1
|
Bae M, Le C, Mehta RS, Dong X, Pieper LM, Ramirez L, Alexander M, Kiamehr S, Turnbaugh PJ, Huttenhower C, Chan AT, Balskus EP. Metatranscriptomics-guided discovery and characterization of a polyphenol-metabolizing gut microbial enzyme. Cell Host Microbe 2024; 32:1887-1896.e8. [PMID: 39471822 PMCID: PMC11585353 DOI: 10.1016/j.chom.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
Gut microbial catechol dehydroxylases are a largely uncharacterized family of metalloenzymes that potentially impact human health by metabolizing dietary polyphenols. Here, we use metatranscriptomics (MTX) to identify highly transcribed catechol-dehydroxylase-encoding genes in human gut microbiomes. We discover a prevalent, previously uncharacterized catechol dehydroxylase (Gp Hcdh) from Gordonibacter pamelaeae that dehydroxylates hydrocaffeic acid (HCA), an anti-inflammatory gut microbial metabolite derived from plant-based foods. Further analyses suggest that the activity of Gp Hcdh may reduce anti-inflammatory benefits of polyphenol-rich foods. Together, these results show the utility of combining MTX analysis and biochemical characterization for gut microbial enzyme discovery and reveal a potential link between host inflammation and a specific polyphenol-metabolizing gut microbial enzyme.
Collapse
Affiliation(s)
- Minwoo Bae
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Chi Le
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Raaj S Mehta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xueyang Dong
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lindsey M Pieper
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Margaret Alexander
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sina Kiamehr
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Harvard Chan Microbiome in Public Health Center, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Andrew T Chan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Emily P Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
2
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
3
|
Culp EJ, Nelson NT, Verdegaal AA, Goodman AL. Microbial transformation of dietary xenobiotics shapes gut microbiome composition. Cell 2024; 187:6327-6345.e20. [PMID: 39321800 PMCID: PMC11531382 DOI: 10.1016/j.cell.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/23/2024] [Accepted: 08/20/2024] [Indexed: 09/27/2024]
Abstract
Diet is a major determinant of gut microbiome composition, and variation in diet-microbiome interactions may contribute to variation in their health consequences. To mechanistically understand these relationships, here we map interactions between ∼150 small-molecule dietary xenobiotics and the gut microbiome, including the impacts of these compounds on community composition, the metabolic activities of human gut microbes on dietary xenobiotics, and interindividual variation in these traits. Microbial metabolism can toxify and detoxify these compounds, producing emergent interactions that explain community-specific remodeling by dietary xenobiotics. We identify the gene and enzyme responsible for detoxification of one such dietary xenobiotic, resveratrol, and demonstrate that this enzyme contributes to interindividual variation in community remodeling by resveratrol. Together, these results systematically map interactions between dietary xenobiotics and the gut microbiome and connect toxification and detoxification to interpersonal differences in microbiome response to diet.
Collapse
Affiliation(s)
- Elizabeth J Culp
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Nora T Nelson
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew A Verdegaal
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew L Goodman
- Department of Microbial Pathogenesis and Microbial Sciences Institute, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Toh KY, Toh TS, Chua KP, Rajakumar P, Lee JWJ, Chong CW. Identification of age-associated microbial changes via long-read 16S sequencing. Gut Pathog 2024; 16:56. [PMID: 39369250 PMCID: PMC11456230 DOI: 10.1186/s13099-024-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/27/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Age-related gut microbial changes have been widely investigated over the past decade. Most of the previous age-related microbiome studies were conducted on the Western population, and the short-read sequencing (e.g., 16S V4 or V3-V4 region) was the most common microbiota profiling method. We evaluated the gut compositional differences using the long-read sequencing approach (i.e., PacBio sequencing targeting the full-length V1-V9 regions) to enable a deeper taxonomic resolution and better characterize the gut microbiome of Singaporeans from different age groups. RESULTS A total of 83 research participants were included in this study. Although no significant differences were detected in alpha and beta diversity, our study demonstrated several bacterial taxa with abundances that were significantly different across age groups. With young individuals as the reference group, Eggerthella lenta and Bacteroides uniformis were found to be significantly altered in the middle-aged group, while Catenibacterium mitsuokai and Bacteroides plebeius were significantly altered in the elderly group. These age-related differences in the gut microbiome were associated with aberrations in several predicted functional pathways, including dysregulations of pathways related to lipopolysaccharide and tricarboxylic acid cycle in older adults. CONCLUSIONS The utilization of long-read sequencing facilitated the identification of species- and strain-level differences across age groups, which was challenging with the partial 16S rRNA sequencing approach. Nevertheless, replication studies are warranted to confirm our findings, and if confirmed, further in vitro and in vivo studies are crucial to better understand the impact of the altered levels of age-related bacterial taxa. Additionally, the modest performance of strain-level taxonomic classification using 16S-ITS-23S gene sequences, likely due to the limited depth of currently available alignment databases, highlights the need for optimization and refinement in curating these databases for the long-read sequencing approach.
