1
|
Blaabjerg LM, Jonsson N, Boomsma W, Stein A, Lindorff-Larsen K. SSEmb: A joint embedding of protein sequence and structure enables robust variant effect predictions. Nat Commun 2024; 15:9646. [PMID: 39511177 PMCID: PMC11544099 DOI: 10.1038/s41467-024-53982-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
The ability to predict how amino acid changes affect proteins has a wide range of applications including in disease variant classification and protein engineering. Many existing methods focus on learning from patterns found in either protein sequences or protein structures. Here, we present a method for integrating information from sequence and structure in a single model that we term SSEmb (Sequence Structure Embedding). SSEmb combines a graph representation for the protein structure with a transformer model for processing multiple sequence alignments. We show that by integrating both types of information we obtain a variant effect prediction model that is robust when sequence information is scarce. We also show that SSEmb learns embeddings of the sequence and structure that are useful for other downstream tasks such as to predict protein-protein binding sites. We envisage that SSEmb may be useful both for variant effect predictions and as a representation for learning to predict protein properties that depend on sequence and structure.
Collapse
Affiliation(s)
- Lasse M Blaabjerg
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Nicolas Jonsson
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Wouter Boomsma
- Center for Basic Machine Learning Research in Life Science, Department of Computer Science, University of Copenhagen, Copenhagen N, Denmark.
| | - Amelie Stein
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| | - Kresten Lindorff-Larsen
- Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
2
|
Csikász-Nagy A, Fichó E, Noto S, Reguly I. Computational tools to predict context-specific protein complexes. Curr Opin Struct Biol 2024; 88:102883. [PMID: 38986166 DOI: 10.1016/j.sbi.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024]
Abstract
Interactions between thousands of proteins define cells' protein-protein interaction (PPI) network. Some of these interactions lead to the formation of protein complexes. It is challenging to identify a protein complex in a haystack of protein-protein interactions, and it is even more difficult to predict all protein complexes of the complexome. Simulations and machine learning approaches try to crack these problems by looking at the PPI network or predicted protein structures. Clustering of PPI networks led to the first protein complex predictions, while most recently, atomistic models of protein complexes and deep-learning-based structure prediction methods have also emerged. The simulation of PPI level interactions even enables the quantitative prediction of protein complexes. These methods, the required data sources, and their potential future developments are discussed in this review.
Collapse
Affiliation(s)
- Attila Csikász-Nagy
- Cytocast Hungary Kft, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary.
| | | | - Santiago Noto
- Cytocast Hungary Kft, Budapest, Hungary; Escola de Matemática Aplicada, Fundação Getúlio Vargas, Rio de Janeiro, Brazil
| | - István Reguly
- Cytocast Hungary Kft, Budapest, Hungary; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| |
Collapse
|
3
|
Dietler N, Abbara A, Choudhury S, Bitbol AF. Impact of phylogeny on the inference of functional sectors from protein sequence data. PLoS Comput Biol 2024; 20:e1012091. [PMID: 39312591 PMCID: PMC11449291 DOI: 10.1371/journal.pcbi.1012091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 10/03/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Statistical analysis of multiple sequence alignments of homologous proteins has revealed groups of coevolving amino acids called sectors. These groups of amino-acid sites feature collective correlations in their amino-acid usage, and they are associated to functional properties. Modeling showed that nonlinear selection on an additive functional trait of a protein is generically expected to give rise to a functional sector. These modeling results motivated a principled method, called ICOD, which is designed to identify functional sectors, as well as mutational effects, from sequence data. However, a challenge for all methods aiming to identify sectors from multiple sequence alignments is that correlations in amino-acid usage can also arise from the mere fact that homologous sequences share common ancestry, i.e. from phylogeny. Here, we generate controlled synthetic data from a minimal model comprising both phylogeny and functional sectors. We use this data to dissect the impact of phylogeny on sector identification and on mutational effect inference by different methods. We find that ICOD is most robust to phylogeny, but that conservation is also quite robust. Next, we consider natural multiple sequence alignments of protein families for which deep mutational scan experimental data is available. We show that in this natural data, conservation and ICOD best identify sites with strong functional roles, in agreement with our results on synthetic data. Importantly, these two methods have different premises, since they respectively focus on conservation and on correlations. Thus, their joint use can reveal complementary information.
Collapse
Affiliation(s)
- Nicola Dietler
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Alia Abbara
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Subham Choudhury
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Malusare A, Kothandaraman H, Tamboli D, Lanman NA, Aggarwal V. Understanding the Natural Language of DNA using Encoder-Decoder Foundation Models with Byte-level Precision. ARXIV 2024:arXiv:2311.02333v3. [PMID: 38410643 PMCID: PMC10896356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This paper presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a sub-quadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pre-train the foundation model using reference genome sequences and apply it in the following downstream tasks: (1) identification of enhancers, promotors and splice sites, (2) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (3) identification of biological function annotations of genomic sequences, and (4) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results.
