1
|
Diamond SE, da Silva CRB, Medina-Báez OA. A multicontinental dataset of butterfly thermal physiological traits. Sci Data 2024; 11:1348. [PMID: 39695139 DOI: 10.1038/s41597-024-04191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Butterflies serve as key indicators of climate change impacts such as shifts in emergence timing and shifts in geographic range and distribution. However, the development of commonly used ecological forecasts based on butterfly physiological tolerance of temperature change has lagged behind that of other taxonomic groups. Here, we provide a series of related datasets comprising butterfly thermal physiological traits to enable such forecasts. We compiled data from the literature on butterfly heat and cold tolerance (critical thermal maxima and minima) for 117 species as well as heat resistance (knockdown time) for 45 species. We also present a new dataset comprising heat and cold tolerance and thermal sensitivity of metabolic rate of 28 common North American butterfly species. We envision these data to not only provide foundations for contemporary ecological forecasts of vulnerability to recent climate change, but also to aid in our understanding of butterfly ecology and evolution over historical timescales.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Carmen R B da Silva
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | | |
Collapse
|
2
|
Hafsi A, Moquet L, Hendrycks W, De Meyer M, Virgilio M, Delatte H. Evidence for a gut microbial community conferring adaptability to diet quality and temperature stressors in phytophagous insects: the melon fruit fly Zeugodacus cucurbitae (Diptera: Tephritidae) as a case study. BMC Microbiol 2024; 24:514. [PMID: 39627693 PMCID: PMC11613556 DOI: 10.1186/s12866-024-03673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/25/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND The high invasiveness of phytophagous insects is related to their adaptability to various environments, that can be influenced by their associated microbial community. Microbial symbionts are known to play a key role in the biology, ecology, and evolution of phytophagous insects, but their abundance and diversity are suggested to be influenced by environmental stressors. In this work, using 16 S rRNA metabarcoding we aim to verify (1) if laboratory rearing affects microbial symbiont communities of Zeugodacus cucurbitae females, a cosmopolitan pest of cucurbitaceous crops (2) if temperature, diet quality, and antibiotic treatments affect microbial symbiont communities of both laboratory and wild populations, and (3) if changes in microbial symbiont communities due to temperature, diet and antibiotic affect longevity and fecundity of Z. cucurbitae. RESULTS The results showed that microbial diversity, particularly the β-diversity was significantly affected by insect origin, temperature, diet quality, and antibiotic treatment. The alteration of gut microbial symbionts, specifically Enterobacteriaceae, was associated with low fecundity and longevity of Z. cucurbitae females feeding on optimal diet only. Fecundity reduction in antibiotic treated females was more pronounced when flies were fed on a poor diet without protein. CONCLUSIONS our study proves the relationship between gut microbiome and host fitness under thermal and diet fluctuation highlighting the importance of microbial community in the adaptation of Z. cucurbitae to environmental stress. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Abir Hafsi
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France.
- Université de la Réunion, Saint Denis, La Réunion, 97400, France.
| | - Laura Moquet
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| | - Wouter Hendrycks
- Royal Museum for Central Africa, Tervuren, Belgium
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, 2610, Belgium
| | | | | | - Hélène Delatte
- CIRAD, UMR PVBMT, St Pierre, La Réunion, F-97410, France
| |
Collapse
|
3
|
Helou B, Ritchie MW, MacMillan HA, Andersen MK. Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104701. [PMID: 39251183 DOI: 10.1016/j.jinsphys.2024.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult Drosophila melanogaster to 15 or 25 °C and fed them either a K+-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K+ gradients, and intracellular Na+ concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K+ concentration at low temperature. Feeding on a high-K+ diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K+ concentrations. Cold-acclimation and K+-feeding additively increased the intracellular K+ concentration, aiding in maintenance of the transmembrane K+ gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation or diet on intracellular Na+ concentration. These findings suggest intracellular K+ loading and reduced muscle membrane K+ sensitivity as mechanisms through which cold-acclimated and K+-fed flies are able to tolerate hemolymph hyperkalemia.
Collapse
Affiliation(s)
- Bassam Helou
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mads Kuhlmann Andersen
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Cicchino AS, Ghalambor CK, Forester BR, Dunham JD, Funk WC. Greater plasticity in CTmax with increased climate variability among populations of tailed frogs. Proc Biol Sci 2024; 291:20241628. [PMID: 39500377 PMCID: PMC11537758 DOI: 10.1098/rspb.2024.1628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/02/2024] [Accepted: 10/02/2024] [Indexed: 11/09/2024] Open
Abstract
Temporally variable climates are expected to drive the evolution of thermal physiological traits that enable performance across a wider range of temperatures (i.e. climate variability hypothesis, CVH). Spatial thermal variability, however, may mediate this relationship by providing ectotherms with the opportunity to behaviourally select preferred temperatures (i.e. the Bogert effect). These antagonistic forces on thermal physiological traits may explain the mixed support for the CVH within species despite strong support among species at larger geographical scales. Here, we test the CVH as it relates to plasticity in physiological upper thermal limits (critical thermal maximum-CTmax) among populations of coastal tailed frogs (Ascaphus truei). We targeted populations that inhabit spatially homogeneous environments, reducing the potentially confounding effects of behavioural thermoregulation. We found that populations experiencing greater temporal thermal variability exhibited greater plasticity in CTmax, supporting the CVH. Interestingly, we identified only one site with spatial temperature variability and tadpoles from this site demonstrated greater plasticity than expected, suggesting the opportunity for behavioural thermoregulation can reduce support for the CVH. Overall, our results demonstrate one role of climate variability in shaping thermal plasticity among populations and provide a baseline understanding of the impact of the CVH in spatially homogeneous thermal landscapes.
Collapse
Affiliation(s)
- Amanda S. Cicchino
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
| | - Cameron K. Ghalambor
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Centre for Biodiversity Dynamics (CBD), Norwegian University of Science and Technology (NTNU), TrondheimN‐7491, Norway
| | - Brenna R. Forester
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
| | - Jason D. Dunham
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR97331, USA
| | - W. Chris Funk
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO80523, USA
- Department of Biology, Colorado State University, Fort Collins, CO80523, USA
| |
Collapse
|
5
|
Izadi H, Cuthbert RN, Haubrock PJ, Renault D. Advances in understanding Lepidoptera cold tolerance. J Therm Biol 2024; 125:103992. [PMID: 39418723 DOI: 10.1016/j.jtherbio.2024.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Ambient thermal conditions mediate insect growth, development, reproduction, survival, and distribution. With increasingly frequent and severe cold spells, it is critical to determine low-temperature performance and cold tolerances of ecologically and economically essential insect groups to predict their responses to global environmental change. This review covers the cold tolerance strategies of 49 species of Lepidoptera (moths and butterflies), focusing on species that are known as crop pests and crop storage facilities. We synthesize cold tolerance strategies of well-studied species within this order, finding that diapause is a distinctive mechanism that has independently evolved in different genera and families of Lepidoptera. However, the occurrence of diapause in each life stage is specific to the species, and in most studied lepidopteran species, the feeding stage (as larva) is the predominant overwintering stage. We also found that the onset of diapause and the improvement of cold tolerance are interdependent phenomena that typically occur together. Moreover, adopting a cold tolerance strategy is not an inherent, fixed trait and is greatly influenced by a species' geographic distribution and rearing conditions. This review further finds that freeze avoidance rather than freeze tolerance or chill susceptibility is the primary cold tolerance strategy among lepidopteran species. The cold hardiness of lepidopteran insects primarily depends on the accumulation of cryoprotectants and the depression of the supercooling point. We highlight variations in cold tolerance strategies and mechanisms among a subset of Lepidoptera, however, further work is needed to elucidate these strategies for the vast numbers of neglected species and populations to understand broad-scale responses to global change.