Collapse
Affiliation(s)
- Kai Yee Toh
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore.
| | - Tzi Shin Toh
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Khi Pin Chua
- Pacific Biosciences of California, Menlo Park, CA, USA
| | - Priscilla Rajakumar
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore
| | - Jonathan Wei Jie Lee
- AMILI Pte Ltd, 89 Science Park Drive #03-09, The Rutherford, Lobby C, Singapore Science Park 1, Singapore, 118261, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Division of Gastroenterology and Hepatology, Department of Medicine , National University Health System, Singapore, 119228, Singapore
- iHealthtech, National University of Singapore, Singapore, 117599, Singapore
- SynCTI, National University of Singapore, Singapore, 117456, Singapore
| | - Chun Wie Chong
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
- MUM Microbiome Research Centre, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
d’Oelsnitz S, Love JD, Ellington AD, Ross D. Ligify: Automated Genome Mining for Ligand-Inducible Transcription Factors. ACS Synth Biol 2024; 13:2577-2586. [PMID: 39029917 PMCID: PMC11334909 DOI: 10.1021/acssynbio.4c00372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/21/2024]
Abstract
Prokaryotic transcription factors can be repurposed into biosensors for the ligand-inducible control of gene expression, but the landscape of chemical ligands for which biosensors exist is extremely limited. To expand this landscape, we developed Ligify, a web application that leverages information in enzyme reaction databases to predict transcription factors that may be responsive to user-defined chemicals. Candidate transcription factors are then incorporated into automatically generated plasmid sequences that are designed to express GFP in response to the target chemical. Our benchmarking analyses demonstrated that Ligify correctly predicted 31/100 previously validated biosensors and highlighted strategies for further improvement. We then used Ligify to build a panel of genetic circuits that could induce a 47-fold, 5-fold, 9-fold, and 27-fold change in fluorescence in response to D-ribose, L-sorbose, isoeugenol, and 4-vinylphenol, respectively. Ligify should enhance the ability of researchers to quickly develop biosensors for an expanded range of chemicals and is publicly available at https://ligify.groov.bio.
Collapse
Affiliation(s)
- Simon d’Oelsnitz
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| | - Joshua D. Love
- Independent
Web Developer, Bentonville, Arkansas 72712, United States
| | - Andrew D. Ellington
- Department
of Molecular Biosciences, University of
Texas at Austin, Austin, Texas 78712, United States
| | - David Ross
- National
Institute of Standards and Technology, Gaithersburg, Maryland 20878, United States
| |
Collapse
|
6
|
Özçam M, Lynch SV. The gut-airway microbiome axis in health and respiratory diseases. Nat Rev Microbiol 2024; 22:492-506. [PMID: 38778224 DOI: 10.1038/s41579-024-01048-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Communication between the gut and remote organs, such as the brain or the cardiovascular system, has been well established and recent studies provide evidence for a potential bidirectional gut-airway axis. Observations from animal and human studies indicate that respiratory insults influence the activity of the gut microbiome and that microbial ligands and metabolic products generated by the gut microbiome shape respiratory immunity. Information exchange between these two large mucosal surface areas regulates microorganism-immune interactions, with significant implications for the clinical and treatment outcomes of a range of respiratory conditions, including asthma, chronic obstructive pulmonary disease and lung cancer. In this Review, we summarize the most recent data in this field, offering insights into mechanisms of gut-airway crosstalk across spatial and temporal gradients and their relevance for respiratory health.
Collapse
Affiliation(s)
- Mustafa Özçam
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Susan V Lynch
- Benioff Center for Microbiome Medicine, Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Lamba A, Taneja V. Gut microbiota as a sensor of autoimmune response and treatment for rheumatoid arthritis. Immunol Rev 2024; 325:90-106. [PMID: 38867408 PMCID: PMC11338721 DOI: 10.1111/imr.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Veena Taneja
- Department of Immunology and Division of Rheumatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
8
|
Pennington T, Eshima J, Smith BS. Identification of volatile metabolites produced from levodopa metabolism by different bacteria strains of the gut microbiome. BMC Microbiol 2024; 24:260. [PMID: 38997651 PMCID: PMC11245815 DOI: 10.1186/s12866-024-03373-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/17/2024] [Indexed: 07/14/2024] Open
Abstract
Interspecies pathways in the gut microbiome have been shown to metabolize levodopa, the primary treatment for Parkinson's disease, and reduce its bioavailability. While the enzymatic reactions have been identified, the ability to establish the resulting macromolecules as biomarkers of microbial metabolism remains technically challenging. In this study, we leveraged an untargeted mass spectrometry-based approach to investigate volatile organic compounds (VOCs) produced during levodopa metabolism by Enterococcus faecalis, Clostridium sporogenes, and Eggerthella lenta. We cultured these organisms with and without their respective bioactive metabolites and detected levodopa-induced shifts in VOC profiles. We then utilized bioinformatics to identify significant differences in 2,6-dimethylpyrazine, 4,6-dimethylpyrimidine, and 4,5-dimethylpyrimidine associated with its biotransformation. Supplementing cultures with inhibitors of levodopa-metabolizing enzymes revealed specific modulation of levodopa-associated diazines, verifying their relationship to its metabolism. Furthermore, functional group analysis depicts strain-specific VOC profiles that reflect interspecies differences in metabolic activity that can be leveraged to assess microbiome functionality in individual patients. Collectively, this work identifies previously uncharacterized metabolites of microbe-mediated levodopa metabolism to determine potential indicators of this activity and further elucidate the metabolic capabilities of different gut bacteria.
