1
|
Feng Y, Ge L, Li Q, Wang R, Ge T. Internally-cooled atmospheric water harvesting enabling improved productivity. WATER RESEARCH 2024; 265:122293. [PMID: 39167972 DOI: 10.1016/j.watres.2024.122293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 07/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Sorption-based atmospheric water harvesting holds promise for alleviating water scarcity, but current prototypes have not shown significant increases in practical yields despite efforts in the enlarged engineering scale. This is due to weakened heat and mass transfer with a packed sorbent bed. In this work, the desiccant-coated adsorbers were employed to fabricate the water harvesting device that incorporates internal fluid for cooling and heating during sorption and desorption. Featured with an internal cooling effect, practical water productivity could be improved by 1.75-9.96 times with a low desorption temperature (45-62 °C). The continuous water harvesting system could produce 0.77-3.98 Lwater/kgsorbent/day with a thermal energy consumption of 7.7-30.4 MJ/kg in wide climates from 20 % to 80 % RH, providing a reference for device design in the engineering view. The demonstration revealed that using natural cooling in the sorption stage has great benefits in improving water harvesting performance, which can be integrated into the building sectors or a wider range of scenarios.
Collapse
Affiliation(s)
- Yaohui Feng
- Engineering Research Center of Solar Power & Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lurong Ge
- Engineering Research Center of Solar Power & Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Li
- Engineering Research Center of Solar Power & Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Engineering Research Center of Solar Power & Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianshu Ge
- Engineering Research Center of Solar Power & Refrigeration (MOE), Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Zeng W, Lin H, Sui Z, Wu W. Sorption-radiation synergy empowers all-day atmospheric water harvesting. Sci Bull (Beijing) 2024; 69:2804-2806. [PMID: 39129114 DOI: 10.1016/j.scib.2024.07.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Affiliation(s)
- Weitao Zeng
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Haosheng Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Zengguang Sui
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Wei Wu
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China.
| |
Collapse
|
3
|
Poredoš P, Gao J, Shan H, Yu J, Shao Z, Xu Z, Wang R. Ultra-high freshwater production in multistage solar membrane distillation via waste heat injection to condenser. Nat Commun 2024; 15:7890. [PMID: 39256361 PMCID: PMC11387653 DOI: 10.1038/s41467-024-51880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024] Open
Abstract
Passive solar membrane distillation (MD) is an emerging technology to alleviate water scarcity. Recently, its performance has been enhanced by multistage design, though the gains are marginal due to constrained temperature and vapor pressure gradients across the device. This makes condenser cooling enhancement a questionable choice. We argue that condenser heating could suppress the marginal effect of multistage solar MD by unlocking the moisture transport limit in all distillation stages. Here, we propose a stage temperature boosting (STB) concept that directs low-temperature heat to the condensers in the last stages, enhancing moisture transport across all stages. Through STB in the last two stages with a heat flux of 250 W m-2, a stage-averaged distillation flux of 1.13 L m-2 h-1 S-1 was demonstrated using an 8-stage MD device under one-sun illumination. This represents an 88% enhancement over the state-of-the-art 10-stage solar MD devices. More notably, our analysis indicates that 16-stage STB-MD devices driven by solar energy and waste heat can effectively compete with existing photovoltaic reverse osmosis (PV-RO) systems, potentially elevating freshwater production with low-temperature heat sources.
Collapse
Affiliation(s)
- Primož Poredoš
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China
- Laboratory for Sustainable Technologies in Buildings, University of Ljubljana, Faculty of Mechanical Engineering, Ljubljana, Slovenia
| | - Jintong Gao
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China
| | - He Shan
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China
| | - Jie Yu
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China
| | - Zhao Shao
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China
| | - Zhenyuan Xu
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China.
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Engineering Research Center of Solar Power & Refrigeration, MOE China, 200240, Shanghai, China.
| |
Collapse
|
4
|
Tang M, Zhong H, Lu X, Yang R, Lee CKW, Pan Y, Chen Y, Li MG. In situ Electrical Impedance Tomography for Visualizing Water Transportation in Hygroscopic Aerogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402676. [PMID: 38742435 PMCID: PMC11304325 DOI: 10.1002/advs.202402676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/01/2024] [Indexed: 05/16/2024]
Abstract
The global water crisis demands immediate attention, and atmospheric water harvesting (AWH) provides a viable alternative. However, studying the real-time subtle relationship between water absorption, diffusion, and internal structure for hygroscopic materials is challenging. Herein, a dynamic visualization technique is proposed that utilizes an in situ electrical impedance tomography (EIT) system and a precise reconstruction algorithm to achieve real-time monitoring of the water sorption process within aerogels from an internal microstructural perspective. These results can be inferred that composites' pore sizes affecting the kinetics of their moisture absorption. In addition, the diffusion path of moisture absorption and the distribution of stored moisture inside aerogels exhibit intrinsic self-selective behavior, where the fiber skeleton of the aerogel plays a crucial role. In summary, this work proposes a generic EIT-based technique for the in situ and dynamic monitoring of the hygroscopic process, pointing to an entirely new approach regarding research on AWH materials.