Collapse
Affiliation(s)
- Hamzeh Izadi
- Division of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, United Kingdom
| | - Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - David Renault
- Université de Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], 35000, Rennes, France
| |
Collapse
|
6
|
Quan PQ, Guo PL, He J, Liu XD. Heat-stress memory enhances the acclimation of a migratory insect pest to global warming. Mol Ecol 2024; 33:e17493. [PMID: 39132714 DOI: 10.1111/mec.17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/18/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024]
Abstract
In the face of rising global temperatures, the mechanisms behind an organism's ability to acclimate to heat stress remain enigmatic. The rice leaf folder, Cnaphalocrocis medinalis, traditionally viewed as temperature-sensitive, paradoxically exhibits robust larval acclimation to heat stress. This study used the heat-acclimated strain HA39, developed through multigenerational exposure to 39°C during the larval stage, and the unacclimated strain HA27 reared at 27°C to unravel the transgenerational effects of heat acclimation and its regulatory mechanisms. Heat acclimation for larvae incurred a fitness cost in pupae when exposed to high temperature, yet a significant transgenerational effect surfaced, revealing heightened fitness benefit in pupae from HA39, even without additional heat exposure during larval recovery at 27°C. This transgenerational effect exhibited a short-term memory, diminishing after two recovery generations. Moreover, the effect correlated with increased superoxide dismutase (SOD) enzyme activity and expression levels of oxidoreductase genes, representing physiological and molecular foundations of heat acclimation. Heat-acclimated larvae displayed elevated DNA methylation levels, while pupae from HA39, in recovery generations, exhibited decreased methylation indicated by the upregulation of a demethylase gene and downregulation of two methyltransferase genes at high temperatures. In summary, heat acclimation induces DNA methylation, orchestrating heat-stress memory and influencing the expression levels of oxidoreductase genes and SOD activity. Heat-stress memory enhances the acclimation of the migratory insect pest to global warming.
Collapse
Affiliation(s)
- Peng-Qi Quan
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Pan-Long Guo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Jing He
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiang-Dong Liu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
7
|
Venverloo T, Duarte F. Towards real-time monitoring of insect species populations. Sci Rep 2024; 14:18727. [PMID: 39134595 PMCID: PMC11319484 DOI: 10.1038/s41598-024-68502-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/24/2024] [Indexed: 08/15/2024] Open
Abstract
Insect biodiversity and abundance are in global decline, potentially leading to a crisis with profound ecological and economic consequences. Methods and technologies to monitor insect species to aid in preservation efforts are rapidly being developed yet their adoption has been slow and focused on specific use cases. We propose a computer vision model that works towards multi-objective insect species identification in real-time and on a large scale. We leverage an image data source with 16 million instances and a recent improvement in the YOLO computer vision architecture to present a quick and open-access method to develop visual AI models to monitor insect species across climatic regions.
Collapse
Affiliation(s)
- Titus Venverloo
- Department of Urban Studies and Planning, Senseable City Laboratory, Massachusetts Institute of Technology, Cambridge, USA.
- Senseable City Amsterdam, Amsterdam Institute for Advanced Metropolitan Solutions, Amsterdam, Netherlands.
| | - Fábio Duarte
- Department of Urban Studies and Planning, Senseable City Laboratory, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
8
|
Malinski KH, Elizabeth Moore M, Kingsolver JG. Heat stress and host-parasitoid interactions: lessons and opportunities in a changing climate. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101225. [PMID: 38936473 DOI: 10.1016/j.cois.2024.101225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
Ongoing climate change is increasing the frequency and magnitude of high-temperature events (HTEs), causing heat stress in parasitoids and their hosts. We argue that HTEs and heat stress should be viewed in terms of the intersecting life cycles of host and parasitoid. Recent studies illustrate how the biological consequences of a given HTE may vary dramatically depending on its timing within these lifecycles. The temperature sensitivity of host manipulation by parasitoids, and by viral endosymbionts of many parasitoids, can contribute to differing responses of hosts and parasitoids to HTEs. In some cases, these effects can result in reduced parasitoid success and increased host herbivory and may disrupt the ecological interactions between hosts and parasitoids. Because most studies to date involve endoparasitoids of aphid or lepidopteran hosts in agricultural systems, our understanding of heat responses of host-parasitoid interactions in natural systems is quite limited.
Collapse
Affiliation(s)
| | - Megan Elizabeth Moore
- Agricultural Research Service, United States Department of Agriculture, Robert W. Holley Center, 538 Tower Road, Ithaca, NY 14850, USA
| | - Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
9
|
Lenard A, Diamond SE. Evidence of plasticity, but not evolutionary divergence, in the thermal limits of a highly successful urban butterfly. JOURNAL OF INSECT PHYSIOLOGY 2024; 155:104648. [PMID: 38754698 DOI: 10.1016/j.jinsphys.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Despite the generally negative impact of urbanization on insect biodiversity, some insect species persist in urban habitats. Understanding the mechanisms underpinning the ability of insects to tolerate urban habitats is critical given the contribution of land-use change to the global insect decline. Compensatory mechanisms such as phenotypic plasticity and evolutionary change in thermal physiological traits could allow urban populations to persist under the altered thermal regimes of urban habitats. It is important to understand the contributions of plasticity and evolution to trait change along urbanization gradients as the two mechanisms operate under different constraints and timescales. Here, we examine the plastic and evolutionary responses of heat and cold tolerance (critical thermal maximum [CTmax] and critical thermal minimum [CTmin]) to warming among populations of the cabbage white butterfly, Pieris rapae, from urban and non-urban (rural) habitats using a two-temperature common garden experiment. Although we expected populations experiencing urban warming to exhibit greater CTmax and diminished CTmin through plastic and evolutionary mechanisms, our study revealed evidence only for plasticity in the expected direction of both thermal tolerance traits. We found no evidence of evolutionary divergence in either heat or cold tolerance, despite each trait showing evolutionary potential. Our results suggest that thermal tolerance plasticity contributes to urban persistence in this system. However, as the magnitude of the plastic response was low and comparable to other insect species, other compensatory mechanisms likely further underpin this species' success in urban habitats.