Collapse
Affiliation(s)
- Taylor Pennington
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Jarrett Eshima
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Barbara S Smith
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
9
|
Liu D, Zhou J, Fu Q, Zhao Y, Wang P, Zheng Y, Cui M, Zhang H. A Bioinformatic Analysis of Gut Microbiota Related with Immune Cell Infiltration in Colorectal Cancer. Cancer Invest 2024; 42:491-499. [PMID: 38905519 DOI: 10.1080/07357907.2024.2368233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE The composition of microbiota which correlates with infiltrating immune cells and clinical signatures is not clarified in CRC. METHODS We applied 4 kinds of bioinformatic tools GSVA (version: 1.42.0), ESTIMATE (version: 1.0.13), CIBERSORT (version: 2.0), and immune-related genes. RESULTS We found that a total of 8 types of microbiotas appeared in the three immune correlation analyses. Among these microbiotas, significant enrichments in relative abundances associated with immune cell infiltration can be found for the dominant phyla Proteobacteria, Firmicutes, and Actinobacteria. Moreover, there existed correlations between some of the 8 microbiotas and clinical-related indicators. CONCLUSION We identified some novel microbiotas involved in immune regulation in CRC.
Collapse
Affiliation(s)
- Dan Liu
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Jiang Zhou
- Department of Medicine, Tianjin Georigin Biology Co., Ltd, Tianjin, China
| | - Qiong Fu
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yuanzhu Zhao
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Panpan Wang
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Yang Zheng
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Meihong Cui
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| | - Heng Zhang
- Department of Ultrasound Imaging, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), Zhuhai, China
| |
Collapse
|
10
|
Kyaw TS, Zhang C, Sandy M, Trepka K, Zhang S, Ramirez Hernandez LA, Ramirez L, Goh JJ, Yu K, Dimassa V, Bess EN, Brockert JG, Dumlao DS, Bisanz JE, Turnbaugh PJ. Human gut Actinobacteria boost drug absorption by secreting P-glycoprotein ATPase inhibitors. iScience 2024; 27:110122. [PMID: 38947502 PMCID: PMC11214321 DOI: 10.1016/j.isci.2024.110122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/17/2024] [Accepted: 05/24/2024] [Indexed: 07/02/2024] Open
Abstract
Drug efflux transporters are a major determinant of drug efficacy and toxicity. A canonical example is P-glycoprotein (P-gp), an efflux transporter that controls the intestinal absorption of diverse compounds. Despite a rich literature on the dietary and pharmaceutical compounds that impact P-gp activity, its sensitivity to gut microbial metabolites remains an open question. Surprisingly, we found that the cardiac drug-metabolizing gut Actinobacterium Eggerthella lenta increases drug absorption in mice. Experiments in cell culture revealed that E. lenta produces a soluble factor that post-translationally inhibits P-gp ATPase efflux activity. P-gp inhibition is conserved in the Eggerthellaceae family but absent in other Actinobacteria. Comparative genomics identified genes associated with P-gp inhibition. Finally, activity-guided biochemical fractionation coupled to metabolomics implicated a group of small polar metabolites with P-gp inhibitory activity. These results highlight the importance of considering the broader relevance of the gut microbiome for drug disposition beyond first-pass metabolism.
Collapse
Affiliation(s)
- Than S. Kyaw
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Chen Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Moriah Sandy
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kai Trepka
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Shenwei Zhang
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luis A. Ramirez Hernandez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Lorenzo Ramirez
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Janice J.N. Goh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kristie Yu
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vincent Dimassa
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Elizabeth N. Bess
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jacob G. Brockert
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Darren S. Dumlao
- Quantitative Metabolite Analysis Center, Benioff Center for Microbiome Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jordan E. Bisanz
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Peter J. Turnbaugh
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
- Chan-Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
McCurry MD, D'Agostino GD, Walsh JT, Bisanz JE, Zalosnik I, Dong X, Morris DJ, Korzenik JR, Edlow AG, Balskus EP, Turnbaugh PJ, Huh JR, Devlin AS. Gut bacteria convert glucocorticoids into progestins in the presence of hydrogen gas. Cell 2024; 187:2952-2968.e13. [PMID: 38795705 PMCID: PMC11179439 DOI: 10.1016/j.cell.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/03/2024] [Accepted: 05/02/2024] [Indexed: 05/28/2024]
Abstract
Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.
