distortion, endowing NiCoFe hydroxide with highd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ HOCO and broadd x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital. It is believed that the work gives an in-depth understanding ond x 2 - y 2 ${{d}_{{{x}^2} - {{y}^2}}}$ orbital electronic states regulation in Ni(OH)2, which is beneficial for designing Ni(OH)2-based catalysts with high MOR performance.
Collapse
Affiliation(s)
- Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Republic of Singapore
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117575, Republic of Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
6
|
Xu A, Liu T, Liu D, Li W, Huang H, Wang S, Xu L, Liu X, Jiang S, Chen Y, Sun M, Luo Q, Ding T, Yao T. Edge-Rich Pt-O-Ce Sites in CeO 2 Supported Patchy Atomic-Layer Pt Enable a Non-CO Pathway for Efficient Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202410545. [PMID: 38940407 DOI: 10.1002/anie.202410545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Rational design of efficient methanol oxidation reaction (MOR) catalyst that undergo non-CO pathway is essential to resolve the long-standing poisoning issue. However, it remains a huge challenge due to the rather difficulty in maximizing the non-CO pathway by the selective coupling between the key *CHO and *OH intermediates. Here, we report a high-performance electrocatalyst of patchy atomic-layer Pt epitaxial growth on CeO2 nanocube (Pt ALs/CeO2) with maximum electronic metal-support interaction for enhancing the coupling selectively. The small-size monolayer material achieves an optimal geometrical distance between edge Pt-O-Ce sites and *OH absorbed on CeO2, which well restrains the dehydrogenation of *CHO, resulting in the non-CO pathway. Meanwhile, the *CHO/*CO intermediate generated at inner Pt-O-Ce sites can migrate to edge, inducing the subsequent coupling reaction, thus avoiding poisoning while promoting reaction efficiency. Consequently, Pt ALs/CeO2 exhibits exceptionally catalytic stability with negligible degradation even under 1000 s pure CO poisoning operation and high mass activity (14.87 A/mgPt), enabling it one of the best-performing alkali-stable MOR catalysts.
Collapse
Affiliation(s)
- Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Wenzhi Li
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Sicong Wang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Li Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Yudan Chen
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Mei Sun
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, P.R. China
| |
Collapse
|
7
|
Yin Z, Gao Z, Luo L, Zhang X, Hou W, Dai W, Tian S, Qin X, Wang M, Peng M, Li K, Wang S, Zhang L, Wang H, Li J, Zhu Q, Cheng B, Yin Z, Ma D. A Green and Efficient Electrocatalytic Route for the Highly-Selective Oxidation of C-H Bonds in Aromatics over 1D Co 3O 4-Based Nanoarrays. Angew Chem Int Ed Engl 2024:e202415044. [PMID: 39313948 DOI: 10.1002/anie.202415044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/14/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Electrocatalytic oxidation of C-H bonds in hydrocarbons represents an efficient and sustainable strategy for the synthesis of value-added chemicals. Herein, a highly selective and continuous-flow electrochemical oxidation process of toluene to various oxygenated products (benzyl alcohol, benzaldehyde, and benzyl acetate) is developed with the electrocatalytic membrane electrodes (ECMEs). The selectivity of target products can be manipulated via surface and interface engineering of Co3O4-based electrocatalysts. We achieved a high benzaldehyde selectivity of 90 % at a toluene conversion of 47.6 % using 1D Co3O4 nanoneedles (NNs) loaded on a microfiltration (MF) titanium (Ti) membrane, i.e, Co3O4 NNs/Ti. In contrast, the main product shifted to benzyl alcohol with a selectivity of 90.1 % at a conversion of 32.1 % after modifying MnO2 nanosheets (NSs) on Co3O4 NNs/Ti (Co3O4@MnO2/Ti) catalyst. Moreover, benzyl acetate product can be obtained with a selectivity of 92 % at a conversion of 58.5 % at high current density (>1.5 mA cm-2), demonstrating that the pathway of toluene oxidation is readily maneuvered. DFT results reveal that modifying MnO2 on Co3O4 optimizes the electron structure of Co3O4@MnO2/Ti and modulates the adsorption behavior of intermediate species. This work demonstrates a sustainable, efficient, and continuous-flow process for precise control over the production selectivity of value-added oxygenated derivatives in the electrochemical oxidation of aromatic hydrocarbons.
Collapse
Affiliation(s)
- Zhaohui Yin
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zirui Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Lan Luo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaohui Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Wenxiang Hou
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- Haian Institute of High-Tech Research, Nanjing University, 428 Zhennan Road, Haian, 226600, China
| | - Wenjing Dai
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Shuheng Tian
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xuetao Qin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mi Peng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Kaihua Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Songbo Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Lei Zhang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
| | - Hong Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Separation Membrane Science and Technology International Joint Research Centre, Tiangong University, 399 Binshui West Road, Tianjin, 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, Separation Membrane Science and Technology International Joint Research Centre, Tiangong University, 399 Binshui West Road, Tianjin, 300387, China
| | - Qingjun Zhu
- Deutsches Elektronen-Synchrotron DESY, Platanenallee 6, 15738, Zeuthen, Germany
| | - Bowen Cheng
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Zhen Yin
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, 29 13th Avenue, TEDA, Tianjin, 300457, China
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Haian Institute of High-Tech Research, Nanjing University, 428 Zhennan Road, Haian, 226600, China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
8
|
Mao P, Chen B, Huang R, Jing Y, Xiao L, Zhang B, Shi C. Modulating Silver Performance in Electrocatalytic Oxidation of HCHO via SMSI between Ag-Co 3O 4 Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405358. [PMID: 39291888 DOI: 10.1002/smll.202405358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/16/2024] [Indexed: 09/19/2024]
Abstract
The replacement of oxygen evolution reactions with organic molecule oxidation reactions to enable energy-efficient hydrogen production has been a subject of interest. However, further reducing reaction energy consumption and releasing hydrogen from organic molecules continue to pose significant challenges. Herein, a strategy is proposed to produce hydrogen and formic acid from formaldehyde using Ag/Co3O4 interface catalysts at the anode. The key to improving the performance of Ag-based catalysts for formaldehyde oxidation lies in the strong SMSI achieved through the well-designed "spontaneous redox reaction" between Ag and Co3O4 precursors. Nano-sized Ag particles are uniformly dispersed on Co3O4 nanosheets, and electron-deficient Agδ+ are formed by the SMSI between Ag and Co3O4. Ag/Co3O4 demonstrates exceptional formaldehyde oxidation activity at low potentials of 0.32 V versus RHE and 0.65 V versus RHE, achieving current densities of 10 and 100 mA cm-2, respectively. The electrolyzer "Ag/Co3O4||20% Pt/C" achieves over 195% hydrogen efficiency and over 98% formic acid selectivity, maintaining stable operation for 60 hours. This work not only presents a novel approach to precisely modulate Ag particle size and interface electronic structure via SMSI, but also provides a promising approach to efficient and energy-saving hydrogen production and the transformation of harmful formaldehyde.
Collapse
Affiliation(s)
- Peiyuan Mao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Bingbing Chen
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Rui Huang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Yang Jing
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Long Xiao
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Baihao Zhang
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| | - Chuan Shi
- School of Chemistry, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
9
|
Yang S, Wu G, Zhang J, Guo Y, Xue K, Zhang Y, Zhu Y, Li T, Zhang X, Zhou L. A Stable High-Performance Zn-Ion Batteries Enabled by Highly Compatible Polar Co-Solvent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403513. [PMID: 39018207 PMCID: PMC11425257 DOI: 10.1002/advs.202403513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/20/2024] [Indexed: 07/19/2024]
Abstract
Uncontrollable growth of Zn dendrites, irreversible dissolution of cathode material and solidification of aqueous electrolyte at low temperatures severely restrict the development of aqueous Zn-ion batteries. In this work, 2,2,2-trifluoroethanol (TFEA) with a volume fraction of 50% as a highly compatible polar-solvent is introduced to 1.3 M Zn(CF3SO3)2 aqueous electrolyte, achieving stable high-performance Zn-ion batteries. Massive theoretical calculations and characterization analysis demonstrate that TFEA weakens the tip effect of Zn anode and restrains the growth of Zn dendrites due to electrostatic adsorption and coordinate with H2O to disrupt the hydrogen bonding network in water. Furthermore, TFEA increases the wettability of the cathode and alleviates the dissolution of V2O5, thus improving the capacity of the full battery. Based on those positive effects of TFEA on Zn anode, V2O5 cathode, and aqueous electrolyte, the Zn//Zn symmetric cell delivers a long cycle-life of 782 h at 5 mA cm-2 and 2 mA h cm-2. The full battery still declares an initial capacity of 116.78 mA h g-1, and persists 87.73% capacity in 2000 cycles at -25 °C. This work presents an effective strategy for fully compatible co-solvent to promote the stability of Zn anode, V2O5 cathode and aqueous electrolyte for high-performance Zn-ion batteries.
Collapse
Affiliation(s)
- Shuo Yang
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Guangpeng Wu
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Jing Zhang
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yuning Guo
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Kui Xue
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yongqi Zhang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Yuanmin Zhu
- Research Institute of Interdisciplinary Science & School of Materials Science and EngineeringDongguan University of TechnologyDongguan523808China
| | - Tao Li
- Institute of Materials and PhysicsGanjiang Innovations AcademyChinese Academy of SciencesGanzhou341119China
| | - Xiaofeng Zhang
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| | - Liujiang Zhou
- School of PhysicsState Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu611731China
| |
Collapse
|
10
|
Wang A, Ge W, Sun W, Sheng X, Dong L, Zhang W, Jiang H, Li C. Polyelectrolyte Additive-Modulated Interfacial Microenvironment Boosting CO 2 Electrolysis in Acid. Angew Chem Int Ed Engl 2024:e202412754. [PMID: 39219249 DOI: 10.1002/anie.202412754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
Acidic CO2 electrolysis offers a promising strategy to achieve high carbon utilization and high energy efficiency. However, challenges still remain in suppressing the competitive hydrogen evolution reaction (HER) and improving product selectivity. Although high concentrations of potassium ions (K+) can suppress HER and accelerate CO2 reduction, they still inevitably suffer from salt precipitation problems. In this study, we demonstrate that the sulfonate-based polyelectrolyte, polystyrene sulfonate (PSS), enables to reconstruct the electrode-electrolyte interface to significantly enhance the acidic CO2 electrolysis. Mechanistic studies reveal that PSS induces high local K+ concentrations through the electrostatic interaction between PSS anions and K+. In situ spectroscopy reveals that PSS reshapes the interfacial hydrogen-bond (H-bond) network, which is attributed to the H-bonds between PSS anions and hydrated proton, as well as the steric hindrance of the additive molecules. This greatly weakens proton transfer kinetics and leads to the suppression of undesirable HER. As a result, a Faradaic efficiency of 93.9 % for CO can be achieved at 250 mA cm-2, simultaneous with a high single-pass carbon efficiency of 72.2 % on commercial Ag catalysts in acid. This study highlights the important role of the electrode-electrolyte interface induced by polyelectrolyte additives in promoting electrocatalytic reactions.