Collapse
Affiliation(s)
- Angie Lenard
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA.
| | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
10
|
Chakraborty S, Zigmond E, Shah S, Sylla M, Akorli J, Otoo S, Rose NH, McBride CS, Armbruster PA, Benoit JB. Thermal tolerance of mosquito eggs is associated with urban adaptation and human interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586322. [PMID: 38585904 PMCID: PMC10996485 DOI: 10.1101/2024.03.22.586322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Climate change is expected to profoundly affect mosquito distributions and their ability to serve as vectors for disease, specifically with the anticipated increase in heat waves. The rising temperature and frequent heat waves can accelerate mosquito life cycles, facilitating higher disease transmission. Conversely, higher temperatures could increase mosquito mortality as a negative consequence. Warmer temperatures are associated with increased human density, suggesting a need for anthropophilic mosquitoes to adapt to be more hardy to heat stress. Mosquito eggs provide an opportunity to study the biological impact of climate warming as this stage is stationary and must tolerate temperatures at the site of female oviposition. As such, egg thermotolerance is critical for survival in a specific habitat. In nature, Aedes mosquitoes exhibit different behavioral phenotypes, where specific populations prefer depositing eggs in tree holes and prefer feeding non-human vertebrates. In contrast, others, particularly human-biting specialists, favor laying eggs in artificial containers near human dwellings. This study examined the thermotolerance of eggs, along with adult stages, for Aedes aegypti and Ae. albopictus lineages associated with known ancestry and shifts in their relationship with humans. Mosquitoes collected from areas with higher human population density, displaying increased human preference, and having a human-associated ancestry profile have increased egg viability following high-temperature stress. Unlike eggs, thermal tolerance among adults showed no significant correlation based on the area of collection or human-associated ancestry. This study highlights that the egg stage is likely critical to mosquito survival when associated with humans and needs to be accounted when predicting future mosquito distribution.
Collapse
Affiliation(s)
- Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Emily Zigmond
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Sher Shah
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| | - Massamba Sylla
- Laboratory Vectors & Parasites, Department of Livestock Sciences and Techniques, Sine Saloum University El Hadji Ibrahima NIASS (SSUEIN) Kaffrine Campus
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson Otoo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Noah H Rose
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, CA 92093
| | - Carolyn S McBride
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
| | | | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, 45221
| |
Collapse
|
11
|
Ferguson LF, Ross PA, van Heerwaarden B. Wolbachia infection negatively impacts Drosophila simulans heat tolerance in a strain- and trait-specific manner. Environ Microbiol 2024; 26:e16609. [PMID: 38558489 DOI: 10.1111/1462-2920.16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
The susceptibility of insects to rising temperatures has largely been measured by their ability to survive thermal extremes. However, the capacity for maternally inherited endosymbionts to influence insect heat tolerance has been overlooked. Further, while some studies have addressed the impact of heat on traits like fertility, which can decline at temperatures below lethal thermal limits, none have considered the impact of endosymbionts. Here, we assess the impact of three Wolbachia strains (wRi, wAu and wNo) on the survival and fertility of Drosophila simulans exposed to heat stress during development or as adults. The effect of Wolbachia infection on heat tolerance was generally small and trait/strain specific. Only the wNo infection significantly reduced the survival of adult males after a heat shock. When exposed to fluctuating heat stress during development, the wRi and wAu strains reduced egg-to-adult survival but only the wNo infection reduced male fertility. Wolbachia densities of all three strains decreased under developmental heat stress, but reductions occurred at temperatures above those that reduced host fertility. These findings emphasize the necessity to account for endosymbionts and their effect on both survival and fertility when investigating insect responses to heat stress.
Collapse
Affiliation(s)
- Liam F Ferguson
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Perran A Ross
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
- Section for Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Belinda van Heerwaarden
- School of BioSciences, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Weaving H, Terblanche JS, English S. Heatwaves are detrimental to fertility in the viviparous tsetse fly. Proc Biol Sci 2024; 291:20232710. [PMID: 38471560 DOI: 10.1098/rspb.2023.2710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/01/2024] [Indexed: 03/14/2024] Open
Abstract
Heatwaves are increasing in frequency and intensity due to climate change, pushing animals beyond physiological limits. While most studies focus on survival limits, sublethal effects on fertility tend to occur below lethal thresholds, and consequently can be as important for population viability. Typically, male fertility is more heat-sensitive than female fertility, yet direct comparisons are limited. Here, we measured the effect of experimental heatwaves on tsetse flies, Glossina pallidipes, disease vectors and unusual live-bearing insects of sub-Saharan Africa. We exposed males or females to a 3-day heatwave peaking at 36, 38 or 40°C for 2 h, and a 25°C control, monitoring mortality and reproduction over six weeks. For a heatwave peaking at 40°C, mortality was 100%, while a 38°C peak resulted in only 8% acute mortality. Females exposed to the 38°C heatwave experienced a one-week delay in producing offspring, whereas no such delay occurred in males. Over six weeks, heatwaves resulted in equivalent fertility loss in both sexes. Combined with mortality, this lead to a 10% population decline over six weeks compared to the control. Furthermore, parental heatwave exposure gave rise to a female-biased offspring sex ratio. Ultimately, thermal limits of both survival and fertility should be considered when assessing climate change vulnerability.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
13
|
Ørsted M, Willot Q, Olsen AK, Kongsgaard V, Overgaard J. Thermal limits of survival and reproduction depend on stress duration: A case study of Drosophila suzukii. Ecol Lett 2024; 27:e14421. [PMID: 38549250 DOI: 10.1111/ele.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
Studies of ectotherm responses to heat extremes often rely on assessing absolute critical limits for heat coma or death (CTmax), however, such single parameter metrics ignore the importance of stress exposure duration. Furthermore, population persistence may be affected at temperatures considerably below CTmax through decreased reproductive output. Here we investigate the relationship between tolerance duration and severity of heat stress across three ecologically relevant life-history traits (productivity, coma and mortality) using the global agricultural pest Drosophila suzukii. For the first time, we show that for sublethal reproductive traits, tolerance duration decreases exponentially with increasing temperature (R2 > 0.97), thereby extending the Thermal Death Time framework recently developed for mortality and coma. Using field micro-environmental temperatures, we show how thermal stress can lead to considerable reproductive loss at temperatures with limited heat mortality highlighting the importance of including limits to reproductive performance in ecological studies of heat stress vulnerability.