Collapse
Affiliation(s)
- Megan D McCurry
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel D D'Agostino
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jasmine T Walsh
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jordan E Bisanz
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, State College, PA 16802, USA
| | - Ines Zalosnik
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xueyang Dong
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - David J Morris
- Emeritus Professor of Pathology and Laboratory Medicine, Brown University Alpert School of Medicine, Providence, RI 02903, USA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Andrea G Edlow
- Department of Obstetrics & Gynecology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Emily P Balskus
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Peter J Turnbaugh
- Department of Microbiology & Immunology, University of California, San Francisco, San Francisco, CA 94143, USA; Chan Zuckerberg Biohub-San Francisco, San Francisco, CA 94158, USA
| | - Jun R Huh
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - A Sloan Devlin
- Department of Biological Chemistry & Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Wang JT, Hu W, Xue Z, Cai X, Zhang SY, Li FQ, Lin LS, Chen H, Miao Z, Xi Y, Guo T, Zheng JS, Chen YM, Lin HL. Mapping multi-omics characteristics related to short-term PM 2.5 trajectory and their impact on type 2 diabetes in middle-aged and elderly adults in Southern China. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133784. [PMID: 38382338 DOI: 10.1016/j.jhazmat.2024.133784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
The relationship between PM2.5 and metabolic diseases, including type 2 diabetes (T2D), has become increasingly prominent, but the molecular mechanism needs to be further clarified. To help understand the mechanistic association between PM2.5 exposure and human health, we investigated short-term PM2.5 exposure trajectory-related multi-omics characteristics from stool metagenome and metabolome and serum proteome and metabolome in a cohort of 3267 participants (age: 64.4 ± 5.8 years) living in Southern China. And then integrate these features to examine their relationship with T2D. We observed significant differences in overall structure in each omics and 193 individual biomarkers between the high- and low-PM2.5 groups. PM2.5-related features included the disturbance of microbes (carbohydrate metabolism-associated Bacteroides thetaiotaomicron), gut metabolites of amino acids and carbohydrates, serum biomarkers related to lipid metabolism and reducing n-3 fatty acids. The patterns of overall network relationships among the biomarkers differed between T2D and normal participants. The subnetwork membership centered on the hub nodes (fecal rhamnose and glycylproline, serum hippuric acid, and protein TB182) related to high-PM2.5, which well predicted higher T2D prevalence and incidence and a higher level of fasting blood glucose, HbA1C, insulin, and HOMA-IR. Our findings underline crucial PM2.5-related multi-omics biomarkers linking PM2.5 exposure and T2D in humans.
Collapse
Affiliation(s)
- Jia-Ting Wang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Wei Hu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Shi-Yu Zhang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fan-Qin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Li-Shan Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanzu Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Zelei Miao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Yue Xi
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China
| | - Ju-Sheng Zheng
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, 310030, China; School of Medicine, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, 310030, China.
| | - Yu-Ming Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Hua-Liang Lin
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
13
|
Shearer J, Shah S, Shen-Tu G, Schlicht K, Laudes M, Mu C. Microbial Features Linked to Medication Strategies in Cardiometabolic Disease Management. ACS Pharmacol Transl Sci 2024; 7:991-1001. [PMID: 38665607 PMCID: PMC11040554 DOI: 10.1021/acsptsci.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 04/28/2024]
Abstract
Human gut microbiota are recognized as critical players in both metabolic disease and drug metabolism. However, medication-microbiota interactions in cardiometabolic diseases are not well understood. To gain a comprehensive understanding of how medication intake impacts the gut microbiota, we investigated the association of microbial structure with the use of single or multiple medications in a cohort of 134 middle-aged adults diagnosed with cardiometabolic disease, recruited from Alberta's Tomorrow Project. Predominant cardiometabolic prescription medication classes (12 total) were included in our analysis. Multivariate Association with Linear Model (MaAsLin2) was employed and results were corrected for age, BMI, sex, and diet to evaluate the relationship between microbial features and single- or multimedication use. Highly individualized microbiota profiles were observed across participants, and increasing medication use was negatively correlated with α-diversity. A total of 46 associations were identified between microbial composition and single medications, exemplified by the depletion of Akkermansia muciniphila by β-blockers and statins, and the enrichment of Escherichia/Shigella and depletion of Bacteroides xylanisolvens by metformin. Metagenomics prediction further indicated alterations in microbial functions associated with single medications such as the depletion of enzymes involved in energy metabolism encoded by Eggerthella lenta due to β-blocker use. Specific dual medication combinations also had profound impacts, including the depletion of Romboutsia and Butyriciocccus by statin plus metformin. Together, these results show reductions in bacterial diversity as well as species and microbial functional potential associated with both single- and multimedication use in cardiometabolic disease.
