1
|
Abdinejad M, Massen-Hane M, Seo H, Hatton TA. Oxygen-Stable Electrochemical CO 2 Capture using Redox-Active Heterocyclic Benzodithiophene Quinone. Angew Chem Int Ed Engl 2024; 63:e202412229. [PMID: 39248443 DOI: 10.1002/anie.202412229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Electrochemical carbon capture offers a promising alternative to thermal amine technology, which serves as the traditional benchmark method for CO2 capture. Despite its technological maturity, the widespread deployment of thermal amine technologies is hindered by high energy consumption and sorbent degradation. In contrast, electrochemical methods, with their inherently isothermal operation, address these challenges, offering enhanced energy efficiency and robustness. Among emerging strategies, electrochemical carbon capture systems using redox-active materials such as quinones stand out for their potential to capture CO2. However, their practical application is currently limited by their low stability in the presence of oxygen. We demonstrate that benzodithiophene quinone (BDT-Q), a heterocyclic quinone, exhibits high stability in electrochemical carbon capture processes with oxygen-containing feed gas. Conducted in a cyclic flow system with a simulated flue gas mixture containing 13 % CO2 and 3.5 % O2 for over 100 hours, the process demonstrates high oxygen stability with an electron utilization of 0.83 without significant degradation, indicating a promising approach for real world applications. Our study explores the potential of new heterocyclic quinone compounds in the context of carbon capture technologies.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | - Michael Massen-Hane
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| | - Hyowon Seo
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
- Department of Materials Science and Chemical Engineering, Stony Brook University, 11794, Stony Brook, NY, USA
| | - T Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, 02139, Cambridge, MA, USA
| |
Collapse
|
2
|
Namdari M, Kim Y, Pimlott DJD, Jewlal AML, Berlinguette CP. Reactive carbon capture using electrochemical reactors. Chem Soc Rev 2024. [PMID: 39635721 DOI: 10.1039/d4cs00834k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The electrolytic upgrading of CO2 presents a promising strategy to mitigate global CO2 emissions while generating valuable carbon-based products such as carbon monoxide, formate, and ethylene. However, the adoption of industrial-scale CO2 electrolyzers is hindered by the high energy and capital costs associated with the purification and pressurization of captured CO2 prior to electrolysis. One promising solution is "reactive carbon capture," which involves the electrolytic conversion of the eluent from CO2 capture units, or the "reactive carbon solution," directly into valuable products. This approach circumvents the energy-intensive processes required for electrolyzers fed with gaseous CO2. This Tutorial Review highlights recent advances for reactive carbon capture, showcasing its potential as a scalable solution for electrolyzers that upgrade CO2 into fuels and products.
Collapse
Affiliation(s)
- Marzieh Namdari
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Douglas J D Pimlott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Andrew M L Jewlal
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia, V6T 1Z1, Canada.
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia, V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia, V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
3
|
Peramaiah K, Yi M, Dutta I, Chatterjee S, Zhang H, Lai Z, Huang KW. Catalyst Design and Engineering for CO 2-to-Formic Acid Electrosynthesis for a Low-Carbon Economy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404980. [PMID: 39394824 DOI: 10.1002/adma.202404980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 09/19/2024] [Indexed: 10/14/2024]
Abstract
Formic acid (FA) has emerged as a promising candidate for hydrogen energy storage due to its favorable properties such as low toxicity, low flammability, and high volumetric hydrogen storage capacity under ambient conditions. Recent analyses have suggested that FA produced by electrochemical carbon dioxide (CO2) reduction reaction (eCO2RR) using low-carbon electricity exhibits lower fugitive hydrogen (H2) emissions and global warming potential (GWP) during the H2 carrier production, storage and transportation processes compared to those of other alternatives like methanol, methylcyclohexane, and ammonia. eCO2RR to FA can enable industrially relevant current densities without the need for high pressures, high temperatures, or auxiliary hydrogen sources. However, the widespread implementation of eCO2RR to FA is hindered by the requirement for highly stable and selective catalysts. Herein, the aim is to explore and evaluate the potential of catalyst engineering in designing stable and selective nanostructured catalysts that can facilitate economically viable production of FA.