Collapse
Affiliation(s)
- Miao Tang
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Haosong Zhong
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Xupeng Lu
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Rongliang Yang
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Connie Kong Wai Lee
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Yexin Pan
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Yi Chen
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| | - Mitch Guijun Li
- Center for Smart ManufacturingDivision of Integrative Systems and DesignThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong KongSAR 999077China
| |
Collapse
|
5
|
Li Z, Zhang JH, Li J, Wang S, Zhang L, He CY, Lin P, Melhi S, Yang T, Yamauchi Y, Xu X. Dynamical Janus-Like Behavior Excited by Passive Cold-Heat Modulation in the Earth-Sun/Universe System: Opportunities and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309397. [PMID: 38644343 DOI: 10.1002/smll.202309397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/02/2024] [Indexed: 04/23/2024]
Abstract
The utilization of solar-thermal energy and universal cold energy has led to many innovative designs that achieve effective temperature regulation in different application scenarios. Numerous studies on passive solar heating and radiation cooling often operate independently (or actively control the conversion) and lack a cohesive framework for deep connections. This work provides a concise overview of the recent breakthroughs in solar heating and radiation cooling by employing a mechanism material in the application model. Furthermore, the utilization of dynamic Janus-like behavior serves as a novel nexus to elucidate the relationship between solar heating and radiation cooling, allowing for the analysis of dynamic conversion strategies across various applications. Additionally, special discussions are provided to address specific requirements in diverse applications, such as optimizing light transmission for clothing or window glass. Finally, the challenges and opportunities associated with the development of solar heating and radiation cooling applications are underscored, which hold immense potential for substantial carbon emission reduction and environmental preservation. This work aims to ignite interest and lay a solid foundation for researchers to conduct in-depth studies on effective and self-adaptive regulation of cooling and heating.
Collapse
Affiliation(s)
- Zhengtong Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Jia-Han Zhang
- School of Electronic Information Engineering, Inner Mongolia University, Hohhot, 010021, China
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Jiaoyang Li
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Song Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Lvfei Zhang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Cheng-Yu He
- Laboratory of Clean Energy Chemistry and Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Peng Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Tao Yang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Yangtze Institute for Conservation and Development, Hohai University, Nanjing, 210098, China
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland, 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, South Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
| | - Xingtao Xu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya, 464-8603, Japan
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316022, China
| |
Collapse
|
6
|
Zhou H, Yan L, Tang D, Xu T, Dai L, Li C, Chen W, Si C. Solar-Driven Drum-Type Atmospheric Water Harvester Based on Bio-Based Gels with Fast Adsorption/Desorption Kinetics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403876. [PMID: 38739951 DOI: 10.1002/adma.202403876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/01/2024] [Indexed: 05/16/2024]
Abstract
Sorption-based atmospheric water harvesting is an attractive technology for exploiting unconventional water sources. A critical challenge is how to facilitate fast and continuous collection of potable water from air. Here, a bio-based gel (cellulose/alginate/lignin gel, CAL gel), resulting from the integration of a whole biomass-derived polymer network with lithium chloride is reported. A fast adsorption/desorption kinetics, with a water capture rate of 1.74 kg kg-1 h-1 at 30% relative humidity and a desorption rate of 1.98 kg kg-1 h-1, is simultaneously realized in one piece of CAL gel, because of its strong hygroscopicity, hydrophilic network, abundant water transport channels, photothermal conversion ability, and ≈200-µm-thick self-supporting bulky structure caused by multicomponent synergy. A solar-driven, drum-type, tunable, and portable harvester is designed that can harvest atmospheric water within a brief time. Under outdoor conditions, the harvester with CAL gels operates 36 switches (180°) per day realizes a water yield of 8.96 kg kggel -1 (18.87 g kgdevice -1). This portable harvester highlights the potential for fast and scalable atmospheric water harvesting in extreme environments.
Collapse
Affiliation(s)
- Hao Zhou
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Li Yan
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Dexi Tang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Lin Dai
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chenyu Li
- Military Medical Sciences Academy, Tianjin, 300050, P. R. China
| | - Wenshuai Chen
- Key Laboratory of Bio-Based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry and Engineering, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
7
|
Luo F, Liang X, Chen W, Ravi SK, Wang S, Gao X, Zhang Z, Fang Y. Symbiotic defect-reinforced bimetallic MOF-derived fiber components for solar-assisted atmospheric water collection. WATER RESEARCH 2024; 259:121872. [PMID: 38852390 DOI: 10.1016/j.watres.2024.121872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Conversion of atmospheric water to sustainable and clean freshwater resources through MOF-based adsorbent has great potential for the renewable environmental industry. However, its daily water production is hampered by susceptibility to agglomeration, slow water evaporation efficiency, and limited water-harvesting capacity. Herein, a solar-assisted bimetallic MOF (BMOF)-derived fiber component that surmounts these limitations and exhibits both optimized water-collect capacity and short adsorption-desorption period is proposed. The proposed strategy involves utilizing bottom-up interface-induced assembly between carboxylated multi-walled carbon nanotube and hygroscopic BMOF on a multi-ply glass fiber support. The designed BMOF (MIL-100(Fe,Al)-3) skeleton constructed using bimetallic-node defect engineering exhibits a high specific surface area (1,535.28 m2/g) and pore volume (0.76 cm3/g), thereby surpassing the parent MOFs and other reported MOFs in capturing moisture. Benefiting from the hierarchical structure of fiber rods and the solar-driven self-heating interface of photothermal layer, the customized BMOF crystals realize efficient loading and optimized water adsorption-desorption kinetics. As a result, the resultant fiber components achieve six adsorption-desorption cycles per day and an impressive water collection of 1.45 g/g/day under medium-high humidity outdoor conditions. Therefore, this work will provide new ideas for optimizing the daily yield of atmospheric water harvesting techniques.
