1
|
Mai J, Qian Q, Gao H, Fan Z, Zeng J, Xiao J. scTWAS Atlas: an integrative knowledgebase of single-cell transcriptome-wide association studies. Nucleic Acids Res 2024:gkae931. [PMID: 39420631 DOI: 10.1093/nar/gkae931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/03/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Single-cell transcriptome-wide association studies (scTWAS) is a new method for conducting TWAS analysis at the cellular level to identify gene-trait associations with higher precision. This approach helps overcome the challenge of interpreting cell-type heterogeneity in traditional TWAS results. As the field of scTWAS rapidly advances, there is a growing need for additional database platforms to integrate this wealth of data and knowledge effectively. To address this gap, we present scTWAS Atlas (https://ngdc.cncb.ac.cn/sctwas/), a comprehensive database of scTWAS information integrating literature curation and data analysis. The current version of scTWAS Atlas amasses 2,765,211 associations encompassing 34 traits, 30 cell types, 9 cell conditions and 16,470 genes. The database features visualization tools, including an interactive knowledge graph that integrates single-cell expression quantitative trait loci (sc-eQTL) and scTWAS associations to build a multi-omics level regulatory network at the cellular level. Additionally, scTWAS Atlas facilitates cross-cell-type analysis, highlighting cell-type-specific and shared TWAS genes. The database is designed with user-friendly interfaces and allows for easy browsing, searching, and downloading of relevant information. Overall, scTWAS Atlas is instrumental in exploring the genetic regulatory mechanisms at the cellular level and shedding light on the role of various cell types in biological processes, offering novel insights for human health research.
Collapse
Affiliation(s)
- Jialin Mai
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiheng Qian
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Gao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingyao Zeng
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingfa Xiao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Woodward DJ, Thorp JG, Middeldorp CM, Akóṣílè W, Derks EM, Gerring ZF. Leveraging pleiotropy for the improved treatment of psychiatric disorders. Mol Psychiatry 2024:10.1038/s41380-024-02771-7. [PMID: 39390223 DOI: 10.1038/s41380-024-02771-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/12/2024]
Abstract
Over 90% of drug candidates fail in clinical trials, while it takes 10-15 years and one billion US dollars to develop a single successful drug. Drug development is more challenging for psychiatric disorders, where disease comorbidity and complex symptom profiles obscure the identification of causal mechanisms for therapeutic intervention. One promising approach for determining more suitable drug candidates in clinical trials is integrating human genetic data into the selection process. Genome-wide association studies have identified thousands of replicable risk loci for psychiatric disorders, and sophisticated statistical tools are increasingly effective at using these data to pinpoint likely causal genes. These studies have also uncovered shared or pleiotropic genetic risk factors underlying comorbid psychiatric disorders. In this article, we argue that leveraging pleiotropic effects will provide opportunities to discover novel drug targets and identify more effective treatments for psychiatric disorders by targeting a common mechanism rather than treating each disease separately.
Collapse
Affiliation(s)
- Damian J Woodward
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.
| | - Jackson G Thorp
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Christel M Middeldorp
- Department of Child and Adolescent Psychiatry and Psychology, Amsterdam UMC, Amsterdam Reproduction and Development Research Institute, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
- Arkin Mental Health Care, Amsterdam, The Netherlands
- Levvel, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
- Child Health Research Centre, University of Queensland, Brisbane, QLD, Australia
- Child and Youth Mental Health Service, Children's Health Queensland Hospital and Health Service, Brisbane, QLD, Australia
| | - Wọlé Akóṣílè
- Greater Brisbane Clinical School, Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | - Eske M Derks
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Zachary F Gerring
- Brain and Mental Health, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.
- Healthy Development and Ageing, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Qi T, Song L, Guo Y, Chen C, Yang J. From genetic associations to genes: methods, applications, and challenges. Trends Genet 2024; 40:642-667. [PMID: 38734482 DOI: 10.1016/j.tig.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
Genome-wide association studies (GWASs) have identified numerous genetic loci associated with human traits and diseases. However, pinpointing the causal genes remains a challenge, which impedes the translation of GWAS findings into biological insights and medical applications. In this review, we provide an in-depth overview of the methods and technologies used for prioritizing genes from GWAS loci, including gene-based association tests, integrative analysis of GWAS and molecular quantitative trait loci (xQTL) data, linking GWAS variants to target genes through enhancer-gene connection maps, and network-based prioritization. We also outline strategies for generating context-dependent xQTL data and their applications in gene prioritization. We further highlight the potential of gene prioritization in drug repurposing. Lastly, we discuss future challenges and opportunities in this field.