Collapse
Affiliation(s)
- Karthik Peramaiah
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Moyu Yi
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Indranil Dutta
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Sudipta Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science - Pilani, K K Birla Goa Campus, NH-17B, Zuarinagar, Goa, 403726, India
| | - Huabin Zhang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Zhiping Lai
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Kuo-Wei Huang
- Chemistry Program, Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- Institute of Sustainability for Chemicals, Energy, and Environment, Agency for Science, Technology, and Research, 1 Pesek Rd, Singapore, 627833, Singapore
| |
Collapse
|
4
|
Xie L, Cai Y, Jiang Y, Shen M, Lam JCH, Zhu JJ, Zhu W. Direct low concentration CO 2 electroreduction to multicarbon products via rate-determining step tuning. Nat Commun 2024; 15:10386. [PMID: 39613736 DOI: 10.1038/s41467-024-54590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
Direct converting low concentration CO2 in industrial exhaust gases to high-value multi-carbon products via renewable-energy-powered electrochemical catalysis provides a sustainable strategy for CO2 utilization with minimized CO2 separation and purification capital and energy cost. Nonetheless, the electrocatalytic conversion of dilute CO2 into value-added chemicals (C2+ products, e.g., ethylene) is frequently impeded by low CO2 conversion rate and weak carbon intermediates' surface adsorption strength. Here, we fabricate a range of Cu catalysts comprising fine-tuned Cu(111)/Cu2O(111) interface boundary density crystal structures aimed at optimizing rate-determining step and decreasing the thermodynamic barriers of intermediates' adsorption. Utilizing interface boundary engineering, we attain a Faradaic efficiency of (51.9 ± 2.8) % and a partial current density of (34.5 ± 6.4) mA·cm-2 for C2+ products at a dilute CO2 feed condition (5% CO2 v/v), comparing to the state-of-art low concentration CO2 electrolysis. In contrast to the prevailing belief that the CO2 activation step (C O 2 + e - + * → C O 2 - * ) governs the reaction rate, we discover that, under dilute CO2 feed conditions, the rate-determining step shifts to the generation of *COOH (C O 2 - * + H 2 O → C * O O H + O H - ( a q ) ) at the Cu0/Cu1+ interface boundary, resulting in a better C2+ production performance.
Collapse
Affiliation(s)
- Liangyiqun Xie
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yanming Cai
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Meikun Shen
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, OR, 97403, USA
| | - Jason Chun-Ho Lam
- School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, 999077, China
| | - Jun-Jie Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenlei Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, State Key Laboratory of Analytical Chemistry for Life Science, the Frontiers Science Center for Critical Earth Material Cycling, School of the Environment, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
5
|
Neves-Garcia T, Hasan M, Zhu Q, Li J, Jiang Z, Liang Y, Wang H, Rossi LM, Warburton RE, Baker LR. Integrated Carbon Dioxide Capture by Amines and Conversion to Methane on Single-Atom Nickel Catalysts. J Am Chem Soc 2024; 146:31633-31646. [PMID: 39503164 DOI: 10.1021/jacs.4c09744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Direct electrochemical reduction of carbon dioxide (CO2) capture species, i.e., carbamate and (bi)carbonate, can be promising for CO2 capture and conversion from point-source, where the energetically demanding stripping step is bypassed. Here, we describe a class of atomically dispersed nickel (Ni) catalysts electrodeposited on various electrode surfaces that are shown to directly convert captured CO2 to methane (CH4). A detailed study employing X-ray photoelectron spectroscopy (XPS) and electron microscopy (EM) indicate that highly dispersed Ni atoms are uniquely active for converting capture species to CH4, and the activity of single-atom Ni is confirmed using control experiments with a molecularly defined Ni phthalocyanine catalyst supported on carbon nanotubes. Comparing the kinetics of various capture solutions obtained from hydroxide, ammonia, primary, secondary, and tertiary amines provide evidence that carbamate, rather than (bi)carbonate and/or dissolved CO2, is primarily responsible for CH4 production. This conclusion is supported by 13C nuclear magnetic resonance (NMR) spectroscopy of capture solutions as well as control experiments comparing reaction selectivity with and without CO2 purging. These findings are understood with the help of density functional theory (DFT) calculations showing that single-atom nickel (Ni) dispersed on gold (Au) is active for the direct reduction of carbamate, producing CH4 as the primary product. This is the first example of direct electrochemical conversion of carbamate to CH4, and the mechanism of this process provides new insight on the potential for integrated capture and conversion of CO2 directly to hydrocarbons.
Collapse
Affiliation(s)
- Tomaz Neves-Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | - Mahmudul Hasan
- Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Quansong Zhu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jing Li
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Zhan Jiang
- Shenzhen Key Laboratory of Printed Electronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Yongye Liang
- Shenzhen Key Laboratory of Printed Electronics, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Hailiang Wang
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Energy Sciences Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Liane M Rossi
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo, São Paulo 05508-000, Brazil
| | | | - L Robert Baker
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Bruggeman DF, Rothenberg G, Garcia AC. Investigating proton shuttling and electrochemical mechanisms of amines in integrated CO 2 capture and utilization. Nat Commun 2024; 15:9207. [PMID: 39448574 PMCID: PMC11502734 DOI: 10.1038/s41467-024-53543-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Carbon capture and utilization (CCU) technologies present a promising solution for converting CO2 emissions into valuable products. Here we show how amines, such as monoethanolamine (MEA) and 2-amino-2-methyl-1-propanol (AMP), influence the electrochemical CO2 reduction process in an integrated CCU system. Using in situ spectroscopic techniques, we identify the key roles of carbamate bond strength, proton shuttling, and amine structure in dictating reaction pathways on copper (Cu) and lead (Pb) electrodes. Our findings demonstrate that on Cu electrodes, surface blockage by ammonium species impedes CO₂ reduction, whereas on Pb electrodes, proton shuttling enhances the production of hydrocarbon products. This study provides additional insights into optimizing CCU systems by tailoring the choice of amines and electrode materials, advancing the selective conversion of CO₂ into valuable chemicals.
