1
|
Arai S, Kobayashi R, Adachi M, Kimura K, Masai H. Possibility of two-dimensional ordering of cryptochrome 4a from European robin. Biochem Biophys Res Commun 2024; 737:150513. [PMID: 39126860 DOI: 10.1016/j.bbrc.2024.150513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Cryptochrome (Cry) in some species could act as a quantum senser to detect the inclination angle of geomagnetic field, the function of which attributes the magnetic sensitivity of spins of unpaired electrons in radical pair (RP) in CRY generated by blue light irradiation. However, the effect of blue light on the structure and molecular behavior of Cry has not been well investigated. We conducted the size exclusion chromatography (SEC) and small-angle X-ray scattering (SAXS) analyses to inspect the molecular structure and behavior of cryptochrome 4a (ErCry4a) from European robin, a representative magnetosensory animal. The results indicated that ErCry4a could form flat-shape oligomers. Moreover, blue light irradiation induced the contraction of the ErCry4a molecule at the monomer scale and simultaneously accelerated the two-dimensional oligomerization of ErCry4a. This oligomerization may enhance the regularity of the two-dimensional arrangement of ErCry4a molecules, providing a positive effect for detecting the inclination angle.
Collapse
Affiliation(s)
- Shigeki Arai
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan.
| | - Ryoma Kobayashi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Motoyasu Adachi
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagwa, Inage-ku, Chiba-city, Chiba, 263-8555, Japan
| | - Koji Kimura
- Graduate School of Engineering Global College, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan; Japan Synchrotron Radiation Research Institute, SPring-8, Kouto, Sayo, Hyogo, 679-5198, Japan
| | - Hirokazu Masai
- Department of Materials and Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| |
Collapse
|
2
|
Peralta CM, Feunteun E, Guillaudeau J, Briševac D, Kaiser TS. How Light at Night Sets the Circalunar Clock in the Marine Midge Clunio marinus. J Biol Rhythms 2024:7487304241286936. [PMID: 39506296 DOI: 10.1177/07487304241286936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Many organisms inhabiting the interface between land and sea have evolved biological clocks corresponding to the period of the semilunar (14.77 days) or the lunar (29.53 days) cycle. Since tidal amplitude is modulated across the lunar cycle, these circasemilunar or circalunar clocks not only allow organisms to adapt to the lunar cycle, but also to specific tidal situations. Biological clocks are synchronized to external cycles via environmental cues called zeitgebers. Here, we explore how light at night sets the circalunar and circasemilunar clocks of Clunio marinus, a marine insect that relies on these clocks to control timing of emergence. We first characterized how moonlight intensity is modulated by the tides by measuring light intensity in the natural habitat of C. marinus. In laboratory experiments, we then explored how different moonlight treatments set the phase of the clocks of two C. marinus strains, one with a lunar rhythm and one with a semilunar rhythm. Light intensity alone does not affect the phase of the lunar rhythm. Presenting moonlight during different 2-h or 4-h windows during the night shows that (1) the required duration of moonlight is strain-specific, (2) there are strain-specific moonlight sensitivity windows and (3) timing of moonlight can shift the phase of the lunar rhythm to stay synchronized with the lowest low tides. Experiments simulating natural moonlight patterns confirm that the phase is set by the timing of moonlight. Simulating natural moonlight at field-observed intensities leads to the best synchronization. Taken together, we show that there is a complex and strain-specific integration of intensity, duration and timing of light at night to precisely entrain the lunar and semilunar rhythms. The observed fine-tuning of the rhythms under natural moonlight regimes lays the foundation for a better chronobiological and genetic dissection of the circa(semi)lunar clock in C. marinus.