Collapse
Affiliation(s)
- Ting Qi
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| | - Liyang Song
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Yazhou Guo
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Chang Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Jian Yang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China; School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
4
|
Choi E, Song J, Lee Y, Jeong Y, Jang W. Prioritizing susceptibility genes for the prognosis of male-pattern baldness with transcriptome-wide association study. Hum Genomics 2024; 18:34. [PMID: 38566255 PMCID: PMC10985920 DOI: 10.1186/s40246-024-00591-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND Male-pattern baldness (MPB) is the most common cause of hair loss in men. It can be categorized into three types: type 2 (T2), type 3 (T3), and type 4 (T4), with type 1 (T1) being considered normal. Although various MPB-associated genetic variants have been suggested, a comprehensive study for linking these variants to gene expression regulation has not been performed to the best of our knowledge. RESULTS In this study, we prioritized MPB-related tissue panels using tissue-specific enrichment analysis and utilized single-tissue panels from genotype-tissue expression version 8, as well as cross-tissue panels from context-specific genetics. Through a transcriptome-wide association study and colocalization analysis, we identified 52, 75, and 144 MPB associations for T2, T3, and T4, respectively. To assess the causality of MPB genes, we performed a conditional and joint analysis, which revealed 10, 11, and 54 putative causality genes for T2, T3, and T4, respectively. Finally, we conducted drug repositioning and identified potential drug candidates that are connected to MPB-associated genes. CONCLUSIONS Overall, through an integrative analysis of gene expression and genotype data, we have identified robust MPB susceptibility genes that may help uncover the underlying molecular mechanisms and the novel drug candidates that may alleviate MPB.
Collapse
Affiliation(s)
- Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul, 04620, Republic of Korea.
| |
Collapse
|
5
|
Evans P, Nagai T, Konkashbaev A, Zhou D, Knapik EW, Gamazon ER. Transcriptome-Wide Association Studies (TWAS): Methodologies, Applications, and Challenges. Curr Protoc 2024; 4:e981. [PMID: 38314955 PMCID: PMC10846672 DOI: 10.1002/cpz1.981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Transcriptome-wide association study (TWAS) methodologies aim to identify genetic effects on phenotypes through the mediation of gene transcription. In TWAS, in silico models of gene expression are trained as functions of genetic variants and then applied to genome-wide association study (GWAS) data. This post-GWAS analysis identifies gene-trait associations with high interpretability, enabling follow-up functional genomics studies and the development of genetics-anchored resources. We provide an overview of commonly used TWAS approaches, their advantages and limitations, and some widely used applications. © 2024 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Patrick Evans
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Taylor Nagai
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Anuar Konkashbaev
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dan Zhou
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Ela W Knapik
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric R Gamazon
- Division of Genetic Medicine and Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
6
|
Dai Q, Epstein MP, Yang J. STACCato: Supervised Tensor Analysis tool for studying Cell-cell Communication using scRNA-seq data across multiple samples and conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.15.571918. [PMID: 38168391 PMCID: PMC10760171 DOI: 10.1101/2023.12.15.571918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Research on cell-cell communication (CCC) is crucial for understanding biology and diseases. Many existing CCC inference tools neglect potential confounders, such as batch and demographic variables, when analyzing multi-sample, multi-condition scRNA-seq datasets. To address this significant gap, we introduce STACCato, a Supervised Tensor Analysis tool for studying Cell-cell Communication, that identifies CCC events and estimates the effects of biological conditions (e.g., disease status, tissue types) on such events, while adjusting for potential confounders. Application of STACCato to both simulated data and real scRNA-seq data of lupus and autism studies demonstrate that incorporating sample-level variables into CCC inference consistently provides more accurate estimations of disease effects and cell type activity patterns than existing methods that ignore sample-level variables. A computational tool implementing the STACCato framework is available on GitHub.
Collapse
Affiliation(s)
- Qile Dai
- Department of Biostatistics and Bioinformatics, Emory University School of Public Health, Atlanta, Georgia 30322, United States of America
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Michael P. Epstein
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| | - Jingjing Yang
- Center for Computational and Quantitative Genetics, Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, United States of America
| |
Collapse
|
7
|
Cuomo ASE, Nathan A, Raychaudhuri S, MacArthur DG, Powell JE. Single-cell genomics meets human genetics. Nat Rev Genet 2023; 24:535-549. [PMID: 37085594 PMCID: PMC10784789 DOI: 10.1038/s41576-023-00599-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Anna S E Cuomo
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph E Powell
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
8
|
Jeong Y, Song J, Lee Y, Choi E, Won Y, Kim B, Jang W. A Transcriptome-Wide Analysis of Psoriasis: Identifying the Potential Causal Genes and Drug Candidates. Int J Mol Sci 2023; 24:11717. [PMID: 37511476 PMCID: PMC10380797 DOI: 10.3390/ijms241411717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by cutaneous eruptions and pruritus. Because the genetic backgrounds of psoriasis are only partially revealed, an integrative and rigorous study is necessary. We conducted a transcriptome-wide association study (TWAS) with the new Genotype-Tissue Expression version 8 reference panels, including some tissue and multi-tissue panels that were not used previously. We performed tissue-specific heritability analyses on genome-wide association study data to prioritize the tissue panels for TWAS analysis. TWAS and colocalization (COLOC) analyses were performed with eight tissues from the single-tissue panels and the multi-tissue panels of context-specific genetics (CONTENT) to increase tissue specificity and statistical power. From TWAS, we identified the significant associations of 101 genes in the single-tissue panels and 64 genes in the multi-tissue panels, of which 26 genes were replicated in the COLOC. Functional annotation and network analyses identified that the genes were associated with psoriasis and/or immune responses. We also suggested drug candidates that interact with jointly significant genes through a conditional and joint analysis. Together, our findings may contribute to revealing the underlying genetic mechanisms and provide new insights into treatments for psoriasis.