Collapse
Affiliation(s)
- D F Bruggeman
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - G Rothenberg
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - A C Garcia
- Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Xie F, Wang Z, Kao CW, Lan J, Lu YR, Tan Y. Asymmetric Local Electric Field Induced by Dual Heteroatoms on Copper Boosts Efficient CO 2 Reduction Over Ultrawide Potential Window. Angew Chem Int Ed Engl 2024; 63:e202407661. [PMID: 38924201 DOI: 10.1002/anie.202407661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Electrocatalytic reduction of CO2 powered by renewable electricity provides an elegant route for converting CO2 into valuable chemicals and feedstocks, but normally suffers from a high overpotential and low selectivity. Herein, Ag and Sn heteroatoms were simultaneously introduced into nanoporous Cu (np-Ag/Sn-Cu) mainly in the form of an asymmetric local electric field for CO2 electroreduction to CO in an aqueous solution. The designed np-Ag/Sn-Cu catalyst realizes a recorded 90 % energy efficiency and a 100 % CO Faradaic efficiency over ultrawide potential window (ΔE=1.4 V), outperforming state-of-the-art Au and Ag-based catalysts. Density functional theory calculations combined with in situ spectroscopy studies reveal that Ag and Sn heteroatoms incorporated into Cu matrix could generate strong and asymmetric local electric field, which promotes the activation of CO2 molecules, enhances the stabilization of the *COOH intermediate, and suppresses the hydrogen evolution reaction, thus favoring the production of CO during CO2RR.
Collapse
Affiliation(s)
- Feng Xie
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| | - Zhen Wang
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Jiao Lan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Yongwen Tan
- College of Materials Science and Engineering, State Key Laboratory of Advanced Design and Manufacturing Technology for Vehicle, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
8
|
Xiao YC, Sun SS, Zhao Y, Miao RK, Fan M, Lee G, Chen Y, Gabardo CM, Yu Y, Qiu C, Guo Z, Wang X, Papangelakis P, Huang JE, Li F, O'Brien CP, Kim J, Han K, Corbett PJ, Howe JY, Sargent EH, Sinton D. Reactive capture of CO 2 via amino acid. Nat Commun 2024; 15:7849. [PMID: 39245666 PMCID: PMC11381538 DOI: 10.1038/s41467-024-51908-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Reactive capture of carbon dioxide (CO2) offers an electrified pathway to produce renewable carbon monoxide (CO), which can then be upgraded into long-chain hydrocarbons and fuels. Previous reactive capture systems relied on hydroxide- or amine-based capture solutions. However, selectivity for CO remains low (<50%) for hydroxide-based systems and conventional amines are prone to oxygen (O2) degradation. Here, we develop a reactive capture strategy using potassium glycinate (K-GLY), an amino acid salt (AAS) capture solution applicable to O2-rich CO2-lean conditions. By employing a single-atom catalyst, engineering the capture solution, and elevating the operating temperature and pressure, we increase the availability of dissolved in-situ CO2 and achieve CO production with 64% Faradaic efficiency (FE) at 50 mA cm-2. We report a measured CO energy efficiency (EE) of 31% and an energy intensity of 40 GJ tCO-1, exceeding the best hydroxide- and amine-based reactive capture reports. The feasibility of the full reactive capture process is demonstrated with both simulated flue gas and direct air input.