Collapse
Affiliation(s)
- Michael Ørsted
- Section of Bioscience and Engineering, Department of Chemistry and Bioscience, Aalborg University, Aalborg E, Denmark
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Quentin Willot
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Andreas Kirk Olsen
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Viktor Kongsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Johannes Overgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Gonzalez VH, Herbison N, Robles Perez G, Panganiban T, Haefner L, Tscheulin T, Petanidou T, Hranitz J. Bees display limited acclimation capacity for heat tolerance. Biol Open 2024; 13:bio060179. [PMID: 38427330 PMCID: PMC10979511 DOI: 10.1242/bio.060179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Bees are essential pollinators and understanding their ability to cope with extreme temperature changes is crucial for predicting their resilience to climate change, but studies are limited. We measured the response of the critical thermal maximum (CTMax) to short-term acclimation in foragers of six bee species from the Greek island of Lesvos, which differ in body size, nesting habit, and level of sociality. We calculated the acclimation response ratio as a metric to assess acclimation capacity and tested whether bees' acclimation capacity was influenced by body size and/or CTMax. We also assessed whether CTMax increases following acute heat exposure simulating a heat wave. Average estimate of CTMax varied among species and increased with body size but did not significantly shift in response to acclimation treatment except in the sweat bee Lasioglossum malachurum. Acclimation capacity averaged 9% among species and it was not significantly associated with body size or CTMax. Similarly, the average CTMax did not increase following acute heat exposure. These results indicate that bees might have limited capacity to enhance heat tolerance via acclimation or in response to prior heat exposure, rendering them physiologically sensitive to rapid temperature changes during extreme weather events. These findings reinforce the idea that insects, like other ectotherms, generally express weak plasticity in CTMax, underscoring the critical role of behavioral thermoregulation for avoidance of extreme temperatures. Conserving and restoring native vegetation can provide bees temporary thermal refuges during extreme weather events.
Collapse
Affiliation(s)
- Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | - Natalie Herbison
- Undergraduate Biology Program and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| | | | - Trisha Panganiban
- Department of Biological Sciences, California State University, Los Angeles, CA, 35229, USA
| | - Laura Haefner
- Biology Department, Waynesburg University, PA, 47243, USA
| | - Thomas Tscheulin
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - Theodora Petanidou
- Laboratory of Biogeography and Ecology, Department of Geography, University of the Aegean, University Hill, Mytilene, 81100, Greece
| | - John Hranitz
- Department of Biology, Commonwealth University of Pennsylvania, Bloomsburg, 17815 PA, USA
| |
Collapse
|
15
|
Pawar S, Huxley PJ, Smallwood TRC, Nesbit ML, Chan AHH, Shocket MS, Johnson LR, Kontopoulos DG, Cator LJ. Variation in temperature of peak trait performance constrains adaptation of arthropod populations to climatic warming. Nat Ecol Evol 2024; 8:500-510. [PMID: 38273123 DOI: 10.1038/s41559-023-02301-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
The capacity of arthropod populations to adapt to long-term climatic warming is currently uncertain. Here we combine theory and extensive data to show that the rate of their thermal adaptation to climatic warming will be constrained in two fundamental ways. First, the rate of thermal adaptation of an arthropod population is predicted to be limited by changes in the temperatures at which the performance of four key life-history traits can peak, in a specific order of declining importance: juvenile development, adult fecundity, juvenile mortality and adult mortality. Second, directional thermal adaptation is constrained due to differences in the temperature of the peak performance of these four traits, with these differences expected to persist because of energetic allocation and life-history trade-offs. We compile a new global dataset of 61 diverse arthropod species which provides strong empirical evidence to support these predictions, demonstrating that contemporary populations have indeed evolved under these constraints. Our results provide a basis for using relatively feasible trait measurements to predict the adaptive capacity of diverse arthropod populations to geographic temperature gradients, as well as ongoing and future climatic warming.
Collapse
Affiliation(s)
- Samraat Pawar
- Department of Life Sciences, Imperial College London, Ascot, UK.
| | - Paul J Huxley
- Department of Life Sciences, Imperial College London, Ascot, UK.
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA.
| | - Thomas R C Smallwood
- Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Miles L Nesbit
- Department of Life Sciences, Imperial College London, Ascot, UK
- The Pirbright Institute, Woking, UK
| | - Alex H H Chan
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Marta S Shocket
- Department of Geography, University of Florida, Gainesville, FL, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Tech, Blacksburg, VA, USA
| | | | - Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK.
| |
Collapse
|
16
|
van Heerwaarden B, Sgrò C, Kellermann VM. Threshold shifts and developmental temperature impact trade-offs between tolerance and plasticity. Proc Biol Sci 2024; 291:20232700. [PMID: 38320612 PMCID: PMC10846935 DOI: 10.1098/rspb.2023.2700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
Mounting evidence suggests that ectotherms are already living close to their upper physiological thermal limits. Phenotypic plasticity has been proposed to reduce the impact of climate change in the short-term providing time for adaptation, but the tolerance-plasticity trade-off hypothesis predicts organisms with higher tolerance have lower plasticity. Empirical evidence is mixed, which may be driven by methodological issues such as statistical artefacts, nonlinear reaction norms, threshold shifts or selection. Here, we examine whether threshold shifts (organisms with higher tolerance require stronger treatments to induce maximum plastic responses) influence tolerance-plasticity trade-offs in hardening capacity for desiccation tolerance and critical thermal maximum (CTMAX) across Drosophila species with varying distributions/sensitivity to desiccation/heat stress. We found evidence for threshold shifts in both traits; species with higher heat/desiccation tolerance required longer hardening treatments to induce maximum hardening responses. Species with higher heat tolerance also showed reductions in hardening capacity at higher developmental acclimation temperatures. Trade-off patterns differed depending on the hardening treatment used and the developmental temperature flies were exposed to. Based on these findings, studies that do not consider threshold shifts, or that estimate plasticity under a narrow set of environments, will have a limited ability to assess trade-off patterns and differences in plasticity across species/populations more broadly.
Collapse
Affiliation(s)
| | - Carla Sgrò
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
| | - Vanessa M. Kellermann
- School of Biological Sciences, Monash University, Clayton 3800, Victoria, Australia
- School of Agriculture Biomedicine and Environment, La Trobe University, Bundoora 3086, Victoria, Australia
| |
Collapse
|
17
|
Harris BA, Stevens DR, Mathis KA. The effect of urbanization and temperature on thermal tolerance, foraging performance, and competition in cavity-dwelling ants. Ecol Evol 2024; 14:e10923. [PMID: 38384820 PMCID: PMC10880040 DOI: 10.1002/ece3.10923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 02/23/2024] Open
Abstract
Human disturbance including rapid urbanization and increased temperatures can have profound effects on the ecology of local populations. Eusocial insects, such as ants, have adapted to stressors of increasing temperature and urbanization; however, these evolutionary responses are not consistent among populations across geographic space. Here we asked how urbanization and incubation temperature influence critical thermal maximum (CTmax) and various ecologically relevant behaviors in three ant species in urban and rural locations in Worcester, MA, USA. We did this by incubating colonies of three species of cavity dwelling ant (Aphaenogaster picea, Tapinoma sessile, and Temnothorax longispinosus) from 2 habitat types (Rural and Urban), for 60-days at multiple temperatures. We found that incubation temperature, urbanization, and species of ant all significantly affected overall colony critical thermal maximum. We also found that recruitment time, colonization time, and defense response were significantly affected by incubation temperature and varied between species of ant, while recruitment and colonization time were additionally affected by urbanization. These variable changes in performance and competitive traits across species suggest that responses to urbanization and shifting temperatures are not universal across species. Changes in behavioral responses caused by urbanization may disrupt biodiversity, creating unusual competitive environments as a consequence of natural adaptations and cause both direct and indirect mechanisms for which human disturbance can lead to local species extinction.