Collapse
Affiliation(s)
- Jane Shearer
- Department
of Biochemistry and Molecular Biology, Cumming School of Medicine,
University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Libin
Cardiovascular Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Faculty
of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Shrushti Shah
- Libin
Cardiovascular Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Faculty
of Kinesiology, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Grace Shen-Tu
- Alberta’s
Tomorrow Project, Cancer Control Alberta, Alberta Health Services, Calgary, Alberta T2T 5C7, Canada
| | - Kristina Schlicht
- Institute
of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
| | - Matthias Laudes
- Institute
of Diabetes and Clinical Metabolic Research, University Medical Center Schleswig-Holstein, Kiel 24105, Germany
- Division
of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine, University Medical Center Schleswig-Holstein, 24105 Kiel, Germany
| | - Chunlong Mu
- Department
of Biochemistry and Molecular Biology, Cumming School of Medicine,
University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Libin
Cardiovascular Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
14
|
Yang Y, Chen J, Gao H, Cui M, Zhu M, Xiang X, Wang Q. Characterization of the gut microbiota and fecal and blood metabolomes under various factors in urban children from Northwest China. Front Cell Infect Microbiol 2024; 14:1374544. [PMID: 38585649 PMCID: PMC10995345 DOI: 10.3389/fcimb.2024.1374544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024] Open
Abstract
Introduction Children have regional dynamics in the gut microbiota development trajectory. Hitherto, the features and influencing factors of the gut microbiota and fecal and plasma metabolites in children from Northwest China remain unclear. Methods Shotgun metagenomic sequencing and untargeted metabolomics were performed on 100 healthy volunteers aged 2-12 years. Results Age, body mass index (BMI), regular physical exercise (RPE), and delivery mode (DM) significantly affect gut microbiota and metabolites. Lactobacillus, Butyricimonas, Prevotella, Alistipes, and predicted pathway propanoate production were significantly increased with age while Bifidobacterium breve, B. animalis, B. pseudocatenulatum, Streptococcus infantis, and carbohydrate degradation were decreased. Fecal metabolome revealed that the metabolism of caffeine, amino acids, and lipid significantly increased with age while galactose metabolism decreased. Noticeably, BMI was positively associated with pathogens including Erysipelatoclostridium ramosum, Parabacteroides distasonis, Ruminococcus gnavus, and amino acid metabolism but negatively associated with beneficial Akkermansia muciniphila, Alistipes finegoldii, Eubacterium ramulus, and caffeine metabolism. RPE has increased probiotic Faecalibacterium prausnitzii and Anaerostipes hadrus, acetate and lactate production, and major nutrient metabolism in gut and plasma, but decreased pathobiont Bilophila wadsworthia, taurine degradation, and pentose phosphate pathway. Interestingly, DM affects the gut microbiota and metabolites throughout the whole childhood. Bifidobacterium animalis, Lactobacillus mucosae, L. ruminis, primary bile acid, and neomycin biosynthesis were enriched in eutocia, while anti-inflammatory Anaerofustis stercorihominis, Agathobaculum butyriciproducens, Collinsella intestinalis, and pathogenic Streptococcus salivarius, Catabacter hongkongensis, and amino acid metabolism were enriched in Cesarean section children. Discussion Our results provided theoretical and data foundation for the gut microbiota and metabolites in preadolescent children's growth and development in Northwest China.
Collapse
Affiliation(s)
- Yan Yang
- Department of Endocrinology and Metabolism, Lanzhou University Second Hospital, Lanzhou, China
| | - Juanjuan Chen
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Huiyu Gao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Minglu Cui
- The Second School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
| | - Mingyu Zhu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuesong Xiang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Wang
- Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
15
|
Langford L, Shah DD. Bioinformatic Analysis of Sulfotransferases from an Unexplored Gut Microbe, Sutterella wadsworthensis 3_1_45B: Possible Roles towards Detoxification via Sulfonation by Members of the Human Gut Microbiome. Int J Mol Sci 2024; 25:2983. [PMID: 38474230 DOI: 10.3390/ijms25052983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.
Collapse
Affiliation(s)
- Lauryn Langford
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| | - Dhara D Shah
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ 85281, USA
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
| |
Collapse
|
16
|
Chu XJ, Song DD, Zhou MH, Chen XZ, Chu N, Li M, Li BZ, Liu SH, Hou S, Wu JB, Gong L. Perturbations in gut and respiratory microbiota in COVID-19 and influenza patients: a systematic review and meta-analysis. Front Med (Lausanne) 2024; 11:1301312. [PMID: 38405190 PMCID: PMC10884097 DOI: 10.3389/fmed.2024.1301312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024] Open
Abstract
Objectives Coronavirus disease-19 (COVID-19)/influenza poses unprecedented challenges to the global economy and healthcare services. Numerous studies have described alterations in the microbiome of COVID-19/influenza patients, but further investigation is needed to understand the relationship between the microbiome and these diseases. Herein, through systematic comparison between COVID-19 patients, long COVID-19 patients, influenza patients, no COVID-19/influenza controls and no COVID-19/influenza patients, we conducted a comprehensive review to describe the microbial change of respiratory tract/digestive tract in COVID-19/influenza patients. Methods We systematically reviewed relevant literature by searching the PubMed, Embase, and Cochrane Library databases from inception to August 12, 2023. We conducted a comprehensive review to explore microbial alterations in patients with COVID-19/influenza. In addition, the data on α-diversity were summarized and analyzed by meta-analysis. Results A total of 134 studies comparing COVID-19 patients with controls and 18 studies comparing influenza patients with controls were included. The Shannon indices of the gut and respiratory tract microbiome were slightly decreased in COVID-19/influenza patients compared to no COVID-19/influenza controls. Meanwhile, COVID-19 patients with more severe symptoms also exhibited a lower Shannon index versus COVID-19 patients with milder symptoms. The intestinal microbiome of COVID-19 patients was characterized by elevated opportunistic pathogens along with reduced short-chain fatty acid (SCFAs)-producing microbiota. Moreover, Enterobacteriaceae (including Escherichia and Enterococcus) and Lactococcus, were enriched in the gut and respiratory tract of COVID-19 patients. Conversely, Haemophilus and Neisseria showed reduced abundance in the respiratory tract of both COVID-19 and influenza patients. Conclusion In this systematic review, we identified the microbiome in COVID-19/influenza patients in comparison with controls. The microbial changes in influenza and COVID-19 are partly similar.