Collapse
Affiliation(s)
- Yurou Celine Xiao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Siyu Sonia Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yong Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Rui Kai Miao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Mengyang Fan
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Yuanjun Chen
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Christine M Gabardo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Yan Yu
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Chenyue Qiu
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Zunmin Guo
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Xinyue Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Panagiotis Papangelakis
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jianan Erick Huang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Feng Li
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Colin P O'Brien
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Jiheon Kim
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Kai Han
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Paul J Corbett
- Shell Global Solutions International B.V., Amsterdam, The Netherlands
| | - Jane Y Howe
- Department of Materials Science & Engineering, University of Toronto, Toronto, ON, Canada
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
9
|
Ramasamy N, Raj AJLP, Akula VV, Nagarasampatti Palani K. Leveraging experimental and computational tools for advancing carbon capture adsorbents research. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55069-55098. [PMID: 39225926 DOI: 10.1007/s11356-024-34838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
CO2 emissions have been steadily increasing and have been a major contributor for climate change compelling nations to take decisive action fast. The average global temperature could reach 1.5 °C by 2035 which could cause a significant impact on the environment, if the emissions are left unchecked. Several strategies have been explored of which carbon capture is considered the most suitable for faster deployment. Among different carbon capture solutions, adsorption is considered both practical and sustainable for scale-up. But the development of adsorbents that can exhibit satisfactory performance is typically done through the experimental approach. This hit and trial method is costly and time consuming and often success is not guaranteed. Machine learning (ML) and other computational tools offer an alternate to this approach and is accessible to everyone. Often, the research towards materials focuses on maximizing its performance under simulated conditions. The aim of this study is to present a holistic view on progress in material research for carbon capture and the various tools available in this regard. Thus, in this review, we first present a context on the workflow for carbon capture material development before providing various machine learning and computational tools available to support researchers at each stage of the process. The most popular application of ML models is for predicting material performance and recommends that ML approaches can be utilized wherever possible so that experimentations can be focused on the later stages of the research and development.
Collapse
Affiliation(s)
- Niranjan Ramasamy
- Department of Chemical Engineering, Rajalakshmi Engineering College, Chennai, India
| | | | - Vedha Varshini Akula
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India
| | - Kavitha Nagarasampatti Palani
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Sriperumbudur, 602117, Kancheepuram, India.
| |
Collapse
|
10
|
Ma X, Luo S, Hua Y, Seetharaman S, Zhu X, Hou J, Zhang L, Wang W, Sun Y. An alumina phase induced composite transition shuttle to stabilize carbon capture cycles. Nat Commun 2024; 15:7556. [PMID: 39215009 PMCID: PMC11364855 DOI: 10.1038/s41467-024-52016-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Limiting global warming to 1.5-2 °C requires a 50-90% reduction in CO2 emissions in 2050, depending on different scenarios, and carbon capture, utilization, and storage is a promising technology that can help reach this objective. Calcium oxide (CaO) carbon capture is an appealing choice because of its affordability, large potential capacity, and ability to withstand the high temperatures of flue gases. However, the structural instability and capacity fading challenge its large-scale industrial applications. Here, we design a reversible reaction shuttle in CaO-based sorbents to improve the structure stability by changing the initial alumina phases. Diverse alumina phases (x-Al2O3) are first synthesized and utilized as the aluminum source for creating CaO@x-Al2O3 composites. As expected, the CaO@δ-Al2O3 composite demonstrates a carbon capture capacity of 0.43 g-CO2/g-sorbent after 50 cycles, with an impressive capacity retention of 82.7%. Combined characterizations and calculations reveal that this stability improvement is attributed to a transition shuttle between Ca3Al2O6 and Ca5Al6O14, which can effectively restrain the complete decompositions of those structure-stabilized intermediate phases. An economic assessment further identifies the significance of heat transfer efficiency improvement upon cycles, and control of capital/operation cost, energy price and carbon tax for a future cost-effective commercialization of current strategy.
Collapse
Affiliation(s)
- Xingyue Ma
- School of Metallurgy and Environment, Central South University, Changsha, China
- National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, China
| | - Shuxuan Luo
- School of Metallurgy and Environment, Central South University, Changsha, China
- National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, China
| | - Yunhui Hua
- Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore, Singapore
| | - Seshadri Seetharaman
- Department of Materials Science and Engineering, Royal Institute of Technology, Stockholm, Sweden
| | - Xiaobo Zhu
- College of Materials Science and Engineering, Changsha University of Science and Technology, Changsha, China
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, Australia.
| | - Lei Zhang
- School of Metallurgy and Environment, Central South University, Changsha, China
- National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, China
| | - Wanlin Wang
- School of Metallurgy and Environment, Central South University, Changsha, China.
- National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, China.
| | - Yongqi Sun
- School of Metallurgy and Environment, Central South University, Changsha, China.
- National Center for International Cooperation of Clean Metallurgy, Central South University, Changsha, China.