Collapse
Affiliation(s)
- Fan Luo
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xianghui Liang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| | - Weicheng Chen
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Hong Kong 999077, China
| | - Shuangfeng Wang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xuenong Gao
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Zhengguo Zhang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Yutang Fang
- Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
8
|
Lei C, Guan W, Zhao Y, Yu G. Chemistries and materials for atmospheric water harvesting. Chem Soc Rev 2024; 53:7328-7362. [PMID: 38896434 DOI: 10.1039/d4cs00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Atmospheric water harvesting (AWH) is recognized as a crucial strategy to address the global challenge of water scarcity by tapping into the vast reserves of atmospheric moisture for potable water supply. Within this domain, sorbents lie in the core of AWH technologies as they possess broad adaptability across a wide spectrum of humidity levels, underpinned by the cyclic sorption and desorption processes of sorbents, necessitating a multi-scale viewpoint regarding the rational material and chemical selection and design. This Invited Review delves into the essential sorption mechanisms observed across various classes of sorbent systems, emphasizing the water-sorbent interactions and the progression of water networks. A special focus is placed on the insights derived from isotherm profiles, which elucidate sorbent structures and sorption dynamics. From these foundational principles, we derive material and chemical design guidelines and identify key tuning factors from a structural-functional perspective across multiple material systems, addressing their fundamental chemistries and unique attributes. The review further navigates through system-level design considerations to optimize water production efficiency. This review aims to equip researchers in the field of AWH with a thorough understanding of the water-sorbent interactions, material design principles, and system-level considerations essential for advancing this technology.
Collapse
Affiliation(s)
- Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Yaxuan Zhao
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
9
|
Li X, El Fil B, Li B, Graeber G, Li AC, Zhong Y, Alshrah M, Wilson CT, Lin E. Design of a Compact Multicyclic High-Performance Atmospheric Water Harvester for Arid Environments. ACS ENERGY LETTERS 2024; 9:3391-3399. [PMID: 39022669 PMCID: PMC11250079 DOI: 10.1021/acsenergylett.4c01061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 07/20/2024]
Abstract
Water scarcity remains a grand challenge across the globe. Sorption-based atmospheric water harvesting (SAWH) is an emerging and promising solution for water scarcity, especially in arid and noncoastal regions. Traditional approaches to AWH such as fog harvesting and dewing are often not applicable in an arid environment (<30% relative humidity (RH)), whereas SAWH has demonstrated great potential to provide fresh water under a wide range of climate conditions. Despite advances in materials development, most demonstrated SAWH devices still lack sufficient water production. In this work, we focus on the adsorption bed design to achieve high water production, multicyclic operation, and a compact form factor (high material loading per heat source contact area). The modeling efforts and experimental validation illustrate an optimized design space with a fin-array adsorption bed enabled by high-density waste heat, which promises 5.826 Lwater kgsorbent -1 day-1 at 30% RH within a compact 1 L adsorbent bed and commercial adsorbent materials.
Collapse
Affiliation(s)
- Xiangyu Li
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Mechanical Aerospace and Biomedical Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Bachir El Fil
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Buxuan Li
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Gustav Graeber
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department
of Chemistry, Humboldt-Universität
zu Berlin, 12489 Berlin, Germany
| | - Adela C. Li
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yang Zhong
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mohammed Alshrah
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chad T. Wilson
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Emily Lin
- Department
of Mechanical Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Sun J, Ni F, Gu J, Si M, Liu D, Zhang C, Shui X, Xiao P, Chen T. Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314175. [PMID: 38635920 DOI: 10.1002/adma.202314175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/01/2024] [Indexed: 04/20/2024]
Abstract
Sorption-based atmospheric water harvesting (SAWH) is a promising technology to alleviate freshwater scarcity. Recently, hygroscopic salt-hydrogel composites (HSHCs) have emerged as attractive candidates with their high water uptake, versatile designability, and scale-up fabrication. However, achieving high-performance SAWH applications for HSHCs has been challenging because of their sluggish kinetics, attributed to their limited mass transport properties. Herein, a universal network engineering of hydrogels using a cryogelation method is presented, significantly improving the SAWH kinetics of HSHCs. As a result of the entangled mesh confinements formed during cryogelation, a stable macroporous topology is attained and maintained within the obtained entangled-mesh hydrogels (EMHs), leading to significantly enhanced mass transport properties compared to conventional dense hydrogels (CDHs). With it, corresponding hygroscopic EMHs (HEMHs) simultaneously exhibit faster moisture sorption and solar-driven water desorption. Consequently, a rapid-cycling HEMHs-based harvester delivers a practical freshwater production of 2.85 Lwater kgsorbents -1 day-1 via continuous eight sorption/desorption cycles, outperforming other state-of-the-art hydrogel-based sorbents. Significantly, the generalizability of this strategy is validated by extending it to other hydrogels used in HSHCs. Overall, this work offers a new approach to efficiently address long-standing challenges of sluggish kinetics in current HSHCs, promoting them toward the next-generation SAWH applications.
Collapse
Affiliation(s)
- Jiajun Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Feng Ni
- Max Planck Institute of Microstructure Physics, 06120, Halle (Saale), Germany
| | - Jincui Gu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Muqing Si
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Depeng Liu
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chang Zhang
- School of Biological and Chemical Engineering, NingboTech University, Ningbo, 315100, China
| | - Xiaoxue Shui
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Peng Xiao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
11
|
Feng JH, Lu F, Chen Z, Jia MM, Chen YL, Lin WH, Wu QY, Li Y, Xue M, Chen XM. Rapid solar-driven atmospheric water-harvesting with MAF-4-derived nitrogen-doped nanoporous carbon. Chem Sci 2024; 15:9557-9565. [PMID: 38939138 PMCID: PMC11206206 DOI: 10.1039/d4sc01802h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Sorption-based atmospheric water-harvesting (AWH) could help to solve global freshwater scarcity. The search for adsorbents with high water-uptake capacity at low relative humidity, rapid adsorption-desorption kinetics and high thermal conductivity is a critical challenge in AWH. Herein, we report a MAF-4 (aka ZIF-8)-derived nanoporous carbon (NPCMAF-4-800) with multiple N-doped sites, considerable micropore characteristics and inherent photothermal properties, for efficient water production in a relatively arid climate. NPCMAF-4-800 exhibited optimal water-sorption performance of 306 mg g-1 at 40% relative humidity (RH). An excellent sunlight-absorption rate was realized (97%) attributed to its high degree of graphitization. A proof-of-concept device was designed and investigated for the practical harvesting of water from the atmosphere using natural sunlight. NPCMAF-4-800 achieved an unprecedentedly high water production rate of 380 mg g-1 h-1 at 40% RH, and could produce 1.77 L kg-1 freshwater during daylight hours in an outdoor low-humidity climate of ∼25 °C and 40% RH. These findings may shed light on the potential of MOF-derived porous carbons in the AWH field, and inspire the future development of solar-driven water-generation systems.