Collapse
Affiliation(s)
| | - Dale R. Stevens
- Clark UniversityWorcesterMassachusettsUSA
- Bucknell UniversityLewisburgPennsylvaniaUSA
| | | |
Collapse
|
18
|
Papadopoulos NT, De Meyer M, Terblanche JS, Kriticos DJ. Fruit Flies: Challenges and Opportunities to Stem the Tide of Global Invasions. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:355-373. [PMID: 37758223 DOI: 10.1146/annurev-ento-022723-103200] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Global trade in fresh fruit and vegetables, intensification of human mobility, and climate change facilitate fruit fly (Diptera: Tephritidae) invasions. Life-history traits, environmental stress response, dispersal stress, and novel genetic admixtures contribute to their establishment and spread. Tephritids are among the most frequently intercepted taxa at ports of entry. In some countries, supported by the rules-based trade framework, a remarkable amount of biosecurity effort is being arrayed against the range expansion of tephritids. Despite this effort, fruit flies continue to arrive in new jurisdictions, sometimes triggering expensive eradication responses. Surprisingly, scant attention has been paid to biosecurity in the recent discourse about new multilateral trade agreements. Much of the available literature on managing tephritid invasions is focused on a limited number of charismatic (historically high-profile) species, and the generality of many patterns remains speculative.
Collapse
Affiliation(s)
- Nikos T Papadopoulos
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece;
| | - Marc De Meyer
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium;
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa;
| | - Darren J Kriticos
- Cervantes Agritech, Canberra, Australian Capital Territory, Australia;
| |
Collapse
|
19
|
Zhang H, Xie P. The mechanisms of microcystin-LR-induced genotoxicity and neurotoxicity in fish and mammals: Bibliometric analysis and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167018. [PMID: 37709090 DOI: 10.1016/j.scitotenv.2023.167018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a typical cyanobacterial toxin, and the threat of this toxin is increasing among organisms. Despite extensive toxicological studies on MC-LR, there is no comprehensive analysis based on previously published data. Therefore, we conducted bibliometric analysis and meta-analysis to identify research hotspots and to elucidate the key mechanism of the relationship between MC-LR and genotoxicity and neurotoxicity among fish and mammals. One of the hotspots is toxic mechanisms (indicated by the frequent appearance of oxidative stress, DNA damage, apoptosis, neurotoxicity, genotoxicity, ROS, comet assay, signalling pathway, and gene expression indicate as keywords). The density visualization shows a high frequency of "microcystin-LR" and "toxicology," and the overlay visualization emphasizes the prominence of "neurotoxicity" in recent years. These findings confirm the importance of studying MC-LR toxicity. Meta-analysis indicated that in both fish and mammals, MC-LR exposure increased ROS levels by 294 % and increased DNA damage biomarkers by 174 % but decreased neurotoxicity biomarkers by 9 %. Intergroup comparisons revealed that the exposure concentration of MC-LR was significantly correlated with genotoxicity and neurotoxicity levels in both fish and mammals (p < 0.05). Furthermore, the random forest (RF) model revealed that exposure concentration was the primary determinant associated with the induction of ROS, genotoxicity, and neurotoxicity induced by MC-LR. This is likely the dominant mechanism by which excessive ROS production induced by MC-LR causes oxidative stress, ultimately leading to genotoxicity and neurotoxicity in both fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
20
|
Weaving H, Terblanche JS, English S. How plastic are upper thermal limits? A comparative study in tsetse (family: Glossinidae) and wider Diptera. J Therm Biol 2023; 118:103745. [PMID: 37924664 DOI: 10.1016/j.jtherbio.2023.103745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Critical thermal maximum (CTmax) describes the upper thermal tolerance of an animal where biological functions start to fail. A period of acclimation can enhance CTmax through plasticity, potentially buffering animals from extreme temperatures caused by climate change. Basal and acclimated CTmax vary within and between species and may be explained by traits related to thermal physiology, such as body size and sex. Differences in CTmax have not been established among species of tsetse fly (Glossina spp.), vectors of animal and human African trypanosomiasis. Here, we investigated basal CTmax and its plasticity for five tsetse species following adult acclimation at constant 25 or 30 °C for five days. We then set our findings in context using a meta-analysis on 33 species of Diptera. We find that, of the five tsetse species considered, only Glossina palpalis gambiensis and Glossina brevipalpis exhibited plasticity of CTmax, with an increase of 0.12 °C and 0.10 °C per 1 °C acclimation respectively. Within some species, higher basal CTmax values were associated with larger body size and being female, while variation in plasticity (i.e., response to the acclimation temperature) could not be explained by sex or size. Our broader meta-analysis across Diptera revealed overall CTmax plasticity of 0.06 °C per 1 °C acclimation, versus a similar 0.05 °C mean increase in tsetse. In contrast, there was greater CTmax plasticity in males compared to females in Diptera. Our study highlights that CTmax and its plasticity varies even among closely related species. Broader patterns across groups are not always reflected at a finer resolution; we thus emphasise the need for detailed experimental studies across a wide range of insect species to capture their capacity to cope with rapidly warming temperatures.
Collapse
Affiliation(s)
- Hester Weaving
- School of Biological Sciences, University of Bristol, Bristol, UK.
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch, South Africa.
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
21
|
Bahlai CA. Forecasting insect dynamics in a changing world. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101133. [PMID: 37858790 DOI: 10.1016/j.cois.2023.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Predicting how insects will respond to stressors through time is difficult because of the diversity of insects, environments, and approaches used to monitor and model. Forecasting models take correlative/statistical, mechanistic models, and integrated forms; in some cases, temporal processes can be inferred from spatial models. Because of heterogeneity associated with broad community measurements, models are often unable to identify mechanistic explanations. Many present efforts to forecast insect dynamics are restricted to single-species models, which can offer precise predictions but limited generalizability. Trait-based approaches may offer a good compromise that limits the masking of the ranges of responses while still offering insight. Regardless of the modeling approach, the data used to parameterize a forecasting model should be carefully evaluated for temporal autocorrelation, minimum data needs, and sampling biases in the data. Forecasting models can be tested using near-term predictions and revised to improve future forecasts.