Collapse
Affiliation(s)
- Carolina M Peralta
- Max Planck Research Group Biological Clocks, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eric Feunteun
- UMR Biologie des Organismes et Ecosystèmes Aquatiques, (MNHN, CNRS, SU, IRD, UCN, UA), Dinard, France
- Centre de Géoécologie Littorale (EPHE-PSL), Dinard, France
| | | | - Dušica Briševac
- Max Planck Research Group Biological Clocks, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Tobias S Kaiser
- Max Planck Research Group Biological Clocks, Max Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
3
|
DeOliveira CC, Crane BR. A structural decryption of cryptochromes. Front Chem 2024; 12:1436322. [PMID: 39220829 PMCID: PMC11362059 DOI: 10.3389/fchem.2024.1436322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Cryptochromes (CRYs), which are signaling proteins related to DNA photolyases, play pivotal roles in sensory responses throughout biology, including growth and development, metabolic regulation, circadian rhythm entrainment and geomagnetic field sensing. This review explores the evolutionary relationships and functional diversity of cryptochromes from the perspective of their molecular structures. In general, CRY biological activities derive from their core structural architecture, which is based on a Photolyase Homology Region (PHR) and a more variable and functionally specific Cryptochrome C-terminal Extension (CCE). The α/β and α-helical domains within the PHR bind FAD, modulate redox reactive residues, accommodate antenna cofactors, recognize small molecules and provide conformationally responsive interaction surfaces for a range of partners. CCEs add structural complexity and divergence, and in doing so, influence photoreceptor reactivity and tailor function. Primary and secondary pockets within the PHR bind myriad moieties and collaborate with the CCEs to tune recognition properties and propagate chemical changes to downstream partners. For some CRYs, changes in homo and hetero-oligomerization couple to light-induced conformational changes, for others, changes in posttranslational modifications couple to cascades of protein interactions with partners and effectors. The structural exploration of cryptochromes underscores how a broad family of signaling proteins with close relationship to light-dependent enzymes achieves a wide range of activities through conservation of key structural and chemical properties upon which function-specific features are elaborated.
Collapse
Affiliation(s)
| | - Brian R. Crane
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, United States
| |
Collapse
|
4
|
Ritter A, Tessmar-Raible K. Time me by the moon : The evolution and function of lunar timing systems. EMBO Rep 2024; 25:3169-3176. [PMID: 39014253 PMCID: PMC11316100 DOI: 10.1038/s44319-024-00196-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
The moon has significant impact on the timing of organisms. Can the study of molecular timing mechanisms of marine animals and algae help to understand some of the “weird” correlations between human physiological/behavioral rhythms and the lunar cycle?
Collapse
Affiliation(s)
- Andrés Ritter
- Laboratory of Integrative Biology of Marine Models, UMR8227 Sorbonne Université-CNRS, Station Biologique de Roscoff, 29688, Roscoff, CEDEX, France.
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany.
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstraße 114-118, 26129, Oldenburg, Germany.
| |
Collapse
|
5
|
Mironov VL, Linkevich EV. Effects of the lunar cycle on ecosystem and heterotrophic respiration in a boreal Sphagnum-dominated peatland. Chronobiol Int 2024; 41:929-940. [PMID: 38888285 DOI: 10.1080/07420528.2024.2365825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024]
Abstract
The growth of Sphagnum is influenced by the lunar cycle, which suggests a corresponding carbon (C) accumulation rhythm in peatlands. However, this rhythm can only occur if C accumulation from Sphagnum growth is not offset by its total losses through respiration and other processes. To address the uncertainty, through correlation-regression analysis we examine the influence of the lunar cycle on recent measurements of ecosystem (ER) and heterotrophic (Rh) respiration conducted by Järveoja and colleagues on the oligotrophic peatland of Degerö Stormyr. We found that ER and Rh accelerated near the full moon and slowed down near the new moon. The response of the hourly ER to the lunar cycle is significant from 22:00 to 8:00 and is not significant beyond this range. This response was concentrated in the initial and finished phases of the season, but during the middle of the season it disappeared. This behavior could potentially be caused by the high sensitivity of the Sphagnum cover to moonlight, as well as the sensitivity to the lunar cycle of only the nocturnal component ER. During most of the day, the lunar cycle had a significant effect on hourly Rh, with the highest impact observed between 5:00 and 10:00 and at 20:00. The greatest impact occurs during those hours when ER declines, and possibly Sphagnum photosynthetic productivity peaks. The findings suggest a circalunar rhythm of C accumulation in peatlands due to the opposite trends between C accumulation during Sphagnum growth and C losses with respiration during the lunar cycle.