Collapse
Affiliation(s)
- Yeonbin Jeong
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Jaeseung Song
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Yubin Lee
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Eunyoung Choi
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Youngtae Won
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| | - Byunghyuk Kim
- Department of Life Sciences, Dongguk University-Seoul, Goyang 10326, Republic of Korea
| | - Wonhee Jang
- Department of Life Sciences, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
9
|
Song X, Ji J, Rothstein JH, Alexeeff SE, Sakoda LC, Sistig A, Achacoso N, Jorgenson E, Whittemore AS, Klein RJ, Habel LA, Wang P, Sieh W. MiXcan: a framework for cell-type-aware transcriptome-wide association studies with an application to breast cancer. Nat Commun 2023; 14:377. [PMID: 36690614 PMCID: PMC9871010 DOI: 10.1038/s41467-023-35888-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/05/2023] [Indexed: 01/25/2023] Open
Abstract
Human bulk tissue samples comprise multiple cell types with diverse roles in disease etiology. Conventional transcriptome-wide association study approaches predict genetically regulated gene expression at the tissue level, without considering cell-type heterogeneity, and test associations of predicted tissue-level expression with disease. Here we develop MiXcan, a cell-type-aware transcriptome-wide association study approach that predicts cell-type-level expression, identifies disease-associated genes via combination of cell-type-level association signals for multiple cell types, and provides insight into the disease-critical cell type. As a proof of concept, we conducted cell-type-aware analyses of breast cancer in 58,648 women and identified 12 transcriptome-wide significant genes using MiXcan compared with only eight genes using conventional approaches. Importantly, MiXcan identified genes with distinct associations in mammary epithelial versus stromal cells, including three new breast cancer susceptibility genes. These findings demonstrate that cell-type-aware transcriptome-wide analyses can reveal new insights into the genetic and cellular etiology of breast cancer and other diseases.
Collapse
Affiliation(s)
- Xiaoyu Song
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Jiayi Ji
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joseph H Rothstein
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stacey E Alexeeff
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Lori C Sakoda
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Adriana Sistig
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ninah Achacoso
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Alice S Whittemore
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Robert J Klein
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Laurel A Habel
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Pei Wang
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Weiva Sieh
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Bhattacharya A, Hirbo JB, Zhou D, Zhou W, Zheng J, Kanai M, Pasaniuc B, Gamazon ER, Cox NJ. Best practices for multi-ancestry, meta-analytic transcriptome-wide association studies: Lessons from the Global Biobank Meta-analysis Initiative. CELL GENOMICS 2022; 2:100180. [PMID: 36341024 PMCID: PMC9631681 DOI: 10.1016/j.xgen.2022.100180] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/09/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
The Global Biobank Meta-analysis Initiative (GBMI), through its diversity, provides a valuable opportunity to study population-wide and ancestry-specific genetic associations. However, with multiple ascertainment strategies and multi-ancestry study populations across biobanks, GBMI presents unique challenges in implementing statistical genetics methods. Transcriptome-wide association studies (TWASs) boost detection power for and provide biological context to genetic associations by integrating genetic variant-to-trait associations from genome-wide association studies (GWASs) with predictive models of gene expression. TWASs present unique challenges beyond GWASs, especially in a multi-biobank, meta-analytic setting. Here, we present the GBMI TWAS pipeline, outlining practical considerations for ancestry and tissue specificity, meta-analytic strategies, and open challenges at every step of the framework. We advise conducting ancestry-stratified TWASs using ancestry-specific expression models and meta-analyzing results using inverse-variance weighting, showing the least test statistic inflation. Our work provides a foundation for adding transcriptomic context to biobank-linked GWASs, allowing for ancestry-aware discovery to accelerate genomic medicine.
Collapse
Affiliation(s)
- Arjun Bhattacharya
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jibril B. Hirbo
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Dan Zhou
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jie Zheng
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Masahiro Kanai
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - the Global Biobank Meta-analysis Initiative
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Quantitative and Computational Biosciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- MRC Integrative Epidemiology Unit (IEU), Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Bogdan Pasaniuc
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Computational Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Eric R. Gamazon
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Nancy J. Cox
- Department of Medicine, Division of Genetic Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|