Collapse
Affiliation(s)
- Anqi Wang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wen Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Xuedi Sheng
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Lei Dong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wenfei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Hongliang Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, 200237, Shanghai, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 200237, Shanghai, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
11
|
Wang X, Xiao C, Xie Y, Yang C, Li Y, Zhang Y, Murayama T, Ishida T, Lin M, Xiu G. High-Dimensional Nb 2O 5 with NbO 6 Octahedra for Efficient Electrocatalytic Upgrading of Methanol to Formate. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44938-44946. [PMID: 39145598 DOI: 10.1021/acsami.4c09776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Facilitating the selective electrochemical oxidation of methanol into value-added formate is essential for electrochemical refining. Here we propose a high-dimensional Nb2O5 on Ni foam (Nb2O5-HD@NF) composite as anode for methanol oxidation reaction (MOR) for efficient production of formate. In an electrolyte containing 3 M methanol aqueous solution, the Nb2O5-HD@NF anode requires only 240 mV overpotential to deliver an industrial-level current density of 100 mA cm-2 with a formate Faraday efficiency of 100%. In situ Raman and electrochemical kinetic analyses reveal that the origin of the excellent activity in 3 M methanol electrolyte can be ascribed to the NbO6 octahedra as active sites and the Lewis acid sites on the surface of Nb2O5-HD. This work may pave a way for the design of non-noble metal electrocatalysts with surface acidity engineering for the effective electrocatalytic upgrading of biomass molecules.
Collapse
Affiliation(s)
- Xinlin Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Chuqian Xiao
- School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Yuanming Xie
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Chunqi Yang
- School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Yuhang Li
- School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, P.R. China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, P.R. China
| | - Toru Murayama
- Research Center for Hydrogen Energy-based Society, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 minami-Osawa, Hachioji, Tokyo 192-0397, Japan
- Institute for Catalysis, Hokkaido University, Kita21, Nishi10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Tamao Ishida
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Mingyue Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Guangli Xiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
12
|
Liu Y, Zhao L, Fei J, Zhou J, Li H, Lai J, Wang L. Ozone-Assisted Cu-Based Catalysts for the Efficient Electro-Reforming Glycerol to Formic Acid. CHEMSUSCHEM 2024:e202400149. [PMID: 39145602 DOI: 10.1002/cssc.202400149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Glycerol electrooxidation reaction (GOR) to produce value-added chemicals, such as formic acid, could make more efficient use of abundant glycerol and meet future demand for formic acid as a fuel for direct or indirect formic acid fuel cells. Non-noble metal Cu-based catalysts have great potential in electro-reforming glycerol to formic acid. However, the high activity, selectivity and stability of Cu based catalysts in GOR cannot be achieved simultaneously. Here, we used ozone-assisted electrocatalyst to convert glycerol to formic acid under alkaline conditions, the onset potential was reduced by 60 mV, the Faraday efficiency (FE) reached 95 %. The catalyst has excellent stability within 300 h at the current density of 10 mA cm-2. The electron spin resonance proved that ozone produced superoxide anion during the GOR. In situ Raman spectroscopy, electrochemical studies showed that glycerol can be activated with ozone in GOR, and the C-C bond can be broken to reduce the polymerization of glycerol on the catalyst surface, so as to produce more formic acid at a lower voltage. Moreover, the removal of dissolved O3 from water can be up to 100 % after 30 minutes of GOR reaction at a solubility of 50 mg L-1 as measured by UV-VIS spectrophotometry.
Collapse
Affiliation(s)
- Yan Liu
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Liang Zhao
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Jiawei Fei
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Jun Zhou
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Jianping Lai
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Lei Wang
- Key Laboratory of Eco-chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
13
|
Luo J, Kong F, Yang J, Wang M. NiCo-Phosphide Bifunctional Electrocatalyst Realizes Electrolysis of Sugar Solution to Formic Acid and Hydrogen. NANO LETTERS 2024; 24:9617-9626. [PMID: 39047189 DOI: 10.1021/acs.nanolett.4c02315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
As a promising liquid hydrogen carrier, formic acid is essential for hydrogen energy. Glucose, as the most widely distributed monosaccharide in nature, is valuable for co-electrolysis with water to produce formic acid and hydrogen, though achieving high formate yield and current density remains challenging. Herein, a nanostructured NiCoP on a 3D Ni foam catalyst enables efficient electrooxidation of glucose to formate, achieving an 85% yield and 200 mA current density at 1.47 V vs RHE. The catalyst forms a NiCoOOH/NiCoP/Ni foam sandwich structure via anodic oxidative reconstruction, with NiCoOOH as the active site and NiCoP facilitating electron conduction. Additionally, NiCoP/Ni foam serves as both an anode and cathode for the production of formate and hydrogen from wood-extracted sugar solutions. At 2.1 V, it reaches a 300 mA current density, converting mixed sugars to formate with a 74% yield and producing hydrogen at 104 mL cm2 h-1 with near 100% Faradaic efficiency.
Collapse
Affiliation(s)
- Jincheng Luo
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Fanhao Kong
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Jingxuan Yang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| | - Min Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
14
|
Zhang W, Ge W, Qi Y, Sheng X, Jiang H, Li C. Surfactant Directionally Assembled at the Electrode-Electrolyte Interface for Facilitating Electrocatalytic Aldehyde Hydrogenation. Angew Chem Int Ed Engl 2024; 63:e202407121. [PMID: 38775229 DOI: 10.1002/anie.202407121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Indexed: 07/02/2024]
Abstract
Electrocatalytic hydrogenation of unsaturated aldehydes to unsaturated alcohols is a promising alternative to conventional thermal processes. Both the catalyst and electrolyte deeply impact the performance. Designing the electrode-electrolyte interface remains challenging due to its compositional and structural complexity. Here, we employ the electrocatalytic hydrogenation of 5-hydroxymethylfurfural (HMF) as a reaction model. The typical cationic surfactant, cetyltrimethylammonium bromide (CTAB), and its analogs are employed as electrolyte additives to tune the interfacial microenvironment, delivering high-efficiency hydrogenation of HMF and inhibition of the hydrogen evolution reaction (HER). The surfactants experience a conformational transformation from stochastic distribution to directional assembly under applied potential. This oriented arrangement hampers the transfer of water molecules to the interface and promotes the enrichment of reactants. In addition, near 100 % 2,5-bis(hydroxymethyl)furan (BHMF) selectivity is achieved, and the faradaic efficiency (FE) of the BHMF is improved from 61 % to 74 % at -100 mA cm-2. Notably, the microenvironmental modulation strategy applies to a range of electrocatalytic hydrogenation reactions involving aldehyde substrates. This work paves the way for engineering advanced electrode-electrolyte interfaces and boosting unsaturated alcohol electrosynthesis efficiency.
Collapse
Affiliation(s)
- Wenfei Zhang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wangxin Ge
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanbin Qi
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuedi Sheng
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hongliang Jiang
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunzhong Li
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Xiong D, He X, Liu X, Zhang K, Tu Z, Wang J, Sun SG, Chen Z. Manipulating Dual-Metal Catalytic Activities toward Organic Upgrading in Upcycling Plastic Wastes with Inhibited Oxygen Evolution. ACS NANO 2024. [PMID: 39051970 DOI: 10.1021/acsnano.4c04219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Electrorefinery of polybutylene terephthalate (PBT) waste plastic, specifically conversion of a PBT-derived 1,4-butanediol (BDO) monomer into value-added succinate coupled with H2 production, emerges as an auspicious strategy to mitigate severe plastic pollution. Herein, we report the synthesis of Mn-doped NiNDA nanosheets (NDA: 2,6-naphthalenedicarboxylic acid), a metal-organic framework (MOF) through a ligand exchange method, and its utilization for electrocatalytic BDO oxidation to succinate. Interestingly, the transformation of doped layered-hydroxide (d-LH) precursors to MOF promotes BDO oxidation while hindering the competitive oxygen evolution reaction. Experimental and theoretical results indicate that the MOF has a higher affinity (i.e., alcoholophilic) for BDO than the d-LH, while Mn doping into NiNDA results in electron accumulation at Ni sites with an upward shift in the d-band center and convenient spin-dependent charge transfer, which are all beneficial for BDO oxidation. The as-constructed two-electrode membrane-electrode assembly (MEA) flow cell, by coupling BDO oxidation and hydrogen evolution reaction, attains an industrial current density of 1.5 A cm-2@1.82 V at 50 °C, corresponding to a specific energy consumption of 3.68 kWh/Nm3 H2. This represents an energy saving of >25% for hydrogen production on an industrial scale compared to conventional water electrolysis (∼5 kWh/Nm3 H2) in addition to the production of valuable chemicals.
Collapse
Affiliation(s)
- Dengke Xiong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xiaoyang He
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Kaiyan Zhang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhentao Tu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jianying Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Shi-Gang Sun
- State Key Lab of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People's Republic of China
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
16
|
Tian H, Wang X, Luo W, Ma R, Yu X, Li S, Kong F, Cui X, Shi J. Construction of an electron-transfer channel via Cu-O-Ni to inhibit the overoxidation of Ni for durable methanol oxidation at industrial current density. Chem Sci 2024; 15:11013-11020. [PMID: 39027296 PMCID: PMC11253194 DOI: 10.1039/d4sc00842a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/04/2024] [Indexed: 07/20/2024] Open
Abstract
The electrocatalytic methanol oxidation reaction (MOR) is a viable approach for realizing high value-added formate transformation from biomass byproducts. However, usually it is restricted by the excess adsorption of intermediates (COad) and overoxidation of catalysts, which results in low product selectivity and inactivation of the active sites. Herein, a novel Cu-O-Ni electron-transfer channel was constructed by loading NiCuO x on nickel foam (NF) to inhibit the overoxidation of Ni and enhance the formate selectivity of the MOR. The optimized NiCuO x -2/NF demonstrated excellent MOR catalytic performance at industrial current density (E 500 = 1.42 V) and high faradaic efficiency of ∼100%, as well as durable formate generation up to 600 h at ∼500 mA cm-2. The directional electron transfer from Cu to Ni and enhanced lattice stability could alleviate the overoxidation of Ni(iii) active sites to guarantee reversible Ni(ii)/Ni(iii) cycles and endow NiCuO x -2/NF with high stability under increased current density, respectively. An established electrolytic cell created by coupling the MOR with the hydrogen evolution reaction could produce H2 with low electric consumption (230 mV lower voltage at 400 mA cm-2) and concurrently generated the high value-added product of formate at the anode.