Collapse
Affiliation(s)
- Jin-Hua Feng
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Feng Lu
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Zhen Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Miao-Miao Jia
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Yi-Le Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Wei-Hai Lin
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Qing-Yun Wu
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Yi Li
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Ming Xue
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| | - Xiao-Ming Chen
- School of Chemical Engineering and Technology, School of Chemistry, GBRCE for Functional Molecular Engineering, IGCME, Sun Yat-sen University Guangzhou 510275 China
| |
Collapse
|
12
|
Li W, Zhang Y, Guo S, Yu Z, Kang J, Li Z, Wei L, Tan SC. Multifunctional Sandwich-Structured Super-Hygroscopic Zinc-Based MOF-Overlayed Cooling Wearables for Special Personal Thermal Management. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311272. [PMID: 38366302 DOI: 10.1002/smll.202311272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Personal protective equipment pays attention exclusively to external safety protection and ignores the internal thermoregulation of physiological state in association with sweating. Herein, a super-hygroscopic calcium-doped poly(sodium 4-styrenesulfonate) and superhydrophobic metal-organic-framework-overlayed wearables (Ca-PSS/MOF) integrated cooling wearable is proposed for special personal thermal management (PTM). Compared to the pristine fabric, the superhydrophobic MOF wearables exhibit anti-fouling and antibacterial capabilities, and the antibacterial efficiency is up to 99.99% and 98.99% against E. coli and S. aureus, respectively. More importantly, Ca-PSS/MOF demonstrate significant heat index changes up to 25.5 °C by reducing relative humidity dramatically from 91.0% to 60.0% and temperature from 36.5 to 31.6 °C during the running test. The practical feasibility of the Ca-PSS/MOF cooling wearables is well proved with the protective suit of the fireman. Owing to these multifunctional merits, the sandwich-structured cooling Ca-PSS/MOF are expected to provide new insights for designing the next-generation multifunctional apparel for PTM.
Collapse
Affiliation(s)
- Wulong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, P. R. China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574
- Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798
| | - Yaoxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, P. R. China
| | - Shuai Guo
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574
| | - Zhen Yu
- State Key Laboratory of Clean Energy, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jialiang Kang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, P. R. China
| | - Zhanxiong Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, 215021, P. R. China
- National Engineering Laboratory for Modern Silk, Suzhou, 215123, P. R. China
| | - Lei Wei
- Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574
| |
Collapse
|
13
|
Li Q, Shao Z, Zou Q, Pan Q, Zhao Y, Feng Y, Wang W, Wang R, Ge T. An atmospheric water harvesting system based on the "Optimal Harvesting Window" design for worldwide water production. Sci Bull (Beijing) 2024; 69:1437-1447. [PMID: 38531718 DOI: 10.1016/j.scib.2024.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Atmospheric water harvesting (AWH) is a promising solution to the water shortage problem. Current sorption-based AWH (SAWH) systems seldom obtain both wide climatic adaptability and high energy efficiency due to the lack of thermodynamic optimization. To achieve the ideal harvesting circulation in SAWH systems, the "optimal harvesting window" (OHW) design based on thermodynamic analysis was first proposed and validated by our prototype. The "OHW" theory indicates the water production rate and energy efficiency could be improved by properly reducing the adsorption temperature. As the humidity increases, the optimal adsorption temperature should be closer to the dew point of the environment. Experimental results revealed that, loaded with 3 kg widely adopted silica gel, the daily water production could reach 5.76-17.64 L/d with ultrahigh energy efficiency of 0.46-1.5 L/kWh. This prototype could also achieve optimal performance in wide climatic conditions in terms of 13-35 °C and 18%-72% RH. Lastly, the performance of photovoltaic (PV)-driven SAWH was evaluated. Results showed that a 1 m2 PV panel could generate 0.66-2 L water per day in Shanghai throughout the year, the highest in opening literature. Notably, this work introduces a promising concept that can help achieve large-scale, ultra-fast, energy-efficient AWH worldwide.
Collapse
Affiliation(s)
- Qian Li
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhao Shao
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qihong Zou
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Quanwen Pan
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yao Zhao
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yaohui Feng
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenwen Wang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianshu Ge
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
14
|
Xi M, Zhang X, Liu H, Xu B, Zheng Y, Du Y, Yang L, Ravi SK. Cobalt-Ion Superhygroscopic Hydrogels Serve as Chip Heat Sinks Achieving a 5 °C Temperature Reduction via Evaporative Cooling. SMALL METHODS 2024:e2301753. [PMID: 38634244 DOI: 10.1002/smtd.202301753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/29/2024] [Indexed: 04/19/2024]
Abstract
In the rapidly advancing semiconductor sector, thermal management of chips remains a pivotal concern. Inherent heat generation during their operation can lead to a range of issues such as potential thermal runaway, diminished lifespan, and current leakage. To mitigate these challenges, the study introduces a superhygroscopic hydrogel embedded with metal ions. Capitalizing on intrinsic coordination chemistry, the metallic ions in the hydrogel form robust coordination structures with non-metallic nitrogen and oxygen through empty electron orbitals and lone electron pairs. This unique structure serves as an active site for water adsorption, beginning with a primary layer of chemisorbed water molecules and subsequently facilitating multi-layer physisorption via Van der Waals forces. Remarkably, the cobalt-integrated hydrogel demonstrates the capability to harvest over 1 and 5 g g-1 atmospheric water at 60% RH and 95% RH, respectively. Furthermore, the hydrogel efficiently releases the entirety of its absorbed water at a modest 40°C, enabling its recyclability. Owing to its significant water absorption capacity and minimal dehydration temperature, the hydrogel can reduce chip temperatures by 5°C during the dehydration process, offering a sustainable solution to thermal management in electronics.