Collapse
Affiliation(s)
- Aditya Malusare
- School of Industrial Engineering, Purdue University, USA
- Institute for Cancer Research, Purdue University, USA
| | | | - Dipesh Tamboli
- Elmore Family School of Electrical and Computer Engineering, Purdue University, USA
| | - Nadia A. Lanman
- Institute for Cancer Research, Purdue University, USA
- Department of Comparative Pathobiology, Purdue University, USA
| | - Vaneet Aggarwal
- School of Industrial Engineering, Purdue University, USA
- Institute for Cancer Research, Purdue University, USA
- Elmore Family School of Electrical and Computer Engineering, Purdue University, USA
| |
Collapse
|
5
|
Malusare A, Kothandaraman H, Tamboli D, Lanman NA, Aggarwal V. Understanding the natural language of DNA using encoder-decoder foundation models with byte-level precision. BIOINFORMATICS ADVANCES 2024; 4:vbae117. [PMID: 39176288 PMCID: PMC11341122 DOI: 10.1093/bioadv/vbae117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/06/2024] [Accepted: 08/10/2024] [Indexed: 08/24/2024]
Abstract
Summary This article presents the Ensemble Nucleotide Byte-level Encoder-Decoder (ENBED) foundation model, analyzing DNA sequences at byte-level precision with an encoder-decoder Transformer architecture. ENBED uses a subquadratic implementation of attention to develop an efficient model capable of sequence-to-sequence transformations, generalizing previous genomic models with encoder-only or decoder-only architectures. We use Masked Language Modeling to pretrain the foundation model using reference genome sequences and apply it in the following downstream tasks: (i) identification of enhancers, promotors, and splice sites, (ii) recognition of sequences containing base call mismatches and insertion/deletion errors, an advantage over tokenization schemes involving multiple base pairs, which lose the ability to analyze with byte-level precision, (iii) identification of biological function annotations of genomic sequences, and (iv) generating mutations of the Influenza virus using the encoder-decoder architecture and validating them against real-world observations. In each of these tasks, we demonstrate significant improvement as compared to the existing state-of-the-art results. Availability and implementation The source code used to develop and fine-tune the foundation model has been released on Github (https://github.itap.purdue.edu/Clan-labs/ENBED).
Collapse
Affiliation(s)
- Aditya Malusare
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Harish Kothandaraman
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Dipesh Tamboli
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Nadia A Lanman
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, United States
| | - Vaneet Aggarwal
- School of Industrial Engineering, Purdue University, West Lafayette, IN 47907, United States
- Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
6
|
Nambiar A, Forsyth JM, Liu S, Maslov S. DR-BERT: A protein language model to annotate disordered regions. Structure 2024; 32:1260-1268.e3. [PMID: 38701796 DOI: 10.1016/j.str.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/16/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024]
Abstract
Despite their lack of a rigid structure, intrinsically disordered regions (IDRs) in proteins play important roles in cellular functions, including mediating protein-protein interactions. Therefore, it is important to computationally annotate IDRs with high accuracy. In this study, we present Disordered Region prediction using Bidirectional Encoder Representations from Transformers (DR-BERT), a compact protein language model. Unlike most popular tools, DR-BERT is pretrained on unannotated proteins and trained to predict IDRs without relying on explicit evolutionary or biophysical data. Despite this, DR-BERT demonstrates significant improvement over existing methods on the Critical Assessment of protein Intrinsic Disorder (CAID) evaluation dataset and outperforms competitors on two out of four test cases in the CAID 2 dataset, while maintaining competitiveness in the others. This performance is due to the information learned during pretraining and DR-BERT's ability to use contextual information.
Collapse
Affiliation(s)
- Ananthan Nambiar
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA.
| | - John Malcolm Forsyth
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Simon Liu
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Sergei Maslov
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801, USA; Department of Physics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Computing, Environment and Life Sciences, Argonne National Laboratory, Lemont, IL 60439, USA.
| |
Collapse
|
7
|
Martin J, Lequerica Mateos M, Onuchic JN, Coluzza I, Morcos F. Machine learning in biological physics: From biomolecular prediction to design. Proc Natl Acad Sci U S A 2024; 121:e2311807121. [PMID: 38913893 PMCID: PMC11228481 DOI: 10.1073/pnas.2311807121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Machine learning has been proposed as an alternative to theoretical modeling when dealing with complex problems in biological physics. However, in this perspective, we argue that a more successful approach is a proper combination of these two methodologies. We discuss how ideas coming from physical modeling neuronal processing led to early formulations of computational neural networks, e.g., Hopfield networks. We then show how modern learning approaches like Potts models, Boltzmann machines, and the transformer architecture are related to each other, specifically, through a shared energy representation. We summarize recent efforts to establish these connections and provide examples on how each of these formulations integrating physical modeling and machine learning have been successful in tackling recent problems in biomolecular structure, dynamics, function, evolution, and design. Instances include protein structure prediction; improvement in computational complexity and accuracy of molecular dynamics simulations; better inference of the effects of mutations in proteins leading to improved evolutionary modeling and finally how machine learning is revolutionizing protein engineering and design. Going beyond naturally existing protein sequences, a connection to protein design is discussed where synthetic sequences are able to fold to naturally occurring motifs driven by a model rooted in physical principles. We show that this model is "learnable" and propose its future use in the generation of unique sequences that can fold into a target structure.