Collapse
Affiliation(s)
- Han Tian
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xiaohan Wang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Wenshu Luo
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Rundong Ma
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xu Yu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Shujing Li
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
| | - Fantao Kong
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
| | - Xiangzhi Cui
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| | - Jianlin Shi
- Shanghai Institute of Ceramics, Chinese Academy of Sciences Shanghai 200050 P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences Beijing 100049 P.R. China
| |
Collapse
|
17
|
Du R, Zhao S, Zhang K, Chen Y, Cheng Y. Energy-Saving Electrochemical Hydrogen Production Coupled with Biomass-Derived Isobutanol Upgrading. CHEMSUSCHEM 2024; 17:e202301739. [PMID: 38389167 DOI: 10.1002/cssc.202301739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
The widespread application of electrochemical hydrogen production faces significant challenges, primarily attributed to the high overpotential of the oxygen evolution reaction (OER) in conventional water electrolysis. To address this issue, an effective strategy involves substituting OER with the value-added oxidation of biomass feedstock, reducing the energy requirements for electrochemical hydrogen production while simultaneously upgrading the biomass. Herein, we introduce an electrocatalytic approach for the value-added oxidation of isobutanol, a high energy density bio-fuel, coupled with hydrogen production. This approach offers a sustainable route to produce the valuable fine chemical isobutyric acid under mild condition. The electrodeposited Ni(OH)2 electrocatalyst exhibits exceptional electrocatalytic activity and durability for the electro-oxidation of isobutanol, achieving an impressive faradaic efficiency of up to 92.4 % for isobutyric acid at 1.45 V vs. RHE. Mechanistic insights reveal that side reactions predominantly stem from the oxidative C-C cleavage of isobutyraldehyde intermediate, forming by-products including formic acid and acetone. Furthermore, we demonstrate the electro-oxidation of isobutanol coupled with hydrogen production in a two-electrode undivided cell, notably reducing the electrolysis voltage by approximately 180 mV at 40 mA cm-2. Overall, this work represents a significant step towards improving the cost-effectiveness of hydrogen production and advancing the conversion of bio-fuels.
Collapse
Affiliation(s)
- Ruiqi Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Siqi Zhao
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Kaizheng Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuxin Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yi Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
18
|
Chang J, Song F, Hou Y, Wu D, Xu F, Jiang K, Gao Z. Molybdenum, tungsten doped cobalt phosphides as efficient catalysts for coproduction of hydrogen and formate by glycerol electrolysis. J Colloid Interface Sci 2024; 665:152-162. [PMID: 38520932 DOI: 10.1016/j.jcis.2024.03.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/13/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
H2 and formate are important energy carriers in fuel-cells and feedstocks in chemical industry. The hydrogen evolution reaction (HER) coupling with electro-oxidative cleavage of thermodynamically favorable polyols is a promising way to coproduce H2 and formate via electrochemical means, highly active catalysts for HER and electrooxidative cleavage of polycols are the key to achieve such a goal. Herein, molybdenum (Mo), tungsten (W) doped cobalt phosphides (Co2P) deposited onto nickel foam (NF) substrate, denoted as Mo-Co2P/NF and W-Co2P/NF, respectively, were investigated as catalytic electrodes for HER and electrochemical glycerol oxidation reaction (GOR) to yield H2 and formate. The W-Co2P/NF electrode exhibited low overpotential (η) of 113 mV to attain a current density (J) of -100 mA cm-2 for HER, while the Mo-Co2P/NF electrode demonstrated high GOR efficiency for selective production of formate. In situ Raman and infrared spectroscopic characterizations revealed that the evolved CoO2 from Co2P is the genuine catalytic sites for GOR. The asymmetric electrolyzer based on W-Co2P/NF cathode and Mo-Co2P/NF anode delivered a J = 100 mA cm-2 at 1.8 V voltage for glycerol electrolysis, which led to 18.2 % reduced electricity consumption relative to water electrolysis. This work highlights the potential of heteroelement doped phosphide in catalytic performances for HER and GOR, and opens up new avenue to coproduce more widespread commodity chemicals via gentle and sustainable electrocatalytic means.
Collapse
Affiliation(s)
- Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, P.R. China
| | - Fengfeng Song
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, P.R. China
| | - Yan Hou
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, P.R. China.
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, P.R. China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, P.R. China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, P.R. China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, P.R. China.
| |
Collapse
|
19
|
Li J, Wu C, Wang Z, Meng H, Zhang Q, Tang Y, Zou A, Zhang Y, Zhong H, Xi S, Xue J, Wang X, Wu J. Unveiling the Pivotal Role of d x2-y2 Electronic States in Nickel-Based Hydroxide Electrocatalysts for Methanol Oxidation. Angew Chem Int Ed Engl 2024; 63:e202404730. [PMID: 38618864 DOI: 10.1002/anie.202404730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/16/2024]
Abstract
The anodic methanol oxidation reaction (MOR) plays a crucial role in coupling with the cathodic hydrogen evolution reaction (HER) and enables the sustainable production of the high-valued formate. Nickel-based hydroxide (Ni(OH)2) as MOR electrocatalyst has attracted enormous attention. However, the key factor determining the intrinsic catalytic activity remains unknown, which significantly hinders the further development of Ni(OH)2 electrocatalyst. Here, we found that thed x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state within antibonding bands plays a decisive role in the whole MOR process. The onset potential depends on the deprotonation ability (Ni2+ to Ni3+), which was closely related to the band center ofd x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital. The closer ofd x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital to the Fermi level showed the stronger the deprotonation ability. Meanwhile, in the high potential region, the broadening ofd x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ orbital would facilitate the electron transfer from methanol to catalysts (Ni3+ to Ni2+), further enhancing the catalytic properties. Our work for the first time clarifies the intrinsic relationship betweend x 2 - y 2 ${{d}_{{x}^{2}-{y}^{2}}}$ electronic state and the MOR activities, which adds a new layer of understanding to the methanol electrooxidation research scene.
Collapse
Affiliation(s)
- Junhua Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Chao Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Zhen Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyan Meng
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Qi Zhang
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Ying Tang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Anqi Zou
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiming Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemical, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road Jurong Island, Singapore, 627833, Republic of Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
| | - Xiaopeng Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
- Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore
- State Key Laboratory of Intelligent Construction and Healthy Operation, Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, China
- Tefusen Semiconductor & Hydrogen Energy Technology (Yunnan) Co., Ltd, Wenshan Zhuang and Miao Autonomous Prefecture, Yunnan, China, 663200
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
20
|
Zhu TT, Zhao Y, Li QK, Gao SS, Chi CL, Tang SL, Chen XB. High-Throughput Screening Strategy for Electrocatalysts for Selective Catalytic Oxidation of Formaldehyde to Formic Acid. J Phys Chem Lett 2024; 15:6183-6189. [PMID: 38836642 DOI: 10.1021/acs.jpclett.4c01081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Electrocatalytic oxidation of formaldehyde (FOR) is an effective way to prevent the damage caused by formaldehyde and produce high-value products. A screening strategy of a single-layer MnO2-supported transition metal catalyst for the selective oxidation of formaldehyde to formic acid was designed by high-throughput density functional calculation. N-MnO2@Cu and MnO2@Cu are predicted to be potential FOR electrocatalysts with potential-limiting steps (PDS) of 0.008 and -0.009 eV, respectively. Electronic structure analysis of single-atom catalysts (SACs) shows that single-layer MnO2 can regulate the spin density of loaded transition metal and thus regulate the adsorption of HCHO (Ead), and Ead is volcanically distributed with the magnetic moment descriptor -|mM - mH|. In addition, the formula quantifies Ead and |mM - mH| to construct a volcano-type descriptor α describing the PDS [ΔG(*CHO)]. Other electronic and structural properties of SACs and α are used as input features for the GBR method to construct machine learning models predicting the PDS (R2 = 0.97). This study hopes to provide some insights into FOR electrocatalysts.
Collapse
Affiliation(s)
| | - Ying Zhao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Qing-Kai Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Shuai-Shuai Gao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Chun-Lei Chi
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
| | - Shuang-Ling Tang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, P. R. China
| | - Xue-Bo Chen
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, P. R. China
- College of Chemistry, Beijing Normal University, Beijing 100091, P. R. China
| |
Collapse
|
21
|
Tran NQ, Le QM, Tran TTN, Truong TK, Yu J, Peng L, Le TA, Doan TLH, Phan TB. Boosting Urea-Assisted Natural Seawater Electrolysis in 3D Leaf-Like Metal-Organic Framework Nanosheet Arrays Using Metal Node Engineering. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28625-28637. [PMID: 38767316 DOI: 10.1021/acsami.4c04342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal node engineering, which can optimize the electronic structure and modulate the composition of poor electrically conductive metal-organic frameworks, is of great interest for electrochemical natural seawater splitting. However, the mechanism underlying the influence of mixed-metal nodes on electrocatalytic activities is still ambiguous. Herein, a strategic design is comprehensively demonstrated in which mixed Ni and Co metal redox-active centers are uniformly distributed within NH2-Fe-MIL-101 to obtain a synergistic effect for the overall enhancement of electrocatalytic activities. Three-dimensional mixed metallic MOF nanosheet arrays, consisting of three different metal nodes, were in situ grown on Ni foam as a highly active and stable bifunctional catalyst for urea-assisted natural seawater splitting. A well-defined NH2-NiCoFe-MIL-101 reaches 1.5 A cm-2 at 360 mV for the oxygen evolution reaction (OER) and 0.6 A cm-2 at 295 mV for the hydrogen evolution reaction (HER) in freshwater, substantially higher than its bimetallic and monometallic counterparts. Moreover, the bifunctional NH2-NiCoFe-MIL-101 electrode exhibits eminent catalytic activity and stability in natural seawater-based electrolytes. Impressively, the two-electrode urea-assisted alkaline natural seawater electrolysis cell based on NH2-NiCoFe-MIL-101 needs only 1.56 mV to yield 100 mA cm-2, much lower than 1.78 V for alkaline natural seawater electrolysis cells and exhibits superior long-term stability at a current density of 80 mA cm-2 for 80 h.