Collapse
Affiliation(s)
- Mufeng Xi
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Xiaohu Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Hong Liu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Bolin Xu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong
| | - Yongliang Zheng
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Yujie Du
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Lin Yang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Sai Kishore Ravi
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, Hong Kong
| |
Collapse
|
15
|
Bai Z, Wang P, Xu J, Wang R, Li T. Progress and perspectives of sorption-based atmospheric water harvesting for sustainable water generation: Materials, devices, and systems. Sci Bull (Beijing) 2024; 69:671-687. [PMID: 38105159 DOI: 10.1016/j.scib.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/07/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Establishing alternative methods for freshwater production is imperative to effectively alleviate global water scarcity, particularly in land-locked arid regions. In this context, extracting water from the ubiquitous atmospheric moisture is an ingenious strategy for decentralized freshwater production. Sorption-based atmospheric water harvesting (SAWH) shows strong potential for supplying liquid water in a portable and sustainable way even in desert environments. Herein, the latest progress in SAWH technology in terms of materials, devices, and systems is reviewed. Recent advances in sorbent materials with improved water uptake capacity and accelerated sorption-desorption kinetics, including physical sorbents, polymeric hydrogels, composite sorbents, and ionic solutions, are discussed. The thermal designs of SAWH devices for improving energy utilization efficiency, heat transfer, and mass transport are evaluated, and the development of representative SAWH prototypes is clarified in a chronological order. Thereafter, state-of-the-art operation patterns of SAWH systems, incorporating intermittent, daytime continuous and 24-hour continuous patterns, are examined. Furthermore, current challenges and future research goals of this cutting-edge field are outlined. This review highlights the irreplaceable role of heat and mass transfer enhancement and facile structural improvement for constructing high-yield water harvesters.
Collapse
Affiliation(s)
- Zhaoyuan Bai
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pengfei Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiaxing Xu
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tingxian Li
- Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Research Center of Solar Power and Refrigeration (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
16
|
Song Y, Zeng M, Wang X, Shi P, Fei M, Zhu J. Hierarchical Engineering of Sorption-Based Atmospheric Water Harvesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209134. [PMID: 37246306 DOI: 10.1002/adma.202209134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/02/2023] [Indexed: 05/30/2023]
Abstract
Harvesting water from air in sorption-based devices is a promising solution to decentralized water production, aiming for providing potable water anywhere, anytime. This technology involves a series of coupled processes occurring at distinct length scales, ranging from nanometer to meter and even larger, including water sorption/desorption at the nanoscale, condensation at the mesoscale, device development at the macroscale and water scarcity assessment at the global scale. Comprehensive understanding and bespoke designs at every scale are thus needed to improve the water-harvesting performance. For this purpose, a brief introduction of the global water crisis and its key characteristics is provided to clarify the impact potential and design criteria of water harvesters. Next the latest molecular-level optimizations of sorbents for efficient moisture capture and release are discussed. Then, novel microstructuring of surfaces to enhance dropwise condensation, which is favorable for atmospheric water generation, is shown. After that, system-level optimizations of sorbent-assisted water harvesters to achieve high-yield, energy-efficient, and low-cost water harvesting are highlighted. Finally, future directions toward practical sorption-based atmospheric water harvesting are outlined.
Collapse
Affiliation(s)
- Yan Song
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, P. R. China
| | - Mengyue Zeng
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, P. R. China
| | - Xueyang Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, P. R. China
| | - Peiru Shi
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, P. R. China
| | - Minfei Fei
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, P. R. China
| | - Jia Zhu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210008, P. R. China
| |
Collapse
|
17
|
Li Q, Wang F, Zhang Y, Shi M, Zhang Y, Yu H, Liu S, Li J, Tan SC, Chen W. Biopolymers for Hygroscopic Material Development. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2209479. [PMID: 36652538 DOI: 10.1002/adma.202209479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The effective management of atmospheric water will create huge value for mankind. Diversified and sustainable biopolymers that are derived from organisms provide rich building blocks for various hygroscopic materials. Here, a comprehensive review of recent advances in developing biopolymers for hygroscopic materials is provided. It is begun with a brief introduction of species diversity and the processes of obtaining various biopolymer materials from organisms. The fabrication of hygroscopic materials is then illustrated, with a specific focus on the use of biopolymer-derived materials as substrates to produce composites and the use of biopolymers as building blocks to fabricate composite gels. Next, the representative applications of biopolymer-derived hygroscopic materials for dehumidification, atmospheric water harvesting, and power generation are systematically presented. An outlook on future challenges and key issues worthy of attention are finally provided.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Fei Wang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yaoxin Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Mengjiao Shi
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering drive 1, Singapore, 117574, Singapore
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin, 150040, P. R. China
| |
Collapse
|
18
|
Graeber G, Díaz-Marín CD, Gaugler LC, Zhong Y, El Fil B, Liu X, Wang EN. Extreme Water Uptake of Hygroscopic Hydrogels through Maximized Swelling-Induced Salt Loading. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211783. [PMID: 37201199 DOI: 10.1002/adma.202211783] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/12/2023] [Indexed: 05/20/2023]
Abstract
Hygroscopic hydrogels are emerging as scalable and low-cost sorbents for atmospheric water harvesting, dehumidification, passive cooling, and thermal energy storage. However, devices using these materials still exhibit insufficient performance, partly due to the limited water vapor uptake of the hydrogels. Here, the swelling dynamics of hydrogels in aqueous lithiumchloride solutions, the implications on hydrogel salt loading, and the resulting vapor uptake of the synthesized hydrogel-salt composites are characterized. By tuning the salt concentration of the swelling solutions and the cross-linking properties of the gels, hygroscopic hydrogels with extremely high salt loadings are synthesized, which enable unprecedented water uptakes of 1.79 and 3.86 gg-1 at relative humidity (RH) of 30% and 70%, respectively. At 30% RH, this exceeds previously reported water uptakes of metal-organic frameworks by over 100% and of hydrogels by 15%, bringing the uptake within 93% of the fundamental limit of hygroscopic salts while avoiding leakage problems common in salt solutions. By modeling the salt-vapor equilibria, the maximum leakage-free RH is elucidated as a function of hydrogel uptake and swelling ratio. These insights guide the design of hydrogels with exceptional hygroscopicity that enable sorption-based devices to tackle water scarcity and the global energy crisis.