Collapse
Affiliation(s)
- Xiu-Jie Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Dan-Dan Song
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming-Hua Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiu-Zhi Chen
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Na Chu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Ming Li
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Song-Hui Liu
- School of Public Health, Bengbu Medical College, Bengbu, Anhui, China
| | - Sai Hou
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Jia-Bing Wu
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Lei Gong
- Department of Acute Infectious Disease Prevention and Control, Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, China
| |
Collapse
|
17
|
Viehof A, Haange SB, Streidl T, Schubert K, Engelmann B, Haller D, Rolle-Kampczyk U, von Bergen M, Clavel T. The human intestinal bacterium Eggerthella lenta influences gut metabolomes in gnotobiotic mice. MICROBIOME RESEARCH REPORTS 2024; 3:14. [PMID: 38841406 PMCID: PMC11149096 DOI: 10.20517/mrr.2023.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 06/07/2024]
Abstract
The intestinal microbiota and its metabolites are known to influence host metabolic health. However, little is known about the role of specific microbes. In this work, we used the minimal consortium Oligo-Mouse-Microbiota (OMM12) to study the function of Coriobacteriia under defined conditions in gnotobiotic mice. OMM12 mice with or without the addition of the dominant gut bacterium Eggerthella lenta (E. lenta) were fed with diets varying in fat content and primary bile acids. E. lenta stably colonised the mouse caecum at high relative abundances (median: 27.5%). This was accompanied by decreased occurrence of Akkermansia muciniphila and Enterococcus faecalis, but results did not reach statistical significance in all groups depending on diet and inter-individual differences. Changes in host parameters (anthropometry, blood glucose, and cholesterol) and liver proteomes were primarily due to diet. In contrast, metabolomes in colon content differed significantly between the colonisation groups. The presence of E. lenta was associated with elevated levels of latifolicinin C acid and decreased creatine, sarcosine, N,N-dimethylarginine, and N-Acetyl-DL-methionine. In conclusion, E. lenta altered specific metabolites in the colon but did not have significant effects on the mice or liver proteomes under the conditions tested due to marked inter-individual differences.
Collapse
Affiliation(s)
- Alina Viehof
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| | - Sven-Bastiaan Haange
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
| | - Theresa Streidl
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| | - Kristin Schubert
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
| | - Beatrice Engelmann
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
| | - Dirk Haller
- ZIEL Institute for Food and Health, Technical University of Munich, Freising 85354, Germany
- Chair of Nutrition and Immunology, Technical University of Munich, Freising 85354, Germany
| | - Ulrike Rolle-Kampczyk
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biochemistry, University of Leipzig, Leipzig 04109, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, University Hospital of RWTH Aachen, Aachen 52074, Germany
| |
Collapse
|
18
|
Little AS, Younker IT, Schechter MS, Bernardino PN, Méheust R, Stemczynski J, Scorza K, Mullowney MW, Sharan D, Waligurski E, Smith R, Ramanswamy R, Leiter W, Moran D, McMillin M, Odenwald MA, Iavarone AT, Sidebottom AM, Sundararajan A, Pamer EG, Eren AM, Light SH. Dietary- and host-derived metabolites are used by diverse gut bacteria for anaerobic respiration. Nat Microbiol 2024; 9:55-69. [PMID: 38177297 PMCID: PMC11055453 DOI: 10.1038/s41564-023-01560-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Respiratory reductases enable microorganisms to use molecules present in anaerobic ecosystems as energy-generating respiratory electron acceptors. Here we identify three taxonomically distinct families of human gut bacteria (Burkholderiaceae, Eggerthellaceae and Erysipelotrichaceae) that encode large arsenals of tens to hundreds of respiratory-like reductases per genome. Screening species from each family (Sutterella wadsworthensis, Eggerthella lenta and Holdemania filiformis), we discover 22 metabolites used as respiratory electron acceptors in a species-specific manner. Identified reactions transform multiple classes of dietary- and host-derived metabolites, including bioactive molecules resveratrol and itaconate. Products of identified respiratory metabolisms highlight poorly characterized compounds, such as the itaconate-derived 2-methylsuccinate. Reductase substrate profiling defines enzyme-substrate pairs and reveals a complex picture of reductase evolution, providing evidence that reductases with specificities for related cinnamate substrates independently emerged at least four times. These studies thus establish an exceptionally versatile form of anaerobic respiration that directly links microbial energy metabolism to the gut metabolome.