Collapse
Affiliation(s)
- Ngoc Quang Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Quang Manh Le
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy Tien Nguyen Tran
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thuy-Kieu Truong
- Department of Mechanical Engineering, Hanbat National University (HBNU), 125 Dongseo-daero, Yuseong-gu, Daejeon 34158, Republic of Korea
| | - Jianmin Yu
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Lishan Peng
- Key Laboratory of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341119, P. R. China
| | - Thi Anh Le
- School of Chemical Engineering, Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi 100000, Vietnam
| | - Tan Le Hoang Doan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| | - Thang Bach Phan
- Center for Innovative Materials and Architectures, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
22
|
Lin Y, Wang YG, Li X, Zhao J, Liu H, Wu C, Yang L, Li G, Qi Z, Shan L, Jiang Y, Song L. Constructing Asymmetric Charge Polarized NiCo Prussian Blue Analogue for Promoted Electrocatalytic Methanol to Formate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311452. [PMID: 38145341 DOI: 10.1002/smll.202311452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Indexed: 12/26/2023]
Abstract
The highly selective electrochemical conversion of methanol to formate is of great significance for various clean energy devices, but understanding the structure-to-property relationship remains unclear. Here, the asymmetric charge polarized NiCo prussian blue analogue (NiCo PBA-100) is reported to exhibit remarkable catalytic performance with high current density (210 mA cm-2 @1.65 V vs RHE) and Faraday efficiency (over 90%). Meanwhile, the hybrid water splitting and Zinc-methanol-battery assembled by NiCo PBA-100 display the promoted performance with decent stability. X-ray absorption spectroscopy (XAS) and operando Raman spectroscopy indicate that the asymmetric charge polarization in NiCo PBA leads to more unoccupied states of Ni and occupied states of Co, thereby facilitating the rapid transformation of the high-active catalytic centers. Density functional theory calculations combining operando Fourier transform infrared spectroscopy demonstrate that the final reconstructed catalyst derived by NiCo PBA-100 exhibits rearranged d band properties along with a lowered energy barrier of the rate-determining step and favors the desired formate production.
Collapse
Affiliation(s)
- Yunxiang Lin
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yan-Ge Wang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Xiaoyu Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Jiahui Zhao
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Chuanqiang Wu
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Guang Li
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
| | - Lei Shan
- Institutes of Physical Science and Information Technology, School of Materials Science and Engineering Leibniz International Joint Research Center of Materials Sciences of Anhui Province Center of High Magnetic Fields and Free Electron Lasers, Information Meterials and Intelligent Sensing Laboratory of Anhui Province, Anhui University, Hefei, 230601, China
| | - Yong Jiang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- School of Electronic and Information Engineering, Tiangong University, Tianjin, 300387, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua, Zhejiang, 321004, China
| |
Collapse
|
23
|
Xu T, Tian F, Jiao D, Fan J, Jin Z, Zhang L, Zhang W, Zheng L, Singh DJ, Zhang L, Zheng W, Cui X. In Situ Construction of Built-In Opposite Electric Field Balanced Surface Adsorption for Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309249. [PMID: 38152975 DOI: 10.1002/smll.202309249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Indexed: 12/29/2023]
Abstract
Achieving a balance between H-atom adsorption and binding with H2 desorption is crucial for catalyzing hydrogen evolution reaction (HER). In this study, the feasibility of designing and implementing built-in opposite electric fields (OEF) is demonstrated to enable optimal H atom adsorption and H2 desorption using the Ni3(BO3)2/Ni5P4 heterostructure as an example. Through density functional theory calculations of planar averaged potentials, it shows that opposite combinations of inward and outward electric fields can be achieved at the interface of Ni3(BO3)2/Ni5P4, leading to the optimization of the H adsorption free energy (ΔGH*) near electric neutrality (0.05 eV). Based on this OEF concept, the study experimentally validated the Ni3(BO3)2/Ni5P4 system electrochemically forming Ni3(BO3)2 through cyclic voltammetry scanning of B-doped Ni5P4. The surface of Ni3(BO3)2 undergoes reconstruction, as characterized by Grazing Incidence Wide-Angle X-ray Scattering (GIWAXS) and in situ Raman spectroscopy. The resulting catalyst exhibits excellent HER activity in alkaline media, with a low overpotential of 33 mV at 10 mA cm-2 and stability maintained for over 360 h. Therefore, the design strategy of build-in opposite electric field enables the development of high-performance HER catalysts and presents a promising approach for electrocatalyst advancement.
Collapse
Affiliation(s)
- Tianyi Xu
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Fuyu Tian
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Dongxu Jiao
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Jinchang Fan
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Zhaoyong Jin
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Lei Zhang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Wei Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - David J Singh
- Department of Physics and Astronomy and Department of Chemistry, University of Missouri, Columbia, MO, 65211, USA
| | - Lijun Zhang
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- State Key Laboratory of Automotive Simulation and Control, School of Materials Science and Engineering, Key Laboratory of Automobile Materials of MOE, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Electron Microscopy Center, Jilin University, Changchun, 130012, China
| |
Collapse
|
24
|
Hao S, Cong M, Xu H, Ding X, Gao Y. Bismuth-Based Electrocatalysts for Identical Value-Added Formic Acid Through Coupling CO 2 Reduction and Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307741. [PMID: 38095485 DOI: 10.1002/smll.202307741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Indexed: 05/25/2024]
Abstract
It is an effective way to reduce atmospheric CO2 via electrochemical CO2 reduction reaction (CO2RR), while the slow oxygen evolution reaction (OER) occurs at the anode with huge energy consumption. Herein, methanol oxidation reaction (MOR) is used to replace OER, coupling CO2RR to achieve co-production of formate. Through enhancing OCHO* adsorption by oxygen vacancies engineering and synergistic effect by heteroatom doping, Bi/Bi2O3 and Ni─Bi(OH)3 are synthesized for efficient production of formate via simultaneous CO2RR and methanol oxidation reaction (MOR), achieving that the coupling of CO2RR//MOR only required 7.26 kWh gformate -1 power input, much lower than that of CO2RR//OER (13.67 kWh gformate -1). Bi/Bi2O3 exhibits excellent electrocatalytic CO2RR performance, achieving FEformate >80% in a wide potential range from -0.7 to -1.2 V (vs RHE). For MOR, Ni─Bi(OH)3 exhibits efficient MOR catalytic performance with the FEformate >98% in the potential range of 1.35-1.6 V (vs RHE). Not only demonstrates the two-electrode systems exceptional stability, working continuously for over 250 h under a cell voltage of 3.0 V, but the cathode and anode can maintain a FE of over 80%. DFT calculation results reveal that the oxygen vacancies of Bi/Bi2O3 enhance the adsorption of OCHO* intermediate, and Ni─Bi(OH)3 reduce the energy barrier for the rate determining step, leading to high catalytic activity.
Collapse
Affiliation(s)
- Shengjie Hao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Meiyu Cong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Hanwen Xu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| | - Xin Ding
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, Shan Dong, 266071, P. R. China
| | - Yan Gao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning, 116024, P. R. China
| |
Collapse
|
25
|
Wu Z, Bai S, Shen T, Liu G, Song Z, Hu Y, Sun X, Zheng L, Song YF. Ultrathin NiV Layered Double Hydroxide for Methanol Electrooxidation: Understanding the Proton Detachment Kinetics and Methanol Dehydrogenation Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307975. [PMID: 38098446 DOI: 10.1002/smll.202307975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/21/2023] [Indexed: 05/12/2024]
Abstract
Electrochemical methanol oxidation reaction (MOR) is regarded as a promising pathway to obtain value-added chemicals and drive cathodic H2 production, while the rational design of catalyst and in-depth understanding of the structure-activity relationship remains challenging. Herein, the ultrathin NiV-LDH (u-NiV-LDH) with abundant defects is successfully synthesized, and the defect-enriched structure is finely determined by X-ray adsorption fine structure etc. When applied for MOR, the as-prepared u-NiV-LDH presents a low potential of 1.41 V versus RHE at 100 mA cm-2, which is much lower than that of bulk NiV-LDH (1.75 V vs RHE) at the same current density. The yield of H2 and formate is 98.2% and 88.1% as its initial over five cycles and the ultrathin structure of u-NiV-LDH can be well maintained. Various operando experiments and theoretical calculations prove that the few-layer stacking structure makes u-NiV-LDH free from the interlayer hydrogen diffusion process and the hydrogen can be directly detached from LDH laminate. Moreover, the abundant surface defects upshift the d-band center of u-NiV-LDH and endow a higher local methanol concentration, resulting in an accelerated dehydrogenation kinetics on u-NiV-LDH. The synergy of the proton detachment from the laminate and the methanol dehydrogenation oxidation contributes to the excellent MOR performance of u-NiV-LDH.
Collapse
Affiliation(s)
- Zhaohui Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Sha Bai
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Tianyang Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Guihao Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Ziheng Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yihang Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiaoliang Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou, Zhejiang, 324000, P. R. China
| |
Collapse
|
26
|
Chen G, Yuan B, Dang J, Xia L, Zhang C, Wang Q, Miao H, Yuan J. Recycling the Spent LiNi 1- x - yMn xCo yO 2 Cathodes for High-Performance Electrocatalysts toward Both the Oxygen Catalytic and Methanol Oxidation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306967. [PMID: 37992250 DOI: 10.1002/smll.202306967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Indexed: 11/24/2023]
Abstract
The traditional recycling methods of the spent lithium ion batteries (LIBs) involve the intricate and cumbersome steps. This work proposes a facile method of acid leaching followed by the sulfurization treatment to achieve the high Li leaching efficiency, and obtain high-performance multi-function electrocatalysts for oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR) from the spent LIB ternary cathodes. By this method, the Li leaching efficiency from the spent LIB ternary cathode can reach 98.3%, and the transition metal sulfide heterostructures (LNMCO-H-450S) consisting MnS, NiS2, and NiCo2S4 phases can be obtained. LNMCO-H-450S shows the superior bifunctional oxygen catalytic activities with ORR half-wave potential of 0.763 V and OER potential at 10 mA cm-2 of 1.561 V, surpassing most of the state-of-the-art electrocatalysts. LNMCO-H-450S also demonstrates the superior MOR catalytic activity with the potential at 100 mA cm-2 being 1.37 V. Using LNMCO-H-450S as the oxygen catalyst, this work can construct the aqueous and solid-state zinc-air batteries with high power density of 309 and 257 mW cm-2, respectively. This work provides a promising strategy for the efficient recovery of Li, and reutilization of Ni, Co, and Mn from the spent LIB ternary cathodes.