Collapse
Affiliation(s)
- Gustav Graeber
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489, Berlin, Germany
| | - Carlos D Díaz-Marín
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Leon C Gaugler
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Yang Zhong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Bachir El Fil
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Xinyue Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Evelyn N Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
19
|
Guan W, Lei C, Guo Y, Shi W, Yu G. Hygroscopic-Microgels-Enabled Rapid Water Extraction from Arid Air. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2207786. [PMID: 36239247 DOI: 10.1002/adma.202207786] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Sorbent-based atmospheric water harvesting (AWH) has emerged as a promising decentralized water-production technology to mitigate the freshwater crisis in arid areas. Hydrogels have been regarded as attractive sorbents due to their high water retention and tailorable polymer-water interactions. Yet, the kinetics of water sorption and desorption at low relative humidity (RH) shall be improved for their practical implementation. Here, hygroscopic microgels (HMGs) composed of hydroxypropyl cellulose (HPC) and hygroscopic salt are reported, which achieve a water uptake of ca. 0.5-0.8 g g-1 at 15-30% RH. HMGs enable rapid sorption-desorption kinetics owing to the short-distance diffusion in the microgels and hydrophilicity-hydrophobicity switching of the thermoresponsive HPC. To validate the feasibility of HMGs for moisture extraction, a potential daily water collection of up to equivalent 7.9-19.1 L kg-1 at low RH is demonstrated, enabled by 24-36 operation cycles per day based on the material-level experiments. With renewable raw materials and superior performance, HMGs provide a sustainable approach for rapid moisture extraction in arid climates.
Collapse
Affiliation(s)
- Weixin Guan
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Chuxin Lei
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Youhong Guo
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Wen Shi
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
20
|
Yu Z, Li S, Zhang J, Tang C, Qin Z, Liu X, Zhou Z, Lai Y, Fu S. Phospholipid Bilayer Inspired Sandwich Structural Nanofibrous Membrane for Atmospheric Water Harvesting and Selective Release. NANO LETTERS 2024; 24:2629-2636. [PMID: 38349527 DOI: 10.1021/acs.nanolett.3c04658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Atmospheric water harvesting (AWH) has been broadly exploited to meet the challenge of water shortage. Despite the significant achievements of AWH, the leakage of hydroscopic salt during the AWH process hinders its practical applications. Herein, inspired by the unique selective permeability of the phospholipid bilayer, a sandwich structural (hydrophobic-hydrophilic-hydrophobic) polyacrylonitrile nanofibrous membrane (San-PAN) was fabricated for AWH. The hydrophilic inner layer loaded with LiCl could capture water from the air. The hydrophobic microchannels in the outer layer could selectively allow the free transmission of gaseous water molecules but confine the hydroscopic salt solution in the hydrophilic layer, achieving continuous and recyclable water sorption/desorption. As demonstrated, the as-prepared AWH devices presented high-efficient adsorption kinetics from 1.66 to 4.08 g g-1 at 30% to 90% relative humidity. Thus, this work strengthens the understanding of the water transmission process along microchannels and provides insight into the practical applications of AWH.
Collapse
Affiliation(s)
- Zhihua Yu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Shuhui Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, P. R. China
- Department of Chemistry, University College London, London WC1H 0AJ, United Kingdom
| | - Jichao Zhang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Chunxia Tang
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Ziqi Qin
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Liu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Zijie Zhou
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| | - Yuekun Lai
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Shaohai Fu
- Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Key Laboratory of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
21
|
Liu Y, Liu Z, Qie Z, Wang Z, Sun W. Optimizing Salt Leakage Mitigation and Comparing Sorption-Desorption Characteristics of Polyacrylamide-Based Hydrogels. Polymers (Basel) 2024; 16:525. [PMID: 38399905 PMCID: PMC10892605 DOI: 10.3390/polym16040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Solid hygroscopic materials are extensively utilized in diverse fields, including adsorption heat transfer, adsorption heat storage, atmospheric water harvesting (AWH), and air conditioning dehumidification. The efficacy and energy efficiency of these materials in practical applications are significantly influenced by their adsorption and desorption properties. Yet, the introduction of inorganic salts to boost adsorption performance can result in issues like salt leakage. In this research, we prepared a polyacrylamide hydrogel through free radical polymerization, and its water-absorbing capabilities were improved by incorporating the hygroscopic salt lithium chloride. We compared it to a salt-based porous adsorbent, AlFum-LiCl, which also exhibited strong water adsorption properties and the potential for large-scale production. While AlFum-LiCl suffered from limited pores and salt leakage during high water uptake, the optimized PAM-LiCl displayed superior water sorption capabilities, showing no salt leakage even at water uptake of up to 3.5 g/g. At 25 °C, PAM-LiCl achieved equilibrium water uptake of 1.26 g/g at 30% RH and 3.15 g/g at 75% RH. In this context, utilizing 20 g of PAM-LiCl for the AWH experiment yielded daily water outputs of 8.34 L/kg at 30% RH and 16.86 L/kg at 75% RH. The salt-optimized PAM-LiCl hydrogel offers the benefit of application in higher relative humidity environments without the risk of deliquescence, underscoring its promise for atmospheric water harvesting.