Collapse
Affiliation(s)
- Victor L Mironov
- Department of Multidisciplinary Scientific Research of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| | - Elizaveta V Linkevich
- Department of Multidisciplinary Scientific Research of the Karelian Research Centre of the Russian Academy of Sciences, Petrozavodsk, Russia
| |
Collapse
|
6
|
Ramos-Llorens M, Bainour K, Adelmann L, Hontoria F, Navarro JC, Raible F, Monroig Ó. Elongation capacity of polyunsaturated fatty acids in the annelid Platynereis dumerilii. Open Biol 2024; 14:240069. [PMID: 38864244 DOI: 10.1098/rsob.240069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024] Open
Abstract
Elongation of very long-chain fatty acid (Elovl) proteins plays pivotal functions in the biosynthesis of the physiologically essential long-chain polyunsaturated fatty acids (LC-PUFA). Polychaetes have important roles in marine ecosystems, contributing not only to nutrient recycling but also exhibiting a distinctive capacity for biosynthesizing LC-PUFA. To expand our understanding of the LC-PUFA biosynthesis in polychaetes, this study conducted a thorough molecular and functional characterization of Elovl occurring in the model organism Platynereis dumerilii. We identify six Elovl in the genome of P. dumerilii. The sequence and phylogenetic analyses established that four Elovl, identified as Elovl2/5, Elovl4 (two genes) and Elovl1/7, have putative functions in LC-PUFA biosynthesis. Functional characterization confirmed the roles of these elongases in LC-PUFA biosynthesis, demonstrating that P. dumerilii possesses a varied and functionally diverse complement of Elovl that, along with the enzymatic specificities of previously characterized desaturases, enables P. dumerilii to perform all the reactions required for the biosynthesis of the LC-PUFA. Importantly, we uncovered that one of the two Elovl4-encoding genes is remarkably long in comparison with any other animals' Elovl, which contains a C terminal KH domain unique among Elovl. The distinctive expression pattern of this protein in photoreceptors strongly suggests a central role in vision.
Collapse
Affiliation(s)
- Marc Ramos-Llorens
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC , Ribera de Cabanes, Castellón 12595, Spain
| | - Khalida Bainour
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC , Ribera de Cabanes, Castellón 12595, Spain
| | - Leonie Adelmann
- Max Perutz Labs, University of Vienna , Vienna 1030, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr Gasse 9/4, A-1030 , Vienna 1030, Austria
| | - Francisco Hontoria
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC , Ribera de Cabanes, Castellón 12595, Spain
| | - Juan C Navarro
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC , Ribera de Cabanes, Castellón 12595, Spain
| | - Florian Raible
- Max Perutz Labs, University of Vienna , Vienna 1030, Austria
- Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Dr. Bohr Gasse 9/4, A-1030 , Vienna 1030, Austria
| | - Óscar Monroig
- Instituto de Acuicultura Torre de la Sal (IATS), CSIC , Ribera de Cabanes, Castellón 12595, Spain
| |
Collapse
|
7
|
Kwiatkowski ER, Rosenthal JJC, Emery P. Clocks at sea: the genome-editing tide is rising. Trends Genet 2024; 40:387-397. [PMID: 38336520 DOI: 10.1016/j.tig.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The coastline is a particularly challenging environment for its inhabitants. Not only do they have to cope with the solar day and the passing of seasons, but they must also deal with tides. In addition, many marine species track the phase of the moon, especially to coordinate reproduction. Marine animals show remarkable behavioral and physiological adaptability, using biological clocks to anticipate specific environmental cycles. Presently, we lack a basic understanding of the molecular mechanisms underlying circatidal and circalunar clocks. Recent advances in genome engineering and the development of genetically tractable marine model organisms are transforming how we study these timekeeping mechanisms and opening a novel era in marine chronobiology.