Collapse
Affiliation(s)
- Alexander S Little
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Isaac T Younker
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Matthew S Schechter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Paola Nol Bernardino
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Raphaël Méheust
- Génomique Métabolique, CEA, Genoscope, Institut François Jacob, Université d'Évry, Université Paris-Saclay, CNRS, Evry, France
| | - Joshua Stemczynski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Kaylie Scorza
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | | | - Deepti Sharan
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Emily Waligurski
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Rita Smith
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | | | - William Leiter
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - David Moran
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Mary McMillin
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
| | - Matthew A Odenwald
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Section of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anthony T Iavarone
- QB3/Chemistry Mass Spectrometry Facility, University of California, Berkeley, Berkeley, CA, USA
| | | | | | - Eric G Pamer
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Section of Infectious Diseases & Global Health, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - A Murat Eren
- Helmholtz Institute for Functional Marine Biodiversity, Oldenburg, Germany
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenbug, Germany
| | - Samuel H Light
- Duchossois Family Institute, University of Chicago, Chicago, IL, USA.
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
19
|
Liu Z, Liu J, Yang Z, Zhu L, Zhu Z, Huang H, Jiang L. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes. Biotechnol Adv 2023; 68:108241. [PMID: 37633620 DOI: 10.1016/j.biotechadv.2023.108241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
The CRISPR-Cas systems have shown tremendous promise as heterologous tools for genome editing in various prokaryotes. However, the perturbation of DNA homeostasis and the inherent toxicity of Cas9/12a proteins could easily lead to cell death, which led to the development of endogenous CRISPR-Cas systems. Programming the widespread endogenous CRISPR-Cas systems for in situ genome editing represents a promising tool in prokaryotes, especially in genetically intractable species. Here, this review briefly summarizes the advances of endogenous CRISPR-Cas-mediated genome editing, covering aspects of establishing and optimizing the genetic tools. In particular, this review presents the application of different types of endogenous CRISPR-Cas tools for strain engineering, including genome editing and genetic regulation. Notably, this review also provides a detailed discussion of the transposon-associated CRISPR-Cas systems, and the programmable RNA-guided transposition using endogenous CRISPR-Cas systems to enable editing of microbial communities for understanding and control. Therefore, they will be a powerful tool for targeted genetic manipulation. Overall, this review will not only facilitate the development of standard genetic manipulation tools for non-model prokaryotes but will also enable more non-model prokaryotes to be genetically tractable.
Collapse
Affiliation(s)
- Zhenlei Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiayu Liu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhihan Yang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- College of Chemical and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Zhengming Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China.
| | - Ling Jiang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
20
|
Thurimella K, Mohamed AMT, Graham DB, Owens RM, La Rosa SL, Plichta DR, Bacallado S, Xavier RJ. Protein Language Models Uncover Carbohydrate-Active Enzyme Function in Metagenomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563620. [PMID: 37961379 PMCID: PMC10634757 DOI: 10.1101/2023.10.23.563620] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
In metagenomics, the pool of uncharacterized microbial enzymes presents a challenge for functional annotation. Among these, carbohydrate-active enzymes (CAZymes) stand out due to their pivotal roles in various biological processes related to host health and nutrition. Here, we present CAZyLingua, the first tool that harnesses protein language model embeddings to build a deep learning framework that facilitates the annotation of CAZymes in metagenomic datasets. Our benchmarking results showed on average a higher F1 score (reflecting an average of precision and recall) on the annotated genomes of Bacteroides thetaiotaomicron, Eggerthella lenta and Ruminococcus gnavus compared to the traditional sequence homology-based method in dbCAN2. We applied our tool to a paired mother/infant longitudinal dataset and revealed unannotated CAZymes linked to microbial development during infancy. When applied to metagenomic datasets derived from patients affected by fibrosis-prone diseases such as Crohn's disease and IgG4-related disease, CAZyLingua uncovered CAZymes associated with disease and healthy states. In each of these metagenomic catalogs, CAZyLingua discovered new annotations that were previously overlooked by traditional sequence homology tools. Overall, the deep learning model CAZyLingua can be applied in combination with existing tools to unravel intricate CAZyme evolutionary profiles and patterns, contributing to a more comprehensive understanding of microbial metabolic dynamics.
Collapse
Affiliation(s)
- Kumar Thurimella
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ahmed M. T. Mohamed
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel B. Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Róisín M. Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Sabina Leanti La Rosa
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Damian R. Plichta
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sergio Bacallado
- Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, Cambridge, UK
| | - Ramnik J. Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Balakrishnan B, Luckey D, Wright K, Davis JM, Chen J, Taneja V. Eggerthella lenta augments preclinical autoantibody production and metabolic shift mimicking senescence in arthritis. SCIENCE ADVANCES 2023; 9:eadg1129. [PMID: 37656793 PMCID: PMC10854426 DOI: 10.1126/sciadv.adg1129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 08/02/2023] [Indexed: 09/03/2023]
Abstract
Although the etiology of rheumatoid arthritis (RA) is unknown, a strong genetic predisposition and the presence of preclinical antibodies before the onset of symptoms is documented. An expansion of Eggerthella lenta is associated with severe disease in RA. Here, using a humanized mouse model of collagen-induced arthritis, we determined the impact of E. lenta abundance on RA severity. Naïve mice gavaged with E. lenta produce preclinical rheumatoid factor and, when induced for arthritis, develop severe disease. The augmented antibody response was much higher in female mice, and among patients with RA, women had higher average load of E. lenta. Expansion of E. lenta increased CXCL5 and CD4 T cells, and both interleukin-17- and interferon-γ-producing B cells. Further, E. lenta gavage caused gut dysbiosis and decline in amino acids and nicotinamide adenine dinucleotide with an increase in microbe-dependent bile acids and succinyl carnitine causing systemic senescent-like inflammation.