Collapse
Affiliation(s)
- Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Bingen Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiaxin Dang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Lan Xia
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Chunfei Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
27
|
Liu C, Chen F, Zhao BH, Wu Y, Zhang B. Electrochemical hydrogenation and oxidation of organic species involving water. Nat Rev Chem 2024; 8:277-293. [PMID: 38528116 DOI: 10.1038/s41570-024-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Fossil fuel-driven thermochemical hydrogenation and oxidation using high-pressure H2 and O2 are still popular but energy-intensive CO2-emitting processes. At present, developing renewable energy-powered electrochemical technologies, especially those using clean, safe and easy-to-handle reducing agents and oxidants for organic hydrogenation and oxidation reactions, is urgently needed. Water is an ideal carrier of hydrogen and oxygen. Electrochemistry provides a powerful route to drive water splitting under ambient conditions. Thus, electrochemical hydrogenation and oxidation transformations involving water as the hydrogen source and oxidant, respectively, have been developed to be mild and efficient tools to synthesize organic hydrogenated and oxidized products. In this Review, we highlight the advances in water-participating electrochemical hydrogenation and oxidation reactions of representative organic molecules. Typical electrode materials, performance metrics and key characterization techniques are firstly introduced. General electrocatalyst design principles and controlling the microenvironment for promoting hydrogenation and oxygenation reactions involving water are summarized. Furthermore, paired hydrogenation and oxidation reactions are briefly introduced before finally discussing the challenges and future opportunities of this research field.
Collapse
Affiliation(s)
- Cuibo Liu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Fanpeng Chen
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bo-Hang Zhao
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Yongmeng Wu
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China
| | - Bin Zhang
- Institute of Molecular Plus, Department of Chemistry, School of Science, Tianjin University, Tianjin, China.
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, China.
| |
Collapse
|
28
|
Fan Y, Chen Y, Ge W, Dong L, Qi Y, Lian C, Zhou X, Liu H, Liu Z, Jiang H, Li C. Mechanistic Insights into Surfactant-Modulated Electrode-Electrolyte Interface for Steering H 2O 2 Electrosynthesis. J Am Chem Soc 2024; 146:7575-7583. [PMID: 38466222 DOI: 10.1021/jacs.3c13660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Electrocatalytic reactions taking place at the electrified electrode-electrolyte interface involve processes of proton-coupled electron transfer. Interfacial protons are delivered to the electrode surface via a H2O-dominated hydrogen-bond network. Less efforts are made to regulate the interfacial proton transfer from the perspective of interfacial hydrogen-bond network. Here, we present quaternary ammonium salt cationic surfactants as electrolyte additives for enhancing the H2O2 selectivity of the oxygen reduction reaction (ORR). Through in situ vibrational spectroscopy and molecular dynamics calculation, it is revealed that the surfactants are irreversibly adsorbed on the electrode surface in response to a given bias potential range, leading to the weakening of the interfacial hydrogen-bond network. This decreases interfacial proton transfer kinetics, particularly at high bias potentials, thus suppressing the 4-electron ORR pathway and achieving a highly selective 2-electron pathway toward H2O2. These results highlight the opportunity for steering H2O-involved electrochemical reactions via modulating the interfacial hydrogen-bond network.
Collapse
Affiliation(s)
- Yu Fan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxin Chen
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wangxin Ge
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Dong
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanbin Qi
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Lian
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaodong Zhou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhen Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hongliang Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
29
|
Yu L, Wang S, Yang Y, Feng L. Enhanced formic acid electrolysis of Pd sites by improved OH adsorption assisted by MoP. Chem Commun (Camb) 2024. [PMID: 38477081 DOI: 10.1039/d4cc00661e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
MoP nanofiber-coupled Pd nanoparticles were demonstrated as efficient catalysts for formic acid-assisted water splitting in hydrogen generation. The theoretical calculations indicated that the OH on the surface of MoP through d-p bonding promoted the oxidation of CO at the Pd sites, and improved the ability to resist CO poisoning. As a result, enhanced catalytic performance was indicated.
Collapse
Affiliation(s)
- Lice Yu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| | - Yun Yang
- Nanomaterials and Chemistry Key Laboratory, Wenzhou University, Wenzhou, China.
| | - Ligang Feng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, PR China.
| |
Collapse
|
30
|
Ye Y, Xu J, Li X, Jian Y, Xie F, Chen J, Jin Y, Yu X, Lee MH, Wang N, Sun S, Meng H. Orbital Occupancy Modulation to Optimize Intermediate Absorption for Efficient Electrocatalysts in Water Electrolysis and Zinc-Ethanol-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312618. [PMID: 38439598 DOI: 10.1002/adma.202312618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Indexed: 03/06/2024]
Abstract
Spin engineering is a promising way to modulate the interaction between the metal d-orbital and the intermediates and thus enhance the catalytic kinetics. Herein, an innovative strategy is reported to modulate the spin state of Co by regulating its coordinating environment. o-c-CoSe2 -Ni is prepared as pre-catalyst, then in situ electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy are employed to prove phase transition, and CoOOH/Co3 O4 is formed on the surface as active sites. In hybrid water electrolysis, the voltage has a negative shift, and in zinc-ethanol-air battery, the charging voltage is lowered and the cycling stability is greatly increased. Coordinated atom substitution and crystalline symmetry change are combined to regulate the absorption ability of reaction intermediates with balanced optimal adsorption. Coordinated atom substitution weakens the adsorption while the crystalline symmetry change strengthens the adsorption. Importantly, the tetrahedral sites are introduced by Ni doping which enables the co-existence of four-coordinated sites and six-coordination sites in o-c-CoSe2 -Ni. The dz2 + dx2 -y2 orbital occupancy decreases after the atomic substitution, while increases after replacing the CoSe6 -Oh field with CoSe6 -Oh /CoSe4 -Td . This work explores a new direction for the preparation of efficient catalysts for water electrolysis and innovative zinc-ethanol-air battery.
Collapse
Affiliation(s)
- Yanting Ye
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Jinchang Xu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiulan Li
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Yongqi Jian
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Fangyan Xie
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Jian Chen
- Instrumental Analysis & Research Center, Sun Yat-sen University, Guangzhou, Guangdong, 510275, China
| | - Yanshuo Jin
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xiang Yu
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Ming-Hsien Lee
- Department of Physics, Tamkang University, New Taipei, 25137, Taiwan
| | - Nan Wang
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| | - Shuhui Sun
- Institut National de la Recherche Scientifique (INRS), Center Énergie Matériaux Télécommunications, Varennes, Québec, J3X 1P7, Canada
| | - Hui Meng
- Siyuan Laboratory, Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Engineering Technology Research Center of Vacuum Coating Technologies and New Energy Materials, Guangdong Provincial Key Laboratory of Nanophotonic Manipulation, Instrumental Analysis & Research Center, Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China
| |
Collapse
|
31
|
Dang J, Chen G, Yuan B, Liu F, Wang Q, Wang F, Miao H, Yuan J. Promoting the four electrocatalytic reactions of OER/ORR/HER/MOR using a multi-component metal sulfide heterostructure for zinc-air batteries and water-splitting. NANOSCALE 2024; 16:4710-4723. [PMID: 38284406 DOI: 10.1039/d3nr05581g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Multi-component metal sulfide heterostructures are promising for multi-functional catalytic activities. In this work, we fabricated a multi-component metal sulfide heterostructure (Co-S-INF, composed of Co3S4 and (Fe, Ni)9S8) with nanoflower morphology clustered with numerous nanosheets by the electrodeposition of cobalt on iron-nickel foam followed by hydrothermal sulfurization treatment. Co-S-INF possesses high multi-functional electrocatalytic properties toward the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and methanol oxidation reaction (MOR). In particular, the ORR potential at 10 mA cm-2 is 0.682 V, and the OER, HER, and MOR potentials at 100 mA cm-2 are 1.478 V, 0.289 V, and 1.417 V, respectively. By using Co-S-INF, the aqueous ZAB with an ultrahigh peak power density of 332.30 mW cm-2 and an overall water splitting (OWS) device with a low splitting voltage of 1.82 V at 100 mA cm-2 can be obtained. In addition, the OWS potential can be further decreased to 1.70 V at a current density of 100 mA cm-2 with the assistance of MOR at the anode accompanying the production of the high value-added formate. Our work opens the way for the application and development of multi-functional electrocatalysts.
Collapse
Affiliation(s)
- Jiaxin Dang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| | - Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| | - Bingen Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| | - Fuyue Liu
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo 315211, PR China
| | - Fu Wang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
32
|
Yan Y, Zhong J, Wang R, Yan S, Zou Z. Trivalent Nickel-Catalyzing Electroconversion of Alcohols to Carboxylic Acids. J Am Chem Soc 2024; 146:4814-4821. [PMID: 38323566 DOI: 10.1021/jacs.3c13155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
The comprehension of activity and selectivity origins of the electrooxidation of organics is a crucial knot for the development of a highly efficient energy conversion system that can produce value-added chemicals on both the anode and cathode. Here, we find that the potential-retaining trivalent nickel in NiOOH (Fermi level, -7.4 eV) is capable of selectively oxidizing various primary alcohols to carboxylic acids through a nucleophilic attack and nonredox electron transfer process. This nonredox trivalent nickel is highly efficient in oxidizing primary alcohols (methanol, ethanol, propanol, butanol, and benzyl alcohol) that are equipped with the appropriate highest occupied molecular orbital (HOMO) levels (-7.1 to -6.5 eV vs vacuum level) and the negative dual local softness values (Δsk, -0.50 to -0.19) of nucleophilic atoms in nucleophilic hydroxyl functional groups. However, the carboxylic acid products exhibit a deeper HOMO level (<-7.4 eV) or a positive Δsk, suggesting that they are highly stable and weakly nucleophilic on NiOOH. The combination (HOMO, Δsk) is useful in explaining the activity and selectivity origins of electrochemically oxidizing alcohols to carboxylic acid. Our findings are valuable in creating efficient energy conversions to generate value-added chemicals on dual electrodes.