Collapse
Affiliation(s)
- Erica R Kwiatkowski
- University of Massachusetts Chan Medical School, Department of Neurobiology, Worcester, MA 01605, USA
| | | | - Patrick Emery
- University of Massachusetts Chan Medical School, Department of Neurobiology, Worcester, MA 01605, USA.
| |
Collapse
|
8
|
Häfker NS, Holcik L, Mat AM, Ćorić A, Vadiwala K, Beets I, Stockinger AW, Atria CE, Hammer S, Revilla-i-Domingo R, Schoofs L, Raible F, Tessmar-Raible K. Molecular circadian rhythms are robust in marine annelids lacking rhythmic behavior. PLoS Biol 2024; 22:e3002572. [PMID: 38603542 PMCID: PMC11008795 DOI: 10.1371/journal.pbio.3002572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
The circadian clock controls behavior and metabolism in various organisms. However, the exact timing and strength of rhythmic phenotypes can vary significantly between individuals of the same species. This is highly relevant for rhythmically complex marine environments where organismal rhythmic diversity likely permits the occupation of different microenvironments. When investigating circadian locomotor behavior of Platynereis dumerilii, a model system for marine molecular chronobiology, we found strain-specific, high variability between individual worms. The individual patterns were maintained for several weeks. A diel head transcriptome comparison of behaviorally rhythmic versus arrhythmic wild-type worms showed that 24-h cycling of core circadian clock transcripts is identical between both behavioral phenotypes. While behaviorally arrhythmic worms showed a similar total number of cycling transcripts compared to their behaviorally rhythmic counterparts, the annotation categories of their transcripts, however, differed substantially. Consistent with their locomotor phenotype, behaviorally rhythmic worms exhibit an enrichment of cycling transcripts related to neuronal/behavioral processes. In contrast, behaviorally arrhythmic worms showed significantly increased diel cycling for metabolism- and physiology-related transcripts. The prominent role of the neuropeptide pigment-dispersing factor (PDF) in Drosophila circadian behavior prompted us to test for a possible functional involvement of Platynereis pdf. Differing from its role in Drosophila, loss of pdf impacts overall activity levels but shows only indirect effects on rhythmicity. Our results show that individuals arrhythmic in a given process can show increased rhythmicity in others. Across the Platynereis population, rhythmic phenotypes exist as a continuum, with no distinct "boundaries" between rhythmicity and arrhythmicity. We suggest that such diel rhythm breadth is an important biodiversity resource enabling the species to quickly adapt to heterogeneous or changing marine environments. In times of massive sequencing, our work also emphasizes the importance of time series and functional tests.
Collapse
Affiliation(s)
- N. Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laurenz Holcik
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Audrey M. Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Karim Vadiwala
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Isabel Beets
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Alexander W. Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carolina E. Atria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Stefan Hammer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Roger Revilla-i-Domingo
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Department of Neuro- and Developmental Biology, University of Vienna, Vienna, Austria
- Research Platform Single-Cell Regulation of Stem Cells, University of Vienna, Vienna, Austria
| | - Liliane Schoofs
- Division of animal Physiology and Neurobiology, KU Leuven, Leuven, Belgium
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment (ICBM), School of Mathematics and Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| |
Collapse
|
9
|
Mat A, Vu HH, Wolf E, Tessmar-Raible K. All Light, Everywhere? Photoreceptors at Nonconventional Sites. Physiology (Bethesda) 2024; 39:0. [PMID: 37905983 PMCID: PMC11283901 DOI: 10.1152/physiol.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 11/02/2023] Open
Abstract
One of the biggest environmental alterations we have made to our species is the change in the exposure to light. During the day, we typically sit behind glass windows illuminated by artificial light that is >400 times dimmer and has a very different spectrum than natural daylight. On the opposite end are the nights that are now lit up by several orders of magnitude. This review aims to provide food for thought as to why this matters for humans and other animals. Evidence from behavioral neuroscience, physiology, chronobiology, and molecular biology is increasingly converging on the conclusions that the biological nonvisual functions of light and photosensory molecules are highly complex. The initial work of von Frisch on extraocular photoreceptors in fish, the identification of rhodopsins as the molecular light receptors in animal eyes and eye-like structures and cryptochromes as light sensors in nonmammalian chronobiology, still allowed for the impression that light reception would be a relatively restricted, localized sense in most animals. However, light-sensitive processes and/or sensory proteins have now been localized to many different cell types and tissues. It might be necessary to consider nonlight-responding cells as the exception, rather than the rule.