Collapse
Affiliation(s)
| | - David Luckey
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Kerry Wright
- Department of Rheumatology, Mayo Clinic, Rochester, MN 55905, USA
| | - John M. Davis
- Department of Rheumatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jun Chen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Veena Taneja
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
22
|
Hatayama K, Ebara A, Okuma K, Tokuno H, Hasuko K, Masuyama H, Ashikari I, Shirasawa T. Characteristics of Intestinal Microbiota in Japanese Patients with Mild Cognitive Impairment and a Risk-Estimating Method for the Disorder. Biomedicines 2023; 11:1789. [PMID: 37509429 PMCID: PMC10376419 DOI: 10.3390/biomedicines11071789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Intestinal microbiota may play a significant role in the development and progression of mild cognitive impairment (MCI). In addition, sex differences in the prevalence of MCI and intestinal microbiota are likely to exist. Therefore, this study investigated the association between MCI and intestinal microbiota by comparing Japanese patients in their 70s with MCI (11 males and 18 females) and disease-free controls (17 males and 23 females), taking sex into account. In both sexes, Clostridium_XVIII, Eggerthella, Erysipelatoclostridium, Flavonifractor, and Ruminococcus 2 were the more abundant taxa in the MCI group, whereas Megasphaera, Oscillibacter, Prevotella, Roseburia, and Victivallis were less abundant. Based on these characteristics, it was hypothesized that the composition of the intestinal microbiota in the MCI group leads to dysregulation of the intestinal microbiota, increased intestinal and blood-brain barrier permeability, and increased chronic neuroinflammation, with the long-term persistence of these abnormalities ultimately leading to cognitive decline. Furthermore, risk estimation models for MCI based on intestinal microbiota data were developed using structural equation modeling. These tests discriminated between the MCI and control groups. Incorporating these factors into intestinal microbiota testing using stool samples may be an efficient method to screen individuals with MCI.
Collapse
Affiliation(s)
| | - Aya Ebara
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | - Kana Okuma
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Li J, Ghosh TS, McCann R, Mallon P, Hill C, Draper L, Schult D, Fanning LJ, Shannon R, Sadlier C, Horgan M, O’Mahony L, O’Toole PW. Robust cross-cohort gut microbiome associations with COVID-19 severity. Gut Microbes 2023; 15:2242615. [PMID: 37550964 PMCID: PMC10411309 DOI: 10.1080/19490976.2023.2242615] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/07/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Although many recent studies have examined associations between the gut microbiome and COVID-19 disease severity in individual patient cohorts, questions remain on the robustness across international cohorts of the biomarkers they reported. Here, we performed a meta-analysis of eight shotgun metagenomic studies of COVID-19 patients (comprising 1,023 stool samples) and 23 > 16S rRNA gene amplicon sequencing (16S) cohorts (2,415 total stool samples). We found that disease severity (as defined by the WHO clinical progression scale) was associated with taxonomic and functional microbiome differences. This alteration in gut microbiome configuration peaks at days 7-30 post diagnosis, after which the gut microbiome returns to a configuration that becomes more similar to that of healthy controls over time. Furthermore, we identified a core set of species that were consistently associated with disease severity across shotgun metagenomic and 16S cohorts, and whose abundance can accurately predict disease severity category of SARS-CoV-2 infected subjects, with Actinomyces oris abundance predicting population-level mortality rate of COVID-19. Additionally, we used relational diet-microbiome databases constructed from cohort studies to predict microbiota-targeted diet patterns that would modulate gut microbiota composition toward that of healthy controls. Finally, we demonstrated the association of disease severity with the composition of intestinal archaeal, fungal, viral, and parasitic communities. Collectively, this study has identified robust COVID-19 microbiome biomarkers, established accurate predictive models as a basis for clinical prognostic tests for disease severity, and proposed biomarker-targeted diets for managing COVID-19 infection.
Collapse
Affiliation(s)
- Junhui Li
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Tarini Shankar Ghosh
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Rachel McCann
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Patrick Mallon
- Centre for Experimental Pathogen Host Research, School of Medicine, University College Dublin, St Vincent’s University Hospital, Dublin, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Lorraine Draper
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - David Schult
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Liam J. Fanning
- Department of Medicine, University College Cork, Cork, Ireland
| | - Robert Shannon
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Corinna Sadlier
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Mary Horgan
- Department of Medicine, University College Cork, Cork, Ireland
- Department of Infectious Diseases, Cork University Hospital, Cork, Ireland
| | - Liam O’Mahony
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Paul W. O’Toole
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| |
Collapse
|