Collapse
Affiliation(s)
- Yuandong Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Jiaying Zhong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Ruyi Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Shicheng Yan
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| | - Zhigang Zou
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, No. 22 Hankou Road, Nanjing, Jiangsu 210093, P. R. China
| |
Collapse
|
33
|
Wang J, Liu K, Zhao J, Li X, Yin B, Jiang B, Li H. Tuning the selectivity of the CO 2 hydrogenation reaction using boron-doped cobalt-based catalysts. RSC Adv 2024; 14:6502-6507. [PMID: 38390506 PMCID: PMC10880075 DOI: 10.1039/d3ra07488a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Direct CO2 hydrogenation to value-added chemicals is a promising path toward realizing the "carbon-neutral" goal. However, controlling the selectivity of CO2 hydrogenation toward desired products (e.g., CO and CH4) using non-precious metal-based catalysts is important but challenging. It is imperative to explore catalysts with high activity and stability. Herein, boron-doped cobalt nanoparticles supported on H-ZSM-5 were devised for CO2 hydrogenation to produce CO in a gas-solid flow system. Our results demonstrate that boron doping not only increases the CO2 adsorption capability of the catalyst but also optimizes the electronic state of Co for CO desorption during hydrogenation process. As a result, the boron-doped cobalt catalysts displayed an enhanced CO selectivity of 94.5% and a CO2 conversion rate of 45.6%, which is much higher than that of Co-ZSM-5 without boron doping. This study shows that the strategic design of metal borides is important for controlling the selectivity of desired products in the CO2 hydrogenation reaction.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Kaihong Liu
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Jingjing Zhao
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Xiuping Li
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Bolin Yin
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Bo Jiang
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| | - Hexing Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
- Chinese Education Ministry Key Lab, Joint International Research Lab of Resource Chemistry, Shanghai Frontiers Science Center of Biomimetic Catalysis, College of Chemistry and Materials Science, Shanghai Normal University Shanghai 200234 China
| |
Collapse
|
34
|
Tanwar N, Narjinari H, Sharma H, Dhole S, Jasra RV, Kumar A. Electrocatalytic Oxidation of Methanol and Ethanol with 3d-Metal Based Anodic Electrocatalysts in Alkaline Media Using Carbon Based Electrode Assembly. Inorg Chem 2024; 63:3005-3018. [PMID: 38300805 DOI: 10.1021/acs.inorgchem.3c03784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Homogeneous electrocatalytic systems based on readily available, earth-abundant, inexpensive base metals Ni, Co, and Cr have been formulated for the electro-oxidation of alcohols (methanol and ethanol) that constitute a key half-cell component of direct alcohol fuel cells (DAFCs). Notably, excellent results were obtained for both methanol as well as ethanol electro-oxidation while operating with a half-cell assembly based on all-non-noble working and counter electrode systems consisting of glassy carbon and graphite rod, respectively. Using NaOH as the supporting electrolyte, Ni/Co/Cr metal salts and their bis(iminopyridine) complexes have been used as anodic electrocatalysts for the alcohol half-cell reactions, and among them, catalytic systems based on Co outperformed the corresponding systems based on Ni and Cr. The system comprising CoCl2.·6H2O [10 mM] + NaOH [6 M] at room temperature emerged as the best electrocatalyst for both methanol [5 M] electro-oxidation (ca. 522.5 ± 13.5 mA cm-2 at 1.4 V) and ethanol [5 M] electro-oxidation (ca. 209 ± 25 mA cm-2 at 1.34 V). It was observed that regardless of the starting alcohol, the end product is carbon dioxide, all of which gets trapped as sodium carbonate (up to 97% yield), thereby mitigating any possible hazards of greenhouse gas emission. Inferences obtained from FETEM, FESEM, and EDS analysis of both the electrolyte solution and residues deposited on the electrode surface provide evidence for the mostly homogeneous nature of the reaction mixture with the molecular catalyst being the major contributor toward the electrocatalytic activity apart from the minor role played by trace heterogeneous particles. The current cell assembly operating with non-noble working and counter electrodes utilizing a catalytic system based on an earth-abundant, base metal salt/complex that not only results in good half-cell current densities for high-energy power-source DAFCs but also generates high-value sodium carbonate offers an exciting avenue.
Collapse
Affiliation(s)
- Niharika Tanwar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Himani Narjinari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Harsh Sharma
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari, Pune, Maharashtra 411026, India
| | - Raksh Vir Jasra
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- R&D Centre, Vadodara Manufacturing Division, Reliance Industries limited, Vadodara, Gujarat391346, India
| | - Akshai Kumar
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
- Jyoti and Bhupat Mehta School of Health Science & Technology, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
35
|
Xu Z, Zuo W, Yu Y, Liu J, Cheng G, Zhao P. Surface Reconstruction Facilitated by Fluorine Migration and Bimetallic Center in NiCo Bimetallic Fluoride Toward Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306758. [PMID: 38044293 PMCID: PMC10853698 DOI: 10.1002/advs.202306758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Indexed: 12/05/2023]
Abstract
Oxygen evolution reaction (OER) is a critical anodic reaction of electrochemical water splitting, developing a high-efficiency electrocatalyst is essential. Transition metal-based catalysts are much more cost-effective if comparable activities can be achieved. Among them, fluorides are rarely reported due to their low aqueous stability of coordination and low electric conductivity. Herein, a NiCo bimetallic fluoride with good crystallinity is designed and constructed, and significantly enhanced catalytic activity and conductivity are observed. The inevitable oxidation of transition metal ions at high potential and the dissociation of F- are attributed to the low aqueous stability of coordination. The theoretical researches predicte that transition metal fluorides should have a strong tendency to electrochemical reconstruction. Therefore, based on the observations on their electrochemical behavior, high-resolution transmission electron microscopy, X-ray photoelectron spectroscopy, and bode plots, it is further demonstrated that surface reconstruction occurred during the electrochemical process, meanwhile a significant increase of electrochemically active area, which is created by F migration, are also directly observed. Additionally, DFT calculation results show that the electronic structure of the catalysts is modulated by the bimetallic centers, and this reconstruction helps optimizing the adsorption energy of oxygen-containing species and improves OER activity.
Collapse
Affiliation(s)
- Zhenhang Xu
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Wei Zuo
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Yueying Yu
- School of NursingWuhan UniversityWuhanHubei430072P. R. China
| | - Jinyan Liu
- Department of Biological and Chemical EngineeringZhixing College of Hubei UniversityWuhanHubei430011P. R. China
| | - Gongzhen Cheng
- College of Chemistry and Molecular SciencesWuhan UniversityWuhanHubei430072P. R. China
| | - Pingping Zhao
- School of NursingWuhan UniversityWuhanHubei430072P. R. China
| |
Collapse
|
36
|
Chang J, Wang L, Wu D, Xu F, Jiang K, Guo Y, Gao Z. Concurrent electrocatalytic hydrogen evolution and polyethylene terephthalate plastics reforming by self-supported amorphous cobalt iron phosphide electrode. J Colloid Interface Sci 2024; 655:555-564. [PMID: 37952459 DOI: 10.1016/j.jcis.2023.11.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The electrocatalytic hydrogen evolution reaction (HER) coupled with oxidative transformation of plastics into commodity chemical is a promising tactic to relieve the energy shortage and white pollution problems via sustainable and profitable manner, which necessitates highly active bifunctional catalytic electrode and meticulous construction of electrolysis system. Herein, a self-supported amorphous cobalt iron phosphide onto nickel foam (NF) substrate, labeled as CoFe-P/NF, was prepared by electrodeposition, which served as bifunctional catalytic electrode for alkali hydrogen evolution reaction (HER) and selective electrooxidation of polyethylene terephthalate (PET) plastic hydrolysate toward formate. Benefiting from the abundant catalytic sites within amorphous structure, the interelement synergy and sufficient exposure of catalyst to electrolyte, the self-supported CoFe-P/NF electrode displayed low overpotential (η100 of 168 mV at current density of J = 100 mA cm-2), decent stability for HER and fine tolerance to PET monomers. The CoFe-P/NF electrode could also catalyze selective electrooxidation of ethylene glycol (EG) component in PET hydrolysate to formate with high productivity (0.1 mmol cm-2h-1) and faradaic efficiency (FE, 90 %) at 1.5 V. The PET hydrolysate electrolysis system based on CoFe-P/NF enabled coproduction of H2 and value added formate at lower voltage (1.52 V at J = 20 mA cm-2) and energy consumption (84 % at J = 200 mA cm-2) relative to water electrolysis. This work showcases the coproduction of H2 fuel and formate by electrolysis of PET hydrolysate via rational design of bifunctional catalytic electrode. We believe such type of versatile catalytic electrodes can find application scenarios in electrosynthesis of more commodity chemicals and energy devices beyond the case herein.
Collapse
Affiliation(s)
- Jiuli Chang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Lili Wang
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Dapeng Wu
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Fang Xu
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China
| | - Kai Jiang
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environment Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Yuming Guo
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| | - Zhiyong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Henan Xinxiang 453007, PR China.
| |
Collapse
|
37
|
Zhao Q, Zhao B, Long X, Feng R, Shakouri M, Paterson A, Xiao Q, Zhang Y, Fu XZ, Luo JL. Interfacial Electronic Modulation of Dual-Monodispersed Pt-Ni 3S 2 as Efficacious Bi-Functional Electrocatalysts for Concurrent H 2 Evolution and Methanol Selective Oxidation. NANO-MICRO LETTERS 2024; 16:80. [PMID: 38206434 PMCID: PMC10784266 DOI: 10.1007/s40820-023-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 11/08/2023] [Indexed: 01/12/2024]
Abstract
Constructing the efficacious and applicable bi-functional electrocatalysts and establishing out the mechanisms of organic electro-oxidation by replacing anodic oxygen evolution reaction (OER) are critical to the development of electrochemically-driven technologies for efficient hydrogen production and avoid CO2 emission. Herein, the hetero-nanocrystals between monodispersed Pt (~ 2 nm) and Ni3S2 (~ 9.6 nm) are constructed as active electrocatalysts through interfacial electronic modulation, which exhibit superior bi-functional activities for methanol selective oxidation and H2 generation. The experimental and theoretical studies reveal that the asymmetrical charge distribution at Pt-Ni3S2 could be modulated by the electronic interaction at the interface of dual-monodispersed heterojunctions, which thus promote the adsorption/desorption of the chemical intermediates at the interface. As a result, the selective conversion from CH3OH to formate is accomplished at very low potentials (1.45 V) to attain 100 mA cm-2 with high electronic utilization rate (~ 98%) and without CO2 emission. Meanwhile, the Pt-Ni3S2 can simultaneously exhibit a broad potential window with outstanding stability and large current densities for hydrogen evolution reaction (HER) at the cathode. Further, the excellent bi-functional performance is also indicated in the coupled methanol oxidation reaction (MOR)//HER reactor by only requiring a cell voltage of 1.60 V to achieve a current density of 50 mA cm-2 with good reusability.