Collapse
Affiliation(s)
- Christie A Bahlai
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; Environmental Science and Design Research Institute, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
22
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
23
|
Ben-Yosef M, Altman Y, Nemni-Lavi E, Papadopoulos NT, Nestel D. Effect of thermal acclimation on the tolerance of the peach fruit fly (Bactrocera zonata: Tephritidae) to heat and cold stress. J Therm Biol 2023; 117:103677. [PMID: 37643512 DOI: 10.1016/j.jtherbio.2023.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Understanding the thermal biology of insects is of increasing importance for predicting their geographic distribution, particularly in light of current and future global temperature increases. Within the limits set by genetic makeup, thermal tolerance is affected by the physiological conditioning of individuals (e.g., through acclimation). Considering this phenotypic plasticity may add to accurately estimating changes to the distribution of insects under a changing climate. We studied the effect of thermal acclimation on cold and heat tolerance of the peach fruit fly (Bactrocera zonata) - an invasive, polyphagous pest that is currently expanding through Africa and the Middle East. Females and males were acclimated at 20, 25 and 30 °C for up to 19 days following adult emergence. The critical thermal minimum (CTmin) and maximum (CTmax) were subsequently recorded as well adult survival following acute exposure to chilling (0 or -3 °C for 2 h). Additionally, we determined the survival of pupae subjected for 2 h to temperatures ranging from -12 °C to 5 °C. We demonstrate that acclimation at 30 °C resulted in significantly higher CTmax and CTmin values (higher heat resistance and lower cold resistance, respectively). Additionally, adult recovery following exposure to -3 °C was significantly reduced following acclimation at 30 °C, and this effect was significantly higher for females. Pupal mortality increased with the decrease in temperature, reaching LT50 and LT95 values following exposure to -0.32 °C and -6.88 °C, respectively. Finally, we found that the survival of pupae subjected to 0 and 2 °C steadily increased with pupal age. Our findings substantiate a physiological foundation for understanding the current geographic range of B. zonata. We assume that acclimation at 30 °C affected the thermal tolerance of the flies partly through modulating feeding and metabolism. Tolerance to chilling during the pupal stage probably changed according to temperature-sensitive processes occurring during metamorphosis, rendering younger pupae more sensitive to chilling.
Collapse
Affiliation(s)
- Michael Ben-Yosef
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel.
| | - Yam Altman
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Esther Nemni-Lavi
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Rishon Letzion, 7528809, Israel
| |
Collapse
|
24
|
Andersen MK, Willot Q, MacMillan HA. A neurophysiological limit and its biogeographic correlations: cold-induced spreading depolarization in tropical butterflies. J Exp Biol 2023; 226:jeb246313. [PMID: 37665251 DOI: 10.1242/jeb.246313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The physiology of insects is directly influenced by environmental temperature, and thermal tolerance is therefore intrinsically linked to their thermal niche and distribution. Understanding the mechanisms that limit insect thermal tolerance is crucial to predicting biogeography and range shifts. Recent studies on locusts and flies suggest that the critical thermal minimum (CTmin) follows a loss of CNS function via a spreading depolarization. We hypothesized that other insect taxa share this phenomenon. Here, we investigate whether spreading depolarization events occur in butterflies exposed to cold. Supporting our hypothesis, we found that exposure to stressful cold induced spreading depolarization in all 12 species tested. This reinforces the idea that spreading depolarization is a common mechanism underlying the insect CTmin. Furthermore, our results highlight how CNS function is tuned to match the environment of a species. Further research into the physiology underlying spreading depolarization will likely elucidate key mechanisms determining insect thermal tolerance and ecology.
Collapse
Affiliation(s)
| | - Quentin Willot
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
25
|
Willot Q, du Toit A, de Wet S, Huisamen EJ, Loos B, Terblanche JS. Exploring the connection between autophagy and heat-stress tolerance in Drosophila melanogaster. Proc Biol Sci 2023; 290:20231305. [PMID: 37700658 PMCID: PMC10498041 DOI: 10.1098/rspb.2023.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/16/2023] [Indexed: 09/14/2023] Open
Abstract
Mechanisms aimed at recovering from heat-induced damages are closely associated with the ability of ectotherms to survive exposure to stressful temperatures. Autophagy, a ubiquitous stress-responsive catabolic process, has recently gained renewed attention as one of these mechanisms. By increasing the turnover of cellular structures as well as the clearance of long-lived protein and protein aggregates, the induction of autophagy has been linked to increased tolerance to a range of abiotic stressors in diverse ectothermic organisms. However, whether a link between autophagy and heat-tolerance exists in insect models remains unclear despite broad ecophysiological implications thereof. Here, we explored the putative association between autophagy and heat-tolerance using Drosophila melanogaster as a model. We hypothesized that (i) heat-stress would cause an increase of autophagy in flies' tissues, and (ii) rapamycin exposure would trigger a detectable autophagic response in adults and increase their heat-tolerance. In line with our hypothesis, we report that flies exposed to heat-stress present signs of protein aggregation and appear to trigger an autophagy-related homoeostatic response as a result. We further show that rapamycin feeding causes the systemic effect associated with target of rapamycin (TOR) inhibition, induces autophagy locally in the fly gut, and increases the heat-stress tolerance of individuals. These results argue in favour of a substantial contribution of autophagy to the heat-stress tolerance mechanisms of insects.
Collapse
Affiliation(s)
- Quentin Willot
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andre du Toit
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Sholto de Wet
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Elizabeth J. Huisamen
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Ben Loos
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch 7600, South Africa
| | - John S. Terblanche
- Centre for Invasion Biology, Department of Conservation Ecology & Entomology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
26
|
de Juan C, Calbet A, Saiz E. Shifts in survival and reproduction after chronic warming enhance the potential of a marine copepod to persist under extreme heat events. JOURNAL OF PLANKTON RESEARCH 2023; 45:751-762. [PMID: 37779672 PMCID: PMC10539201 DOI: 10.1093/plankt/fbad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/31/2023] [Indexed: 10/03/2023]
Abstract
The study of a species' thermal tolerance and vital rates responses provides useful metrics to characterize its vulnerability to ocean warming. Under prolonged thermal stress, plastic and adaptive processes can adjust the physiology of organisms. Yet it is uncertain whether the species can expand their upper thermal limits to cope with rapid and extreme changes in environmental temperature. In this study, we reared the marine copepod Paracartia grani at control (19°C) and warmer conditions (25°C) for >18 generations and assessed their survival and fecundity under short-term exposure to a range of temperatures (11-34°C). After multigenerational warming, the upper tolerance to acute exposure (24 h) increased by 1-1.3°C, although this enhancement decreased to 0.3-0.8°C after longer thermal stress (7 days). Warm-reared copepods were smaller and produced significantly fewer offspring at the optimum temperature. No shift in the thermal breadth of the reproductive response was observed. Yet the fecundity rates of the warm-reared copepods in the upper thermal range were up to 21-fold higher than the control. Our results show that chronic warming improved tolerance to stress temperatures and fecundity of P. grani, therefore, enhancing its chances to persist under extreme heat events.