| |
Collapse
|
11
|
Dongare S, Zeeshan M, Aydogdu AS, Dikki R, Kurtoğlu-Öztulum SF, Coskun OK, Muñoz M, Banerjee A, Gautam M, Ross RD, Stanley JS, Brower RS, Muchharla B, Sacci RL, Velázquez JM, Kumar B, Yang JY, Hahn C, Keskin S, Morales-Guio CG, Uzun A, Spurgeon JM, Gurkan B. Reactive capture and electrochemical conversion of CO 2 with ionic liquids and deep eutectic solvents. Chem Soc Rev 2024; 53:8563-8631. [PMID: 38912871 DOI: 10.1039/d4cs00390j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Ionic liquids (ILs) and deep eutectic solvents (DESs) have tremendous potential for reactive capture and conversion (RCC) of CO2 due to their wide electrochemical stability window, low volatility, and high CO2 solubility. There is environmental and economic interest in the direct utilization of the captured CO2 using electrified and modular processes that forgo the thermal- or pressure-swing regeneration steps to concentrate CO2, eliminating the need to compress, transport, or store the gas. The conventional electrochemical conversion of CO2 with aqueous electrolytes presents limited CO2 solubility and high energy requirement to achieve industrially relevant products. Additionally, aqueous systems have competitive hydrogen evolution. In the past decade, there has been significant progress toward the design of ILs and DESs, and their composites to separate CO2 from dilute streams. In parallel, but not necessarily in synergy, there have been studies focused on a few select ILs and DESs for electrochemical reduction of CO2, often diluting them with aqueous or non-aqueous solvents. The resulting electrode-electrolyte interfaces present a complex speciation for RCC. In this review, we describe how the ILs and DESs are tuned for RCC and specifically address the CO2 chemisorption and electroreduction mechanisms. Critical bulk and interfacial properties of ILs and DESs are discussed in the context of RCC, and the potential of these electrolytes are presented through a techno-economic evaluation.
Collapse
Affiliation(s)
- Saudagar Dongare
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Muhammad Zeeshan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Ahmet Safa Aydogdu
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Ruth Dikki
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Samira F Kurtoğlu-Öztulum
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Department of Materials Science and Technology, Faculty of Science, Turkish-German University, Sahinkaya Cad., Beykoz, 34820 Istanbul, Turkey
| | - Oguz Kagan Coskun
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Miguel Muñoz
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| | - Avishek Banerjee
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Manu Gautam
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - R Dominic Ross
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Jared S Stanley
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Rowan S Brower
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Baleeswaraiah Muchharla
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Robert L Sacci
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Jesús M Velázquez
- Department of Chemistry, University of California, Davis, Davis, CA 95616, USA
| | - Bijandra Kumar
- Department of Mathematics, Computer Science, & Engineering Technology, Elizabeth City State University, 1704 Weeksville Road, Elizabeth City, NC 27909, USA
| | - Jenny Y Yang
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Christopher Hahn
- Materials Science Division, Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Carlos G Morales-Guio
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alper Uzun
- Department of Chemical and Biological Engineering, Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University TÜPRAŞ Energy Center (KUTEM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Joshua M Spurgeon
- Conn Center for Renewable Energy Research, University of Louisville, Louisville, KY 40292, USA
| | - Burcu Gurkan
- Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Yang Y, He F, Lv X, Liu Q, Wu A, Qi Z, Wu HB. Tackling CO 2 Loss in Electrocatalytic Carbon Dioxide Reduction by Advanced Material and Electrolyzer Design. SMALL METHODS 2024:e2400786. [PMID: 39075827 DOI: 10.1002/smtd.202400786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/08/2024] [Indexed: 07/31/2024]
Abstract
Electrocatalytic CO2 reduction (ECO2R) has been considered as a promising approach to convert CO2 into valuable chemicals and fuels. CO2 loss in conventional alkaline electrolyzers has been recognized as a major obstacle that compromising the efficiency of the ECO2R system. This review firstly conducts an in-depth assessment of the origin and influence of CO2 loss. On this basis, this work summarizes electrolyzer configurations based on novel material and structure design that are capable of tackling CO2 loss, including acidic electrolyzer, bipolar membrane (BPM) derived electrolyzer, cascade electrolyzer, liquid-phase-anode electrolyzer, and liquid-fed electrolyzer. The design strategies and challenges of these carbon efficient electrolyzers have been deliberated in detail. By comparing and analyzing the advantages and limitations of various electrolyzer designs, this work aims to provide some guidelines for the development of efficient ECO2R technology toward large-scale industrial application.