Collapse
Affiliation(s)
- Audrey Mat
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- VIPS2, Vienna BioCenter, Vienna, Austria
| | - Hong Ha Vu
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
| | - Eva Wolf
- Institute of Molecular Physiology, Johannes Gutenberg-University, Mainz, Germany
- Institute of Molecular Biology, Mainz, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Carl-von-Ossietzky University, Oldenburg, Germany
| |
Collapse
|
10
|
Legras M, Ghisleni G, Regnard L, Dias M, Soilihi R, Celmar E, Balavoine G. Fast cycling culture of the annelid model Platynereis dumerilii. PLoS One 2023; 18:e0295290. [PMID: 38127889 PMCID: PMC10735030 DOI: 10.1371/journal.pone.0295290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Platynereis dumerilii, a marine annelid, is a model animal that has gained popularity in various fields such as developmental biology, biological rhythms, nervous system organization and physiology, behaviour, reproductive biology, and epigenetic regulation. The transparency of P. dumerilii tissues at all developmental stages makes it easy to perform live microscopic imaging of all cell types. In addition, the slow-evolving genome of P. dumerilii and its phylogenetic position as a representative of the vast branch of Lophotrochozoans add to its evolutionary significance. Although P. dumerilii is amenable to transgenesis and CRISPR-Cas9 knockouts, its relatively long and indefinite life cycle, as well as its semelparous reproduction have been hindrances to its adoption as a reverse genetics model. To overcome this limitation, an adapted culturing method has been developed allowing much faster life cycling, with median reproductive age at 13-14 weeks instead of 25-35 weeks using the traditional protocol. A low worm density in boxes and a strictly controlled feeding regime are important factors for the rapid growth and health of the worms. This culture method has several advantages, such as being much more compact, not requiring air bubbling or an artificial moonlight regime for synchronized sexual maturation and necessitating only limited water change. A full protocol for worm care and handling is provided.
Collapse
Affiliation(s)
- Mathieu Legras
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Giulia Ghisleni
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| | - Léna Regnard
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Manon Dias
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Rabouant Soilihi
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Enzo Celmar
- Université de Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | | |
Collapse
|
11
|
Botte A, Payton L, Tran D. The effects of artificial light at night on behavioral rhythm and related gene expression are wavelength dependent in the oyster Crassostrea gigas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120375-120386. [PMID: 37938485 DOI: 10.1007/s11356-023-30793-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023]
Abstract
Artificial light at night (ALAN) constitutes a growing threat to coastal ecosystems by altering natural light cycles, which could impair organisms' biological rhythms, with resulting physiological and ecological consequences. Coastal ecosystems are strongly exposed to ALAN, but its effects on coastal organisms are poorly studied. Besides ALAN's intensity, ALAN's quality exposure may change the impacts on organisms. This study aims to characterize the effects of different ALAN's spectral compositions (monochromatic wavelength lights in red (peak at 626 nm), green (peak at 515 nm), blue (peak at 467 nm), and white (410-680 nm) light) at low and realistic intensity (1 lx) on the oyster Crassostrea gigas daily rhythm. Results reveal that all ALAN's treatments affect the oysters' daily valve activity rhythm in different manners and the overall expression of the 13 studied genes. Eight of these genes are involved in the oyster's circadian clock, 2 are clock-associated genes, and 3 are light perception genes. The blue light has the most important effects on oysters' valve behavior and clock and clock-associated gene expression. Interestingly, red and green lights also show significant impacts on the daily rhythm, while the lowest impacts are shown with the green light. Finally, ALAN white light shows the same impact as the blue one in terms of loss of rhythmic oysters' percentage, but the chronobiological parameters of the remaining rhythmic oysters are less disrupted than when exposed to each of the monochromatic light's treatments alone. We conclude that ALAN's spectral composition does influence its effect on oysters' daily rhythm, which could give clues to limit physiological and ecological impacts on coastal environments.