Collapse
Affiliation(s)
- Carlos de Juan
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Pg. Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain
| | - Albert Calbet
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Pg. Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain
| | - Enric Saiz
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM), CSIC Pg. Marítim de la Barceloneta 37–49, 08003 Barcelona, Spain
| |
Collapse
|
27
|
Turriago JL, Tejedo M, Hoyos JM, Camacho A, Bernal MH. The time course of acclimation of critical thermal maxima is modulated by the magnitude of temperature change and thermal daily fluctuations. J Therm Biol 2023; 114:103545. [PMID: 37290261 DOI: 10.1016/j.jtherbio.2023.103545] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 06/10/2023]
Abstract
Plasticity in the critical thermal maximum (CTmax) helps ectotherms survive in variable thermal conditions. Yet, little is known about the environmental mechanisms modulating its time course. We used the larvae of three neotropical anurans (Boana platanera, Engystomops pustulosus and Rhinella horribilis) to test whether the magnitude of temperature changes and the existence of fluctuations in the thermal environment affected both the amount of change in CTmax and its acclimation rate (i.e., its time course). For that, we transferred tadpoles from a pre-treatment temperature (23 °C, constant) to two different water temperatures: mean (28 °C) and hot (33 °C), crossed with constant and daily fluctuating thermal regimes, and recorded CTmax values, daily during six days. We modeled changes in CTmax as an asymptotic function of time, temperature, and the daily thermal fluctuation. The fitted function provided the asymptotic CTmax value (CTmax∞) and CTmax acclimation rate (k). Tadpoles achieved their CTmax∞ between one and three days. Transferring tadpoles to the hot treatment generated higher CTmax∞ at earlier times, inducing faster acclimation rates in tadpoles. In contrast, thermal fluctuations equally led to higher CTmax∞ values but tadpoles required longer times to achieve CTmax∞ (i.e., slower acclimation rates). These thermal treatments interacted differently with the studied species. In general, the thermal generalist Rhinella horribilis showed the most plastic acclimation rates whereas the ephemeral-pond breeder Engystomops pustulosus, more exposed to heat peaks during larval development, showed less plastic (i.e., canalized) acclimation rates. Further comparative studies of the time course of CTmax acclimation should help to disentangle the complex interplay between the thermal environment and species ecology, to understand how tadpoles acclimate to heat stress.
Collapse
Affiliation(s)
- Jorge L Turriago
- Grupo de Herpetología, Eco-Fisiología & Etología, Department of Biology, Universidad del Tolima, Tolima, 730006299, Colombia; Programa Doctorado en Ciencias Biológicas, Pontificia Universidad Javeriana, Bogotá, 11001000, Colombia.
| | - Miguel Tejedo
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, 41092, Spain.
| | - Julio M Hoyos
- Grupo UNESIS, Department of Biology, Pontificia Universidad Javeriana, Bogotá, 11001000, Colombia.
| | - Agustín Camacho
- Department of Evolutionary Ecology, Estación Biológica de Doñana, CSIC, Sevilla, 41092, Spain.
| | - Manuel H Bernal
- Grupo de Herpetología, Eco-Fisiología & Etología, Department of Biology, Universidad del Tolima, Tolima, 730006299, Colombia.
| |
Collapse
|
28
|
Bai X, Wang XJ, Ma CS, Ma G. Heat-avoidance behavior associates with thermal sensitivity rather than tolerance in aphid assemblages. J Therm Biol 2023; 114:103550. [PMID: 37344023 DOI: 10.1016/j.jtherbio.2023.103550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 06/23/2023]
Abstract
How to predict animals' heat-avoidance behaviors is critical since behavior stands the first line for animals dealing with frequent heat events under ongoing climate warming. However, the discrepancy between the scarcity of research on heat-avoidance behaviors and the commonness of eco-physiological data for thermal tolerance and for thermal sensitivity such as the temperature-dependent survival time makes it difficult to link physiological thermal traits to heat-avoidance behavior. Aphids usually suck plant sap on a fixed site on the host plants at moderate temperatures, but they will leave and seek cooler feeding sites under stressful temperatures. Here we take the cereal aphid assemblages comprising different species with various development stages as a model system. We tested the hypotheses that heat tolerance (critical thermal maximum, CTmax) or heat sensitivity (temperature-dependent declining rate of survival time, similarly hereinafter) would associate with the temperature at which aphid activate heat-avoidance behavior. Specifically, we hypothesized the aphids with less heat tolerance or greater heat sensitivity would take a lower heat risk by leaving the host plant earlier. By mimicking the linear increase in ambient temperature during the daytime, we measured the CTmax and the heat-avoidance temperature (HAT, at which aphids leave the host plant to find cooler places) to understand their heat tolerance and heat-avoidance behavior. Then, we tested the survival time of aphids at different temperatures and calculated the slope of survival time declining with temperature to assess their heat sensitivity (HS). Finally, we examined the relationships between CTmax and HAT and between HS and HAT to understand if the heat-avoidance behavior associates with heat tolerance or with heat sensitivity. The results showed that HS and HAT had a strong correlation, with more heat sensitive individuals displayed lower HAT. By contrast, CTmax and HAT had a weak correlation. Our results thus provide evidence that heat sensitivity is a more reliable indicator than thermal tolerance linking with the heat-avoidance behavior in the aphid assemblages. Most existing studies use the indexes related to thermal tolerance to predict warming impacts. Our findings highlight the urgency to incorporate thermal sensitivity when predicting animal responses to climate change.
Collapse
Affiliation(s)
- Xue Bai
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue-Jing Wang
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Chun-Sen Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| | - Gang Ma
- Climate Change Biology Research Group, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
29
|
Papadogiorgou GD, Moraiti CA, Nestel D, Terblanche JS, Verykouki E, Papadopoulos NT. Acute cold stress and supercooling capacity of Mediterranean fruit fly populations across the Northern Hemisphere (Middle East and Europe). JOURNAL OF INSECT PHYSIOLOGY 2023; 147:104519. [PMID: 37121467 DOI: 10.1016/j.jinsphys.2023.104519] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasion events promoted by globalization in fruit trade and human mobility. In addition, C. capitata is gradually expanding its geographic distribution to cooler temperate areas of the Northern Hemisphere. Cold tolerance of C. capitata seems to be a crucial feature that promotes population establishment and hence invasion success. To elucidate the interplay between the invasion process in the northern hemisphere and cold tolerance of geographically isolated populations of C. capitata, we determined (a) the response to acute cold stress survival of adults, and (b) the supercooling capacity (SCP) of immature stages and adults. To assess the phenotypic plasticity in these populations, the effect of acclimation to low temperatures on acute cold stress survival in adults was also examined. The results revealed that survival after acute cold stress was positively related to low temperature acclimation, except for females originating from Thessaloniki (northern Greece). Adults from the warmer environment of South Arava (Israel) were less tolerant after acute cold stress compared with those from Heraklion (Crete, Greece) and Thessaloniki. Plastic responses to cold acclimation were population specific, with the South Arava population being more plastic compared to the two Greek populations. For SCP, the results revealed that there is little to no correlation between SCP and climate variables of the areas where C. capitata populations originated. SCP was much lower than the lowest temperature individuals are likely to experience in their respective habitats. These results set the stage for asking questions regarding the evolutionary adaptive processes that facilitate range expansions of C. capitata into cooler temperate areas of Europe.