Collapse
Affiliation(s)
- Yue Yang
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Fan He
- Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 311121, China
| | - Xiangzhou Lv
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Qian Liu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| | - Angjian Wu
- Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 311121, China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Zhifu Qi
- Zhejiang Baima Lake Laboratory Co., Ltd, Hangzhou, Zhejiang, 311121, China
| | - Hao Bin Wu
- School of Materials Science and Engineering, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
13
|
Wang J, Jing X, Yang Y, Xu B, Jia R, Duan C. Enzymatic Activation and Continuous Electrochemical Production of Methane from Dilute CO 2 Sources with a Self-Healing Capsule. J Am Chem Soc 2024; 146:19951-19961. [PMID: 38963753 DOI: 10.1021/jacs.4c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Converting dilute CO2 source into value-added chemicals and fuels is a promising route to reduce fossil fuel consumption and greenhouse gas emission, but integrating electrocatalysis with CO2 capture still faced marked challenges. Herein, we show that a self-healing metal-organic macrocycle functionalized as an electrochemical catalyst to selectively produce methane from flue gas and air with the lowest applied potential so far (0.06 V vs reversible hydrogen electrode, RHE) through an enzymatic activation fashion. The capsule emulates the enzyme' pocket to abstract one in situ-formed CO2-adduct molecule with the commercial amino alcohols, forming an easy-to-reduce substrate-involving clathrate to combine the CO2 capture with electroreduction for a thorough CO2 reduction. We find that the self-healing system exhibited enzymatic kinetics for the first time with the Michaelis-Menten mechanism in the electrochemical reduction of CO2 and maintained a methane Faraday efficiency (FE) of 74.24% with a selectivity of over 99% for continuous operation over 200 h. A consecutive working lab at 50 mA·cm-2, in an eleven-for-one (10 h working and 1 h healing) electrolysis manner, gives a methane turnover number (TON) of more than 10,000 within 100 h. The integrated electrolysis with CO2 capture facilitates the thorough reduction of flue gas (ca. 13.0% of CO2) and first time of air (ca. 400 ppm of CO2 to 42.7 mL CH4 from 1.0 m3 air). The new self-healing strategy of molecular electrocatalyst with an enzymatic activation manner and anodic shifting of the applied potentials provided a departure from the existing electrochemical catalytic techniques.
Collapse
Affiliation(s)
- Jinfeng Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Xu Jing
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Yang Yang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Baijie Xu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ruiming Jia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| |
Collapse
|
14
|
Almajed H, Kas R, Brimley P, Crow AM, Somoza-Tornos A, Hodge BM, Burdyny TE, Smith WA. Closing the Loop: Unexamined Performance Trade-Offs of Integrating Direct Air Capture with (Bi)carbonate Electrolysis. ACS ENERGY LETTERS 2024; 9:2472-2483. [PMID: 38751972 PMCID: PMC11091874 DOI: 10.1021/acsenergylett.4c00807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/12/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
CO2 from carbonate-based capture solutions requires a substantial energy input. Replacing this step with (bi)carbonate electrolysis has been commonly proposed as an efficient alternative that coproduces CO/syngas. Here, we assess the feasibility of directly integrating air contactors with (bi)carbonate electrolyzers by leveraging process, multiphysics, microkinetic, and technoeconomic models. We show that the copresence of CO32- with HCO3- in the contactor effluent greatly diminishes the electrolyzer performance and eventually results in a reduced CO2 capture fraction to ≤1%. Additionally, we estimate suitable effluents for (bi)carbonate electrolysis to require 5-14 times larger contactors than conventionally needed contactors, leading to unfavorable process economics. Notably, we show that the regeneration of the capture solvent inside (bi)carbonate electrolyzers is insufficient for CO2 recapture. Thus, we suggest process modifications that would allow this route to be operationally feasible. Overall, this work sheds light on the practical operation of integrated direct air capture with (bi)carbonate electrolysis.
Collapse
Affiliation(s)
- Hussain
M. Almajed
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Recep Kas
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Paige Brimley
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Allison M. Crow
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Ana Somoza-Tornos
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Bri-Mathias Hodge
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department
of Electrical, Computer and Energy Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department
of Applied Mathematics, University of Colorado
Boulder, Boulder, Colorado 80309, United States
| | - Thomas E. Burdyny
- Department
of Chemical Engineering, Delft University
of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Wilson A. Smith
- Department
of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable
and Sustainable Energy Institute, University
of Colorado Boulder, Boulder, Colorado 80309, United States
- National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
| |
Collapse
|
15
|
Pimlott DJD, Kim Y, Berlinguette CP. Reactive Carbon Capture Enables CO 2 Electrolysis with Liquid Feedstocks. Acc Chem Res 2024; 57:1007-1018. [PMID: 38526508 DOI: 10.1021/acs.accounts.3c00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
ConspectusThe electrochemical reduction of carbon dioxide (CO2RR) is a promising strategy for mitigating global CO2 emissions while simultaneously yielding valuable chemicals and fuels, such as CO, HCOO-, and C2H4. This approach becomes especially appealing when integrated with surplus renewable electricity, as the ensuing production of fuels could facilitate the closure of the carbon cycle. Despite these advantages, the realization of industrial-scale electrolyzers fed with CO2 will be challenged by the substantial energy inputs required to isolate, pressurize, and purify CO2 prior to electrolysis.To address these challenges, we devised an electrolyzer capable of directly converting reactive carbon solutions (e.g., a bicarbonate-rich eluent that exits a carbon capture unit) into higher value products. This "reactive carbon electrolyzer" operates by reacting (bi)carbonate with acid generated within the electrolyzer to produce CO2 in situ, thereby facilitating CO2RR at the cathode. This approach eliminates the need for expensive CO2 recovery and compression steps, as the electrolyzer can then then coupled directly to the CO2 capture unit.This Account outlines our endeavors in developing this type of electrolyzer, focusing on the design and implementation of materials for electrocatalytic (bi)carbonate conversion. We highlight the necessity for a permeable cathode that allows the efficient transport of (bi)carbonate ions while maintaining a sufficiently high catalytic surface area. We address the importance of the supporting electrolyte, detailing how (bi)carbonate concentration, counter cations, and ionic impurities impact selectivity for products formed in the electrolyzer. We also catalog state-of-the-art performance metrics for reactive carbon electrolyzers (i.e., Faradaic efficiency, full cell voltage, CO2 utilization efficiency) and outline strategies to bridge the gap between these values and those required for commercial operation Collectively, these findings contribute to the ongoing efforts to realize industrial-scale electrochemical reactors for CO2 conversion, bringing us closer to a sustainable and closed-loop carbon cycle.