Collapse
Affiliation(s)
| | - Zhongbao Liu
- Department of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Y.L.); (Z.Q.); (Z.W.); (W.S.)
| | | | | | | |
Collapse
|
22
|
Wang M, Liu E, Jin T, Zafar SU, Mei X, Fauconnier ML, De Clerck C. Towards a better understanding of atmospheric water harvesting (AWH) technology. WATER RESEARCH 2024; 250:121052. [PMID: 38171174 DOI: 10.1016/j.watres.2023.121052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Atmospheric water harvesting (AWH) technology is an emerging sustainable development strategy to deal with global water scarcity. To better understand the current state of AWH technology development, we conducted a bibliometric analysis highlighting three water harvesting technologies (fog harvesting, condensation, and sorption). By comprehensively reviewing the research progress and performing a comparative assessment of these technologies, we summarized past achievements and critically analyzed the different technologies. Traditional fog collectors are more mature, but their efficiency still needs to be improved. External field-driven fog harvesting and active condensation need to be driven by external forces, and passive condensation has high requirements for environmental humidity. Emerging bio-inspired fog harvesting and sorption technology provide new possibilities for atmospheric water collection, but they have high requirements for materials, and their commercial application is still to be further promoted. Based on the key characteristics of each technology, we presented the development prospects for the joint use of integrated/hybrid systems. Next, the water-energy relationship is used as a link to clarify the future development strategy of AWH technology in energy driving and conversion. Finally, we outlined the core ideas of AWH for both basic research and practical applications and described its limitless possibilities for drinking water supply and agricultural irrigation. This review provides an essential reference for the development and practical application of AWH technologies, which contribute to the sustainable utilization of water resources globally.
Collapse
Affiliation(s)
- Menglu Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Enke Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China.
| | - Tao Jin
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850002, China
| | - Saud-Uz Zafar
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xurong Mei
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Dryland Agriculture, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Beijing 100081, China.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, Gembloux 5030, Belgium
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des Déportés 2, Gembloux 5030, Belgium
| |
Collapse
|
23
|
Entezari A, Esan OC, Yan X, Wang R, An L. Sorption-Based Atmospheric Water Harvesting: Materials, Components, Systems, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210957. [PMID: 36869587 DOI: 10.1002/adma.202210957] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Freshwater scarcity is a global challenge posing threats to the lives and daily activities of humankind such that two-thirds of the global population currently experience water shortages. Atmospheric water, irrespective of geographical location, is considered as an alternative water source. Sorption-based atmospheric water harvesting (SAWH) has recently emerged as an efficient strategy for decentralized water production. SAWH thus opens up a self-sustaining source of freshwater that can potentially support the global population for various applications. In this review, the state-of-the-art of SAWH, considering its operation principle, thermodynamic analysis, energy assessment, materials, components, different designs, productivity improvement, scale-up, and application for drinking water, is first extensively explored. Thereafter, the practical integration and potential application of SAWH, beyond drinking water, for wide range of utilities in agriculture, fuel/electricity production, thermal management in building services, electronic devices, and textile are comprehensively discussed. The various strategies to reduce human reliance on natural water resources by integrating SAWH into existing technologies, particularly in underdeveloped countries, in order to satisfy the interconnected needs for food, energy, and water are also examined. This study further highlights the urgent need and future research directions to intensify the design and development of hybrid-SAWH systems for sustainability and diverse applications.
Collapse
Affiliation(s)
- Akram Entezari
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Oladapo Christopher Esan
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Xiaohui Yan
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ruzhu Wang
- School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Liang An
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, China
| |
Collapse
|
24
|
Hu Y, Wang Y, Fang Z, Yao B, Ye Z, Peng X. Ca-MOF-Derived Porous Sorbents for High-Yield Solar-Driven Atmosphere Water Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:44942-44952. [PMID: 37703912 DOI: 10.1021/acsami.3c08929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
The development of high-yield, metal-organic framework (MOF)-based water harvesters in arid areas remains challenging due to the absence of effective strategies for enhancing water sorption capacity and kinetics. Herein, we presented a novel strategy for in situ fabrication of calcium chloride (CaCl2) decorated MOF-derived porous sorbents (PCC-42) through pyrolysis Ca-MOF and subsequently hydrochloric acid (HCl) vapor treatment process. The resulting PCC-42 sorbents exhibited a high water adsorption capacity of 3.04 g g-1 at 100% relative humidity (RH), outstanding photothermal performance, and rapid water uptake-release kinetics, surpassing most reported MOFs adsorbents. At 20, 30, 40, and 50% RH, PCC-42 demonstrated water uptake capacity of 0.45, 0.59, 0.76, and 0.9 g g-1, which represented an increase of 421 and 940% (at 20% RH) and 333 and 351% (at 30% RH) compared to Ca-MOF and CaCl2·2H2O, respectively. Approximately 80% of the adsorbed water in PCC-42 could be released under one sun within 50 min. Indoor water harvesting experiments demonstrated that PCC-42 is a promising adsorbent for various humidity environments. Additionally, outdoor solar-driven atmospheric water harvesting (AWH) tests revealed a high daily water production of 1.13 L/kgadsorbent under typical arid conditions (30-60% RH). The proposed strategy helps the design of high-performance adsorbents for solar-driven AWH in arid environments.