Collapse
Affiliation(s)
- Georgia D Papadogiorgou
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Cleopatra A Moraiti
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - David Nestel
- Department of Entomology, Institute of Plant Protection, Agricultural Research Organization, Bet Dagan, Israel
| | - John S Terblanche
- Department of Conservation Ecology & Entomology, Faculty of AgriSciences, Stellenbosch University, South Africa
| | - Eleni Verykouki
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece
| | - Nikos T Papadopoulos
- Department of Agriculture, Crop Production and Rural Environment, School of Agricultural Sciences, University of Thessaly, Volos, Greece.
| |
Collapse
|
30
|
Yoon KJ, Cunningham CB, Bretman A, Duncan EJ. One genome, multiple phenotypes: decoding the evolution and mechanisms of environmentally induced developmental plasticity in insects. Biochem Soc Trans 2023; 51:675-689. [PMID: 36929376 PMCID: PMC10246940 DOI: 10.1042/bst20210995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Plasticity in developmental processes gives rise to remarkable environmentally induced phenotypes. Some of the most striking and well-studied examples of developmental plasticity are seen in insects. For example, beetle horn size responds to nutritional state, butterfly eyespots are enlarged in response to temperature and humidity, and environmental cues also give rise to the queen and worker castes of eusocial insects. These phenotypes arise from essentially identical genomes in response to an environmental cue during development. Developmental plasticity is taxonomically widespread, affects individual fitness, and may act as a rapid-response mechanism allowing individuals to adapt to changing environments. Despite the importance and prevalence of developmental plasticity, there remains scant mechanistic understanding of how it works or evolves. In this review, we use key examples to discuss what is known about developmental plasticity in insects and identify fundamental gaps in the current knowledge. We highlight the importance of working towards a fully integrated understanding of developmental plasticity in a diverse range of species. Furthermore, we advocate for the use of comparative studies in an evo-devo framework to address how developmental plasticity works and how it evolves.
Collapse
Affiliation(s)
- Kane J. Yoon
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | | | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| | - Elizabeth J. Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, U.K
| |
Collapse
|
31
|
Diamond SE, Bellino G, Deme GG. Urban insect bioarks of the 21st century. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101028. [PMID: 37024047 DOI: 10.1016/j.cois.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/07/2023]
Abstract
Insects exhibit divergent biodiversity responses to cities. Many urban populations are not at equilibrium: biodiversity decline or recovery from environmental perturbation is often still in progress. Substantial variation in urban biodiversity patterns suggests the need to understand its mechanistic basis. In addition, current urban infrastructure decisions might profoundly influence future biodiversity trends. Although many nature-based solutions to urban climate problems also support urban insect biodiversity, trade-offs are possible and should be avoided to maximize biodiversity-climate cobenefits. Because insects are coping with the dual threats of urbanization and climate change, there is an urgent need to design cities that facilitate persistence within the city footprint or facilitate compensatory responses to global climate change as species transit through the city footprint.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Grace Bellino
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Gideon G Deme
- Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
32
|
Novel physiological data needed for progress in global change ecology. Basic Appl Ecol 2023. [DOI: 10.1016/j.baae.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
33
|
Teder T, Taits K, Kaasik A, Tammaru T. Limited sex differences in plastic responses suggest evolutionary conservatism of thermal reaction norms: A meta-analysis in insects. Evol Lett 2022; 6:394-411. [PMID: 36579171 PMCID: PMC9783480 DOI: 10.1002/evl3.299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 09/09/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
Temperature has a profound effect on the growth and development of ectothermic animals. However, the extent to which ecologically driven selection pressures can adjust thermal plastic responses in growth schedules is not well understood. Comparing temperature-induced plastic responses between sexes provides a promising but underexploited approach to evaluating the evolvability of thermal reaction norms: males and females share largely the same genes and immature environments but typically experience different ecological selection pressures. We proceed from the idea that substantial sex differences in plastic responses could be interpreted as resulting from sex-specific life-history optimization, whereas similarity among the sexes should rather be seen as evidence of an essential role of physiological constraints. In this study, we performed a meta-analysis of sex-specific thermal responses in insect development times, using data on 161 species with comprehensive phylogenetic and ecological coverage. As a reference for judging the magnitude of sex specificity in thermal plasticity, we compared the magnitude of sex differences in plastic responses to temperature with those in response to diet. We show that sex-specific responses of development times to temperature variation are broadly similar. We also found no strong evidence for sex specificity in thermal responses to depend on the magnitude or direction of sex differences in development time. Sex differences in temperature-induced plastic responses were systematically less pronounced than sex differences in responses induced by variations in larval diet. Our results point to the existence of substantial constraints on the evolvability of thermal reaction norms in insects as the most likely explanation. If confirmed, the low evolvability of thermal response is an essential aspect to consider in predicting evolutionary responses to climate warming.
Collapse
Affiliation(s)
- Tiit Teder
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
- Department of Ecology, Faculty of Environmental SciencesCzech University of Life Sciences PraguePrague165 21Czech Republic
| | - Kristiina Taits
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Ants Kaasik
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| | - Toomas Tammaru
- Department of Zoology, Institute of Ecology and Earth SciencesUniversity of TartuTartuEE‐50409Estonia
| |
Collapse
|
34
|
Huisamen EJ, Karsten M, Terblanche JS. Are Signals of Local Environmental Adaptation Diluted by Laboratory Culture? CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100048. [PMID: 36683956 PMCID: PMC9846451 DOI: 10.1016/j.cris.2022.100048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Insects have the ability to readily adapt to changes in environmental conditions, however the strength of local environmental adaptation signals under divergent conditions and the occurrence of trait inertia after relaxation of selection, remains poorly understood, especially for traits of climate stress resistance (CSR) and their phenotypic plasticity. The strength of environmental adaptation signals depend on several selection pressures present in the local environment, while trait inertia often occurs when there is a weakening or removal of a source of selection. Here, using Drosophila melanogaster, we asked whether signals of adaptation in CSR traits (critical thermal limits, heat and chill survival and, desiccation and starvation resistance) persist after exposure to laboratory culture for different durations (two vs. ten generations) across four climatically distinct populations. We show that culture duration has large effects on CSR traits and can both amplify or dilute signals of local adaptation. Effects were however dependent upon interactions between the source population, acclimation (adult acclimation at either 18 °C, 23 °C or 28 °C) conditions and the sex of the flies. Trait plasticity is markedly affected by the interaction between the source population, the specific acclimation conditions employed, and the duration in the laboratory. Therefore, a complex matrix of dynamic CSR trait responses is shown in space and time. Given these strong interaction effects, 'snapshot' estimates of environmental adaptation can result in misleading conclusions about the fitness consequences of climate variability.
Collapse
|
35
|
Abstract
Rising temperatures represent a significant threat to the survival of ectothermic animals. As such, upper thermal limits represent an important trait to assess the vulnerability of ectotherms to changing temperatures. For instance, one may use upper thermal limits to estimate current and future thermal safety margins (i.e., the proximity of upper thermal limits to experienced temperatures), use this trait together with other physiological traits in species distribution models, or investigate the plasticity and evolvability of these limits for buffering the impacts of changing temperatures. While datasets on thermal tolerance limits have been previously compiled, they sometimes report single estimates for a given species, do not present measures of data dispersion, and are biased towards certain parts of the globe. To overcome these limitations, we systematically searched the literature in seven languages to produce the most comprehensive dataset to date on amphibian upper thermal limits, spanning 3,095 estimates across 616 species. This resource will represent a useful tool to evaluate the vulnerability of amphibians, and ectotherms more generally, to changing temperatures.
Collapse
|