Collapse
Affiliation(s)
- Douglas J D Pimlott
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Yongwook Kim
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Curtis P Berlinguette
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Chemical and Biological Engineering, The University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, The University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Canadian Institute for Advanced Research (CIFAR), 661 University Avenue, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
16
|
Boré A, Dziva G, Chu C, Huang Z, Liu X, Qin S, Ma W. Achieving sustainable emissions in China: Techno-economic analysis of post-combustion carbon capture unit retrofitted to WTE plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119280. [PMID: 37897897 DOI: 10.1016/j.jenvman.2023.119280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/25/2023] [Accepted: 10/06/2023] [Indexed: 10/30/2023]
Abstract
China's aims of achieving CO2 emissions peak by 2030 and carbon neutrality by 2060 are crucial in guiding international efforts to mitigate climate change. Amine-based solvent technologies for capturing CO2 on a large scale have been implemented as retrofits in various industrial facilities, with a particular focus on coal-fired power plants. Nonetheless, its implementation within the waste-to-energy (WTE) industry is considerably limited and non-existent in China. This work presents a technical and economic evaluation of retrofitting a generic WTE facility in China with a carbon capture system. A rate-based process simulation model of the capture plant was developed in Aspen Plus, and the effect of equipment installation factors on capital cost was evaluated via the enhanced detailed factor (EDF) method. A set of key performance indicators were evaluated. The findings indicate that the energy demand linked to the capture system caused a decrease in efficiency by 13.17%, 14.85%, and 16.56% at 85%, 90%, and 95% capture rates, respectively, and the overall exergy efficiency of the system was reduced by 5.5%, 8.27%, and 10.63%, respectively. The estimated CO2 captured costs range from €56.41/tCO2 to €58.95/tCO2, while CO2 avoided costs range from €153.33/tCO2 to €236.47/tCO2. Retrofitting a CO2 capture unit at WTE facilities has the potential to substantially contribute to achieving the country's emission reduction targets. However, the successful implementation requires a comprehensive policy structure. This work offers some insights into the prospective integration of CO2 capture technology in China's WTE industry.
Collapse
Affiliation(s)
- Abdoulaye Boré
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Godknows Dziva
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chu Chu
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Zhuoshi Huang
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Xuewei Liu
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Siyuan Qin
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Wenchao Ma
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin University, Tianjin, 300072, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation, School of Ecology and Environment, Hainan University, Haikou, 570228, China.
| |
Collapse
|
17
|
Obasanjo CA, Gao G, Crane J, Golovanova V, García de Arquer FP, Dinh CT. High-rate and selective conversion of CO 2 from aqueous solutions to hydrocarbons. Nat Commun 2023; 14:3176. [PMID: 37264000 DOI: 10.1038/s41467-023-38963-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/24/2023] [Indexed: 06/03/2023] Open
Abstract
Electrochemical carbon dioxide (CO2) conversion to hydrocarbon fuels, such as methane (CH4), offers a promising solution for the long-term and large-scale storage of renewable electricity. To enable this technology, CO2-to-CH4 conversion must achieve high selectivity and energy efficiency at high currents. Here, we report an electrochemical conversion system that features proton-bicarbonate-CO2 mass transport management coupled with an in-situ copper (Cu) activation strategy to achieve high CH4 selectivity at high currents. We find that open matrix Cu electrodes sustain sufficient local CO2 concentration by combining both dissolved CO2 and in-situ generated CO2 from the bicarbonate. In-situ Cu activation through alternating current operation renders and maintains the catalyst highly selective towards CH4. The combination of these strategies leads to CH4 Faradaic efficiencies of over 70% in a wide current density range (100 - 750 mA cm-2) that is stable for at least 12 h at a current density of 500 mA cm-2. The system also delivers a CH4 concentration of 23.5% in the gas product stream.