Collapse
Affiliation(s)
- Audrey Botte
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33120, Arcachon, France
| | - Laura Payton
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33120, Arcachon, France
| | - Damien Tran
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33120, Arcachon, France.
| |
Collapse
|
12
|
Brodrick E, Jékely G. Photobehaviours guided by simple photoreceptor systems. Anim Cogn 2023; 26:1817-1835. [PMID: 37650997 PMCID: PMC10770211 DOI: 10.1007/s10071-023-01818-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
Light provides a widely abundant energy source and valuable sensory cue in nature. Most animals exposed to light have photoreceptor cells and in addition to eyes, there are many extraocular strategies for light sensing. Here, we review how these simpler forms of detecting light can mediate rapid behavioural responses in animals. Examples of these behaviours include photophobic (light avoidance) or scotophobic (shadow) responses, photokinesis, phototaxis and wavelength discrimination. We review the cells and response mechanisms in these forms of elementary light detection, focusing on aquatic invertebrates with some protist and terrestrial examples to illustrate the general principles. Light cues can be used very efficiently by these simple photosensitive systems to effectively guide animal behaviours without investment in complex and energetically expensive visual structures.
Collapse
Affiliation(s)
- Emelie Brodrick
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Centre for Organismal Studies, University of Heidelberg, 69120, Heidelberg, Germany
| |
Collapse
|
13
|
Vu HH, Behrmann H, Hanić M, Jeyasankar G, Krishnan S, Dannecker D, Hammer C, Gunkel M, Solov'yov IA, Wolf E, Behrmann E. A marine cryptochrome with an inverse photo-oligomerization mechanism. Nat Commun 2023; 14:6918. [PMID: 37903809 PMCID: PMC10616196 DOI: 10.1038/s41467-023-42708-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023] Open
Abstract
Cryptochromes (CRYs) are a structurally conserved but functionally diverse family of proteins that can confer unique sensory properties to organisms. In the marine bristle worm Platynereis dumerilii, its light receptive cryptochrome L-CRY (PdLCry) allows the animal to discriminate between sunlight and moonlight, an important requirement for synchronizing its lunar cycle-dependent mass spawning. Using cryo-electron microscopy, we show that in the dark, PdLCry adopts a dimer arrangement observed neither in plant nor insect CRYs. Intense illumination disassembles the dimer into monomers. Structural and functional data suggest a mechanistic coupling between the light-sensing flavin adenine dinucleotide chromophore, the dimer interface, and the C-terminal tail helix, with a likely involvement of the phosphate binding loop. Taken together, our work establishes PdLCry as a CRY protein with inverse photo-oligomerization with respect to plant CRYs, and provides molecular insights into how this protein might help discriminating the different light intensities associated with sunlight and moonlight.
Collapse
Affiliation(s)
- Hong Ha Vu
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Heide Behrmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Maja Hanić
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
| | - Gayathri Jeyasankar
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Shruthi Krishnan
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Dennis Dannecker
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Constantin Hammer
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany
| | - Monika Gunkel
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany
| | - Ilia A Solov'yov
- Institute of Physics, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26129, Oldenburg, Germany
- Research Center for Neurosensory Sciences, Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky Straße 9-11, 26111, Oldenburg, Germany
- Center for Nanoscale Dynamics (CENAD), Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129, Oldenburg, Germany
| | - Eva Wolf
- Institute of Molecular Physiology (IMP), Johannes Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128, Mainz, Germany.