Collapse
Affiliation(s)
- Yue Hu
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Yuqi Wang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zhou Fang
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Bing Yao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Xinsheng Peng
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nanomaterials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| |
Collapse
|
25
|
Shan H, Poredoš P, Ye Z, Qu H, Zhang Y, Zhou M, Wang R, Tan SC. All-Day Multicyclic Atmospheric Water Harvesting Enabled by Polyelectrolyte Hydrogel with Hybrid Desorption Mode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302038. [PMID: 37199373 DOI: 10.1002/adma.202302038] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Indexed: 05/19/2023]
Abstract
Sorption-based atmospheric water harvesting (AWH) is a promising approach for mitigating worldwide water scarcity. However, reliable water supply driven by sustainable energy regardless of diurnal variation and weather remains a long-standing challenge. To address this issue, a polyelectrolyte hydrogel sorbent with an optimal hybrid-desorption multicyclic-operation strategy is proposed, achieving all-day AWH and a significant increase in daily water production. The polyelectrolyte hydrogel possesses a large interior osmotic pressure of 659 atm, which refreshes sorption sites by continuously migrating the sorbed water within its interior, and thus enhancing sorption kinetics. The charged polymeric chains coordinate with hygroscopic salt ions, anchoring the salts and preventing agglomeration and leakage, thereby enhancing cyclic stability. The hybrid desorption mode, which couples solar energy and simulated waste heat, introduces a uniform and adjustable sorbent temperature for achieving all-day ultrafast water release. With rapid sorption-desorption kinetics, an optimization model suggests that eight moisture capture-release cycles are capable of achieving high water yield of 2410 mLwater kgsorbent -1 day-1 , up to 3.5 times that of single-cyclic non-hybrid modes. The polyelectrolyte hydrogel sorbent and the coupling with sustainable energy driven desorption mode pave the way for the next-generation AWH systems, significantly bringing freshwater on a multi-kilogram scale closer.
Collapse
Affiliation(s)
- He Shan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117574, Singapore
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, Shanghai, 200240, China
| | - Primož Poredoš
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, Shanghai, 200240, China
| | - Zhanyu Ye
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, Shanghai, 200240, China
| | - Hao Qu
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117574, Singapore
| | - Yaoxin Zhang
- China-UK Low Carbon College, Shanghai Jiao Tong University, 3 Yinlian Road, Shanghai, 201306, China
| | - Mengjuan Zhou
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117574, Singapore
| | - Ruzhu Wang
- Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Engineering Research Center of Solar Power & Refrigeration, MOE China, Shanghai, 200240, China
| | - Swee Ching Tan
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117574, Singapore
| |
Collapse
|
26
|
Feng Y, Wang R, Ge T. Pathways to Energy-efficient Water Production from the Atmosphere. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204508. [PMID: 36285671 PMCID: PMC9798993 DOI: 10.1002/advs.202204508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Atmospheric water harvesting (AWH) provides a fascinating chance to facilitate a sustainable water supply, which obtains considerable attention recently. However, ignoring the energy efficiency of AWH leads to high energy consumption in current prototypes (ca. 101 to 102 MJ kg-1 ), misfitting with the high-strung and complicated water-energy nexus. In this perspective, a robust evaluation of existing AWHs is conducted and a detailed way to high-efficiency AWH is paved. The results suggest that using cooling-assisted adsorption will weaken the bounds of climate to sorbent selections and have the potential to improve efficiency by more than 50%. For device design, the authors deeply elucidate how to perfect heat/mass transfer to narrow the gap between lab and practices. Reducing heat loss, recovering heat and structured sorbent are the main paths to improve efficiency on the device scale, which is more significant for a large-scale AWH. Besides efficiency, the techno-economic evaluation reveals that developing a cost-effective AWH is also crucial for sustainability, which can be contributed by green synthesis routes and biomass-based sorbents. These analyses provide a uniform platform to guide the next-generation AWH to mitigate the global water crisis.
Collapse
Affiliation(s)
- Yaohui Feng
- Research Center of Solar Power & RefrigerationInstitute of Refrigeration and CryogenicsSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruzhu Wang
- Research Center of Solar Power & RefrigerationInstitute of Refrigeration and CryogenicsSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Tianshu Ge
- Research Center of Solar Power & RefrigerationInstitute of Refrigeration and CryogenicsSchool of Mechanical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
27
|
Deng F, Chen Z, Wang C, Xiang C, Poredoš P, Wang R. Hygroscopic Porous Polymer for Sorption-Based Atmospheric Water Harvesting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2204724. [PMID: 36209387 PMCID: PMC9685462 DOI: 10.1002/advs.202204724] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Sorption-based atmospheric water harvesting (SAWH) holds huge potential due to its freshwater capabilities for alleviating water scarcity stress. The two essential parts, sorbent material and system structure, dominate the water sorption-desorption performance and the total water productivity for SAWH system together. Attributed to the superiorities in aspects of sorption-desorption performance, scalability, and compatibility in practical SAWH devices, hygroscopic porous polymers (HPPs) as next-generation sorbents are recently going through a vast surge. However, as HPPs' sorption mechanism, performance, and applied potential lack comprehensive and accurate guidelines, SAWH's subsequent development is restricted. To address the aforementioned problems, this review introduces HPPs' recent development related to mechanism, performance, and application. Furthermore, corresponding optimized strategies for both HPP-based sorbent bed and coupling structural design are proposed. Finally, original research routes are directed to develop next-generation HPP-based SAWH systems. The presented guidelines and insights can influence and inspire the future development of SAWH technology, further achieving SAWH's practical applications.
Collapse
Affiliation(s)
- Fangfang Deng
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Zhihui Chen
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Chenxi Wang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Chengjie Xiang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Primož Poredoš
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| | - Ruzhu Wang
- Institute of Refrigeration and CryogenicsMOE Engineering Research Center of Solar Power and RefrigerationShanghai Jiao Tong UniversityShanghai200040China
| |
Collapse
|