Collapse
Affiliation(s)
- Cornelius A Obasanjo
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Guorui Gao
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Jackson Crane
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Viktoria Golovanova
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, 08860, Spain
| | - Cao-Thang Dinh
- Department of Chemical Engineering, Queen's University, Kingston, ON, K7L 3N6, Canada.
| |
Collapse
|
18
|
Abdinejad M, Yuan T, Tang K, Duangdangchote S, Farzi A, Iglesias van Montfort HP, Li M, Middelkoop J, Wolff M, Seifitokaldani A, Voznyy O, Burdyny T. Electroreduction of Carbon Dioxide to Acetate using Heterogenized Hydrophilic Manganese Porphyrins. Chemistry 2023; 29:e202203977. [PMID: 36576084 DOI: 10.1002/chem.202203977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/28/2022] [Indexed: 12/29/2022]
Abstract
The electrochemical reduction of carbon dioxide (CO2 ) to value-added chemicals is a promising strategy to mitigate climate change. Metalloporphyrins have been used as a promising class of stable and tunable catalysts for the electrochemical reduction reaction of CO2 (CO2 RR) but have been primarily restricted to single-carbon reduction products. Here, we utilize functionalized earth-abundant manganese tetraphenylporphyrin-based (Mn-TPP) molecular electrocatalysts that have been immobilized via electrografting onto a glassy carbon electrode (GCE) to convert CO2 with overall 94 % Faradaic efficiencies, with 62 % being converted to acetate. Tuning of Mn-TPP with electron-withdrawing sulfonate groups (Mn-TPPS) introduced mechanistic changes arising from the electrostatic interaction between the sulfonate groups and water molecules, resulting in better surface coverage, which facilitated higher conversion rates than the non-functionalized Mn-TPP. For Mn-TPP only carbon monoxide and formate were detected as CO2 reduction products. Density-functional theory (DFT) calculations confirm that the additional sulfonate groups could alter the C-C coupling pathway from *CO→*COH→*COH-CO to *CO→*CO-CO→*COH-CO, reducing the free energy barrier of C-C coupling in the case of Mn-TPPS. This opens a new approach to designing metalloporphyrin catalysts for two carbon products in CO2 RR.
Collapse
Affiliation(s)
- Maryam Abdinejad
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Tiange Yuan
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Keith Tang
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Salatan Duangdangchote
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Amirhossein Farzi
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, H3 A 0 C5 QC, Canada
| | | | - Mengran Li
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Joost Middelkoop
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Mädchen Wolff
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| | - Ali Seifitokaldani
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, H3 A 0 C5 QC, Canada
| | - Oleksandr Voznyy
- Department of Physical and Environmental Sciences, University of Toronto, 1265 Military Trail, Toronto, ON M1 C 1 A4, Canada
| | - Thomas Burdyny
- Department of Chemical Engineering, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft (the, Netherlands
| |
Collapse
|
19
|
Shao B, Wang ZQ, Gong XQ, Liu H, Qian F, Hu P, Hu J. Synergistic promotions between CO 2 capture and in-situ conversion on Ni-CaO composite catalyst. Nat Commun 2023; 14:996. [PMID: 36813792 PMCID: PMC9947161 DOI: 10.1038/s41467-023-36646-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
The integrated CO2 capture and conversion (iCCC) technology has been booming as a promising cost-effective approach for Carbon Neutrality. However, the lack of the long-sought molecular consensus about the synergistic effect between the adsorption and in-situ catalytic reaction hinders its development. Herein, we illustrate the synergistic promotions between CO2 capture and in-situ conversion through constructing the consecutive high-temperature Calcium-looping and dry reforming of methane processes. With systematic experimental measurements and density functional theory calculations, we reveal that the pathways of the reduction of carbonate and the dehydrogenation of CH4 can be interactively facilitated by the participation of the intermediates produced in each process on the supported Ni-CaO composite catalyst. Specifically, the adsorptive/catalytic interface, which is controlled by balancing the loading density and size of Ni nanoparticles on porous CaO, plays an essential role in the ultra-high CO2 and CH4 conversions of 96.5% and 96.0% at 650 °C, respectively.
Collapse
Affiliation(s)
- Bin Shao
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Zhi-Qiang Wang
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Honglai Liu
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China ,grid.28056.390000 0001 2163 4895State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - Feng Qian
- grid.28056.390000 0001 2163 4895Key Laboratory of Advanced Control and Optimization for Chemical Processes of Ministry of Education, School of Information Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China
| | - P. Hu
- grid.28056.390000 0001 2163 4895Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237 China ,grid.4777.30000 0004 0374 7521School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, Belfast, BT9 5AG UK
| | - Jun Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
20
|
Siegel RE, Pattanayak S, Berben LA. Reactive Capture of CO 2: Opportunities and Challenges. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Rachel E. Siegel
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| | - Santanu Pattanayak
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| | - Louise A. Berben
- Department of Chemistry, The University of California, 1 Shields Avenue, Davis, California 95161, United States
| |
Collapse
|