Collapse
Affiliation(s)
- Qianqian Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Bin Zhao
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Xin Long
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Renfei Feng
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | | | - Alisa Paterson
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Qunfeng Xiao
- Canadian Light Source Inc., Saskatoon, SK, S7N 0X4, Canada
| | - Yu Zhang
- Instrumental Analysis Center of Shenzhen University (Lihu Campus), Shenzhen University, Shenzhen, 518055, People's Republic of China
| | - Xian-Zhu Fu
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jing-Li Luo
- Shenzhen Key Laboratory of Energy Electrocatalytic Materials, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
38
|
Li L, Zhang X, Humayun M, Xu X, Shang Z, Li Z, Yuen MF, Hong C, Chen Z, Zeng J, Bououdina M, Temst K, Wang X, Wang C. Manipulation of Electron Spins with Oxygen Vacancy on Amorphous/Crystalline Composite-Type Catalyst. ACS NANO 2024; 18:1214-1225. [PMID: 38150422 DOI: 10.1021/acsnano.3c12133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.
Collapse
Affiliation(s)
- Linfeng Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xia Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Xuefei Xu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Zixuan Shang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Zhishan Li
- Faculty of Metallurgical and Energy Engineering, State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, People's Republic of China
| | - Muk Fung Yuen
- The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, People's Republic of China
| | - Chunxia Hong
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Zhenhua Chen
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, People's Republic of China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| | - Kristiaan Temst
- Quantum Solid State Physics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D Box 2418, B 3001 Leuven, Belgium
- Imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Xiaolei Wang
- Department of Physics and Optoelectronic Engineering, Faculty of Science, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Chundong Wang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh 11586, Saudi Arabia
| |
Collapse
|
39
|
Abd El-Lateef HM, Khalaf MM, Mohamed IM. XPS analysis, voltammetric, and impedance characteristics of novel heterogeneous biphosphates based on Cu/Ni for tri(ammonium) phosphate oxidation: A new direction for material processing in fuel technology. FUEL 2024; 356:129618. [DOI: 10.1016/j.fuel.2023.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
40
|
Liu Y, Yang Z, Zou Y, Wang S, He J. Interfacial Micro-Environment of Electrocatalysis and Its Applications for Organic Electro-Oxidation Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306488. [PMID: 37712127 DOI: 10.1002/smll.202306488] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Conventional designing principal of electrocatalyst is focused on the electronic structure tuning, on which effectively promotes the electrocatalysis. However, as a typical kind of electrode-electrolyte interface reaction, the electrocatalysis performance is also closely dependent on the electrocatalyst interfacial micro-environment (IME), including pH, reactant concentration, electric field, surface geometry structure, hydrophilicity/hydrophobicity, etc. Recently, organic electro-oxidation reaction (OEOR), which simultaneously reduces the anodic polarization potential and produces value-added chemicals, has emerged as a competitive alternative to oxygen evolution reaction, and the role IME played in OEOR is receiving great interest. Thus, this article provides a timely review on IME and its applications toward OEOR. In this review, the IME for conventional gas-involving reactions, as a contrast, is first presented, and then the recent progresses of IME toward diverse typical OEOR are summarized; especially, some representative works are thoroughly discussed. Additionally, cutting-edge analytical methods and characterization techniques are introduced to comprehensively understand the role IME played in OEOR. In the last section, perspectives and challenges of IME regulation for OEOR are shared.
Collapse
Affiliation(s)
- Yi Liu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Zhihui Yang
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Junying He
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P. R. China
| |
Collapse
|
41
|
Liu Z, Chang P, Xi M, Ding J, Wang X, Wang J, Zhang W, Huang Y. Synthesis of Ni 3 B/Ni via Vacuum-Induced for Ultrahigh Stable and Efficient Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303855. [PMID: 37643376 DOI: 10.1002/smll.202303855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/01/2023] [Indexed: 08/31/2023]
Abstract
Designing efficient catalysts to promote the electrochemical oxidation of anodes is the core of the development of electrochemical synthesis technologies, such as HER and CO2 RR. Here, a novel vacuum induction strategy is used to synthesize nickel boride/nickel (Ni3 B/Ni) heterostructure catalyst for electrochemical oxidation of methanol into formic acid. The catalyst has extremely high reactivity (only 146.9 mV overpotential at 10 mA cm-2 , the maximum current density reaches 555.70 mA mg-1 and 443.87 mA cm-2 ), ultra-high selectivity (Faraday efficiency of methanol conversion to formic acid is close to 100%), and ultra-long life (over 50 h at 100 mA cm-2 ). In-suit electrochemical impedance spectroscopy proved that MeOH is oxidized first and inhibits the phase transition of the electrocatalyst to the high-valent electrooxidation products, which not only enables the high selectivity of MeOH oxidation but also ensures high stability of the catalyst. The mechanism studies by density functional theory calculations show that the potential determining step, the formation of *CH2 O, occurs most favorably in the Ni3 B/Ni heterostructure. These results provide references for the development of MeOH oxidation catalysts with high activity, high stability, high selectivity, and low cost.
Collapse
Affiliation(s)
- Zhenjie Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Pingping Chang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Murong Xi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Juan Ding
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Xingchao Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Jiulin Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| | - Wenjun Zhang
- Center of Super-Diamond and Advanced Films (COSDAF), and, Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yudai Huang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Address Urumqi, Xinjiang, 830017, P. R. China
| |
Collapse
|
42
|
Hao Y, Hung SF, Zeng WJ, Wang Y, Zhang C, Kuo CH, Wang L, Zhao S, Zhang Y, Chen HY, Peng S. Switching the Oxygen Evolution Mechanism on Atomically Dispersed Ru for Enhanced Acidic Reaction Kinetics. J Am Chem Soc 2023; 145:23659-23669. [PMID: 37871168 DOI: 10.1021/jacs.3c07777] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Designing stable single-atom electrocatalysts with lower energy barriers is urgent for the acidic oxygen evolution reaction. In particular, the atomic catalysts are highly dependent on the kinetically sluggish acid-base mechanism, limiting the reaction paths of intermediates. Herein, we successfully manipulate the steric localization of Ru single atoms at the Co3O4 surface to improve acidic oxygen evolution by precise control of the anchor sites. The delicate structure design can switch the reaction mechanism from the lattice oxygen mechanism (LOM) to the optimized adsorbate evolution mechanism (AEM). In particular, Ru atoms embedded into cation vacancies reveal an optimized mechanism that activates the proton donor-acceptor function (PDAM), demonstrating a new single-atom catalytic pathway to circumvent the classic scaling relationship. Steric interactions with intermediates at the anchored Ru-O-Co interface played a primary role in optimizing the intermediates' conformation and reducing the energy barrier. As a comparison, Ru atoms confined to the surface sites exhibit a lattice oxygen mechanism for the oxygen evolution process. As a result, the delicate atom control of the spatial position presents a 100-fold increase in mass activity from 36.96 A gRu(ads)-1 to 4012.11 A gRu(anc)-1 at 1.50 V. These findings offer new insights into the precise control of single-atom catalytic behavior.
Collapse
Affiliation(s)
- Yixin Hao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Ye Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Chenchen Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Chun-Han Kuo
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Luqi Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Sheng Zhao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Ying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Han-Yi Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shengjie Peng
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| |
Collapse
|
43
|
Qi J, Du Y, Yang Q, Jiang N, Li J, Ma Y, Ma Y, Zhao X, Qiu J. Energy-saving and product-oriented hydrogen peroxide electrosynthesis enabled by electrochemistry pairing and product engineering. Nat Commun 2023; 14:6263. [PMID: 37805528 PMCID: PMC10560254 DOI: 10.1038/s41467-023-41997-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/25/2023] [Indexed: 10/09/2023] Open
Abstract
Hydrogen peroxide (H2O2) electrosynthesis through oxygen reduction reaction (ORR) is drawing worldwide attention, whereas suffering seriously from the sluggish oxygen evolution reaction (OER) and the difficult extraction of thermodynamically unstable H2O2. Herein, we present an electrosynthesis protocol involving coupling ORR-to-H2O2 with waste polyethylene terephthalate (PET) upcycling and the first H2O2 conversion strategy. Ni-Mn bimetal- and onion carbon-based catalysts are designed to catalyze ORR-to-H2O2 and ethylene glycol electrooxidation with the Faradaic efficiency of 97.5% (H2O2) and 93.0% (formate). This electrolysis system runs successfully at only 0.927 V to achieve an industrial-scale current density of 400 mA cm-2, surpassing all reported H2O2 electrosynthesis systems. H2O2 product is upgraded through two downstream routes of converting H2O2 into sodium perborate and dibenzoyl peroxide. Techno-economic evolution highlights the high gross profit of the ORR || PET upcycling protocol over HER || PET upcycling and ORR || OER. This work provides an energy-saving methodology for the electrosynthesis of H2O2 and other chemicals.
Collapse
Affiliation(s)
- Jun Qi
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yadong Du
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qi Yang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| | - Na Jiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jiachun Li
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yi Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yangjun Ma
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xin Zhao
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.
| |
Collapse
|
44
|
Zhang K, Xiao C, Li Y, Li C. Boosting nucleophilic attack to realize high current density biomass valorization on a tunable Prussian blue analogue. NANOSCALE 2023; 15:15649-15655. [PMID: 37724004 DOI: 10.1039/d3nr03380e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Electrochemical biomass valorization provides a promising approach to generating value-added chemicals. Herein, we have creatively utilized a Prussian blue analogue as a structure template of the anodic catalyst and improved its catalyst capacity by adjusting its electronic structure. The nickel-based Prussian blue analogue/Ni foam (NiFe-PBA/NF) exhibits excellent performance for methanol (MeOH) oxidation and achieves almost 94.1% FE of formic acid at a high current density of 500 mA cm-2. Apart from formic acid, NiFe-PBA/NF also has good catalytic ability for ethanol, glycerol, glucose, and 5-hydroxymethylfurfural (HMF). In short, this work has developed a promising class of catalysts for biomass valorization.