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| | - Elmar Behrmann
- University of Cologne, Faculty of Mathematics and Natural Sciences, Institute of Biochemistry, Zülpicher Straße 47, 50674, Cologne, Germany.
| |
Collapse
|
14
|
Ćorić A, Stockinger AW, Schaffer P, Rokvić D, Tessmar-Raible K, Raible F. A Fast And Versatile Method for Simultaneous HCR, Immunohistochemistry And Edu Labeling (SHInE). Integr Comp Biol 2023; 63:372-381. [PMID: 36866518 PMCID: PMC10445416 DOI: 10.1093/icb/icad007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/17/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023] Open
Abstract
Access to newer, fast, and cheap sequencing techniques, particularly on the single-cell level, have made transcriptomic data of tissues or single cells accessible to many researchers. As a consequence, there is an increased need for in situ visualization of gene expression or encoded proteins to validate, localize, or help interpret such sequencing data, as well as put them in context with cellular proliferation. A particular challenge for labeling and imaging transcripts are complex tissues that are often opaque and/or pigmented, preventing easy visual inspection. Here, we introduce a versatile protocol that combines in situ hybridization chain reaction, immunohistochemistry, and proliferative cell labeling using 5-ethynyl-2'-deoxyuridine, and demonstrate its compatibility with tissue clearing. As a proof-of-concept, we show that our protocol allows for the parallel analysis of cell proliferation, gene expression, and protein localization in bristleworm heads and trunks.
Collapse
Affiliation(s)
- Aida Ćorić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Alexander W Stockinger
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Research Platform “Single-Cell Regulation of Stem Cells,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Petra Schaffer
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Dunja Rokvić
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
- Carl-von-Ossietzky University, Carl-von-Ossietzky-Straße 9-11, 26111 Oldenburg, Germany
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
- Research Platform “Rhythms of Life,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
- Research Platform “Single-Cell Regulation of Stem Cells,” University of Vienna, Vienna BioCenter, Dr. Bohr-Gasse 9/4, A-1030, Vienna, Austria
| |
Collapse
|
15
|
Häfker NS, Andreatta G, Manzotti A, Falciatore A, Raible F, Tessmar-Raible K. Rhythms and Clocks in Marine Organisms. ANNUAL REVIEW OF MARINE SCIENCE 2023; 15:509-538. [PMID: 36028229 DOI: 10.1146/annurev-marine-030422-113038] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The regular movements of waves and tides are obvious representations of the oceans' rhythmicity. But the rhythms of marine life span across ecological niches and timescales, including short (in the range of hours) and long (in the range of days and months) periods. These rhythms regulate the physiology and behavior of individuals, as well as their interactions with each other and with the environment. This review highlights examples of rhythmicity in marine animals and algae that represent important groups of marine life across different habitats. The examples cover ecologically highly relevant species and a growing number of laboratory model systems that are used to disentangle key mechanistic principles. The review introduces fundamental concepts of chronobiology, such as the distinction between rhythmic and endogenous oscillator-driven processes. It also addresses the relevance of studying diverse rhythms and oscillators, as well as their interconnection, for making better predictions of how species will respond to environmental perturbations, including climate change. As the review aims to address scientists from the diverse fields of marine biology, ecology, and molecular chronobiology, all of which have their own scientific terms, we provide definitions of key terms throughout the article.
Collapse
Affiliation(s)
- N Sören Häfker
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Alessandro Manzotti
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Angela Falciatore
- Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR 7141, CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Paris, France;
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; ,
- Research Platform "Rhythms of Life," University of Vienna, Vienna BioCenter, Vienna, Austria
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| |
Collapse
|
16
|
Andreatta G, Raible F, Tessmar-Raible K. Biological rhythms: Hormones under moon control. Curr Biol 2022; 32:R1269-R1271. [PMID: 36413969 DOI: 10.1016/j.cub.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Grass puffers are fish that engage in mass spawning controlled by the phase of the moon. A new study shows that prostaglandins released by males and females fine tune these events. In addition, regulation of gnrh1 by a transcription factor expressed in a semilunar rhythm suggests a timing signal for the long-term coordination of gonadal maturation.
Collapse
Affiliation(s)
- Gabriele Andreatta
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Florian Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Vienna, Austria
| | - Kristin Tessmar-Raible
- Max Perutz Labs, University of Vienna, Vienna BioCenter, Vienna, Austria; Research Platform "Rhythms of Life", University of Vienna, Vienna BioCenter, Vienna, Austria; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; Carl-von-Ossietzky University, Oldenburg, Germany.
| |
Collapse
|