Collapse
Affiliation(s)
- Kaiyue Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Chuqian Xiao
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Yuhang Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Chunzhong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, Frontiers Science and Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science & Technology, Shanghai 200237, China.
- School of Chemical Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
45
|
Gao X, Bai X, Wang P, Jiao Y, Davey K, Zheng Y, Qiao SZ. Boosting urea electrooxidation on oxyanion-engineered nickel sites via inhibited water oxidation. Nat Commun 2023; 14:5842. [PMID: 37730706 PMCID: PMC10511637 DOI: 10.1038/s41467-023-41588-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 09/11/2023] [Indexed: 09/22/2023] Open
Abstract
Renewable energy-based electrocatalytic oxidation of organic nucleophiles (e.g.methanol, urea, and amine) are more thermodynamically favourable and, economically attractive to replace conventional pure water electrooxidation in electrolyser to produce hydrogen. However, it is challenging due to the competitive oxygen evolution reaction under a high current density (e.g., >300 mA cm-2), which reduces the anode electrocatalyst's activity and stability. Herein, taking lower energy cost urea electrooxidation reaction as the model reaction, we developed oxyanion-engineered Nickel catalysts to inhibit competing oxygen evolution reaction during urea oxidation reaction, achieving an ultrahigh 323.4 mA cm-2 current density at 1.65 V with 99.3 ± 0.4% selectivity of N-products. In situ spectra studies reveal that such in situ generated oxyanions not only inhibit OH- adsorption and guarantee high coverage of urea reactant on active sites to avoid oxygen evolution reaction, but also accelerate urea's C - N bond cleavage to form CNO - intermediates for facilitating urea oxidation reaction. Accordingly, a comprehensive mechanism for competitive adsorption behaviour between OH- and urea to boost urea electrooxidation and dynamic change of Ni active sites during urea oxidation reaction was proposed. This work presents a feasible route for high-efficiency urea electrooxidation reaction and even various electrooxidation reactions in practical applications.
Collapse
Affiliation(s)
- Xintong Gao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Xiaowan Bai
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Pengtang Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Yan Jiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Kenneth Davey
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia
| | - Yao Zheng
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
| | - Shi-Zhang Qiao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
46
|
Chen D, Ding Y, Cao X, Wang L, Lee H, Lin G, Li W, Ding G, Sun L. Highly Efficient Biomass Upgrading by a Ni-Cu Electrocatalyst Featuring Passivation of Water Oxidation Activity. Angew Chem Int Ed Engl 2023; 62:e202309478. [PMID: 37486710 DOI: 10.1002/anie.202309478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 07/25/2023]
Abstract
Electricity-driven organo-oxidations have shown an increasing potential recently. However, oxygen evolution reaction (OER) is the primary competitive reaction, especially under high current densities, which leads to low Faradaic efficiency (FE) of the product and catalyst detachment from the electrode. Here, we report a bimetallic Ni-Cu electrocatalyst supported on Ni foam (Ni-Cu/NF) to passivate the OER process while the oxidation of 5-hydroxymethylfurfural (HMF) is significantly enhanced. A current density of 1000 mA cm-2 can be achieved at 1.50 V vs. reversible hydrogen electrode, and both FE and yield keep close to 100 % over a wide range of potentials. Both experimental results and theoretical calculations reveal that Cu doping impedes the OH* deprotonation to O* and hereby OER process is greatly passivated. Those instructive results provide a new approach to realizing highly efficient biomass upgrading by regulating the OER activity.
Collapse
Affiliation(s)
- Dexin Chen
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Xing Cao
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Husileng Lee
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Gaoxin Lin
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Wenlong Li
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Guoheng Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
47
|
Yang X, Xi M, Guo X, Shen J, Liu Z, Jiang H, Zhu Y. Ni-CeO 2 Heterostructure Promotes Hydrogen Evolution Reaction via Tuning of the O-H Bond Length of Adsorbed Water at the Electrolyte/Electrode Interface. CHEMSUSCHEM 2023; 16:e202300348. [PMID: 37198132 DOI: 10.1002/cssc.202300348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/23/2023] [Accepted: 05/16/2023] [Indexed: 05/19/2023]
Abstract
Understanding the properties and structure of reactant water molecules at the electrolyte solution/electrode interface is relevant to know the mechanisms of hydrogen evolution reaction (HER). However, this approach has rarely been implemented due to the elusive local microenvironment in the vicinity of the catalyst. Taking the Ni-CeO2 heterostructure immobilized onto carbon paper (Ni-CeO2 /CP) as a model, the dynamic behavior of adsorbed intermediates during the reaction was measured by in situ surface-enhanced infrared absorption spectroscopy with attenuated total reflection configuration (ATR-SEIRAS). Theoretical calculations are used in combination to comprehend the potential causes of increased HER activity. The results show that the O-H bond of adsorbed water at the electrolyte solution/electrode interface becomes longer for promoting the dissociation of water and accelerating the kinetically slow Volmer step. In addition, forming the Ni-CeO2 heterostructure interface optimizes the hydrogen adsorption Gibbs free energy, thus increasing HER activity. Therefore, the Ni-CeO2 /CP electrode exhibits remarkably low HER overpotentials of 37 and 119 mV at 10 and 100 mA cm-2 , which are close to commercial Pt/C (16 and 102.6 mV, respectively).
Collapse
Affiliation(s)
- Xiaoling Yang
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Menghua Xi
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Xing Guo
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Jianhua Shen
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Zhen Liu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Hongliang Jiang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Yihua Zhu
- Shanghai Engineering Research Centre of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
48
|
Sun YY, Luo JY, Wu XQ, Wu YP, Li S, Yin YM, Ma HJ, Chi R, Li DS. Seaweed-like phosphates/MOF heterostructures as a synergistic electrocatalyst for alcohol oxidation. Chem Commun (Camb) 2023; 59:10672-10675. [PMID: 37581899 DOI: 10.1039/d3cc02474a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
A series of seaweed-like heterogeneous Co3(PO4)2/Ni3(PO4)2/MOF-74-x electrocatalysts were synthesized via a hydrothermal method. The optimal composite exhibits excellent catalytic performance toward methanol/ethanol oxidation reactions (MOR/EOR) with peak current densities reaching 27.5 and 32.6 mA cm-2, respectively. This work heralds the advent of more efficient heterogeneous electrocatalysts for DAFCs and other energy conversion systems.
Collapse
Affiliation(s)
- Ya-Ya Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Jia-Yang Luo
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Xue-Qian Wu
- College of Electrical Engineering & New Energy, China Three Gorges University, Yichang 443002, P. R. China
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Ya-Pan Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Ya-Meng Yin
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Hui-Juan Ma
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Ruan Chi
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang 443002, P. R. China.
- Hubei Three Gorges Laboratory, Yichang 443007, P. R. China
| |
Collapse
|
49
|
Mohammad Aminzadeh F, Zeynizadeh B. Immobilized nickel boride nanoparticles on magnetic functionalized multi-walled carbon nanotubes: a new nanocomposite for the efficient one-pot synthesis of 1,4-benzodiazepines. NANOSCALE ADVANCES 2023; 5:4499-4520. [PMID: 37638163 PMCID: PMC10448344 DOI: 10.1039/d3na00415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023]
Abstract
In this study, a new magnetic nanocomposite consisting of Ni2B nanoparticles anchored on magnetic functionalized multi-walled carbon nanotubes (Fe3O4/f-MWCNT/Ni2B) was synthesized and characterized using various techniques such as FT-IR, XRD, FESEM, SEM-based EDX, SEM-based elemental mapping, HRTEM, DLS, SAED, XPS, BET, TGA, and VSM. The as-prepared magnetic nanocomposite was successfully employed for the preparation of bioactive 1,4-benzodiazepines from the three-component reaction of o-phenylenediamine (1), dimedone (2), and different aldehydes (3), in polyethylene glycol 400 (PEG-400) as a solvent at 60 °C. The obtained results demonstrated that the current one-pot three-component protocol offers many advantages, such as good-to-excellent yields within acceptable reaction times, favorable TONs and TOFs, eco-friendliness of the procedure, easy preparation of the nanocomposite, mild reaction conditions, a broad range of products, excellent catalytic activity, green solvent, and reusability of the nanocomposite.
Collapse
|
50
|
Zhang S, Wang Y, Li S, Wang Z, Chen H, Yi L, Chen X, Yang Q, Xu W, Wang A, Lu Z. Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode. Nat Commun 2023; 14:4822. [PMID: 37563114 PMCID: PMC10415325 DOI: 10.1038/s41467-023-40563-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/12/2023] Open
Abstract
The corrosive anions (e.g., Cl-) have been recognized as the origins to cause severe corrosion of anode during seawater electrolysis, while in experiments it is found that natural seawater (~0.41 M Cl-) is usually more corrosive than simulated seawater (~0.5 M Cl-). Here we elucidate that besides Cl-, Br- in seawater is even more harmful to Ni-based anodes because of the inferior corrosion resistance and faster corrosion kinetics in bromide than in chloride. Experimental and simulated results reveal that Cl- corrodes locally to form narrow-deep pits while Br- etches extensively to generate shallow-wide pits, which can be attributed to the fast diffusion kinetics of Cl- and the lower reaction energy of Br- in the passivation layer. Additionally, for the Ni-based electrodes with catalysts (e.g., NiFe-LDH) loading on the surface, Br- causes extensive spalling of the catalyst layer, resulting in rapid performance degradation. This work clearly points out that, in addition to anti-Cl- corrosion, designing anti-Br- corrosion anodes is even more crucial for future application of seawater electrolysis.
Collapse
Affiliation(s)
- Sixie Zhang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunan Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuyu Li
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
| | - Zhongfeng Wang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haocheng Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
| | - Li Yi
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
| | - Xu Chen
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
| | - Qihao Yang
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China
| | - Wenwen Xu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China.
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China.
| | - Aiying Wang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China
| | - Zhiyi Lu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, Zhejiang, P. R. China.
- Qianwan institute of CNITECH, Ningbo, 315201, Zhejiang, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|