Collapse
Affiliation(s)
- Jonathan Martin
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
| | - Marcos Lequerica Mateos
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Universidad del País Vasco/Euskal Herriko Unibertsitatea Science Park, Leioa48940, Spain
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX77005
- Department of Physics and Astronomy, Rice University, Houston, TX77005
- Department of Chemistry, Rice University, Houston, TX77005
- Department of BioSciences, Rice University, Houston, TX77005
| | - Ivan Coluzza
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Universidad del País Vasco/Euskal Herriko Unibertsitatea Science Park, Leioa48940, Spain
- Basque Foundation for Science, Ikerbasque, Bilbao48940, Spain
| | - Faruck Morcos
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX75080
- Department of Bioengineering, Center for Systems Biology, University of Texas at Dallas, Richardson, TX75080
| |
Collapse
|
8
|
Lupo U, Sgarbossa D, Bitbol AF. Pairing interacting protein sequences using masked language modeling. Proc Natl Acad Sci U S A 2024; 121:e2311887121. [PMID: 38913900 PMCID: PMC11228504 DOI: 10.1073/pnas.2311887121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/18/2023] [Indexed: 06/26/2024] Open
Abstract
Predicting which proteins interact together from amino acid sequences is an important task. We develop a method to pair interacting protein sequences which leverages the power of protein language models trained on multiple sequence alignments (MSAs), such as MSA Transformer and the EvoFormer module of AlphaFold. We formulate the problem of pairing interacting partners among the paralogs of two protein families in a differentiable way. We introduce a method called Differentiable Pairing using Alignment-based Language Models (DiffPALM) that solves it by exploiting the ability of MSA Transformer to fill in masked amino acids in multiple sequence alignments using the surrounding context. MSA Transformer encodes coevolution between functionally or structurally coupled amino acids within protein chains. It also captures inter-chain coevolution, despite being trained on single-chain data. Relying on MSA Transformer without fine-tuning, DiffPALM outperforms existing coevolution-based pairing methods on difficult benchmarks of shallow multiple sequence alignments extracted from ubiquitous prokaryotic protein datasets. It also outperforms an alternative method based on a state-of-the-art protein language model trained on single sequences. Paired alignments of interacting protein sequences are a crucial ingredient of supervised deep learning methods to predict the three-dimensional structure of protein complexes. Starting from sequences paired by DiffPALM substantially improves the structure prediction of some eukaryotic protein complexes by AlphaFold-Multimer. It also achieves competitive performance with using orthology-based pairing.
Collapse
Affiliation(s)
- Umberto Lupo
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Damiano Sgarbossa
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne CH-1015, Switzerland
| |
Collapse
|
9
|
Mo YK, Hahn MW, Smith ML. Applications of machine learning in phylogenetics. Mol Phylogenet Evol 2024; 196:108066. [PMID: 38565358 DOI: 10.1016/j.ympev.2024.108066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/16/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Machine learning has increasingly been applied to a wide range of questions in phylogenetic inference. Supervised machine learning approaches that rely on simulated training data have been used to infer tree topologies and branch lengths, to select substitution models, and to perform downstream inferences of introgression and diversification. Here, we review how researchers have used several promising machine learning approaches to make phylogenetic inferences. Despite the promise of these methods, several barriers prevent supervised machine learning from reaching its full potential in phylogenetics. We discuss these barriers and potential paths forward. In the future, we expect that the application of careful network designs and data encodings will allow supervised machine learning to accommodate the complex processes that continue to confound traditional phylogenetic methods.
Collapse
Affiliation(s)
- Yu K Mo
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA
| | - Matthew W Hahn
- Department of Computer Science, Indiana University, Bloomington, IN 47405, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Megan L Smith
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39762, USA.
| |
Collapse
|
10
|
Lin P, Li H, Huang SY. Deep learning in modeling protein complex structures: From contact prediction to end-to-end approaches. Curr Opin Struct Biol 2024; 85:102789. [PMID: 38402744 DOI: 10.1016/j.sbi.2024.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/16/2024] [Accepted: 02/06/2024] [Indexed: 02/27/2024]
Abstract
Protein-protein interactions play crucial roles in many biological processes. Traditionally, protein complex structures are normally built by protein-protein docking. With the rapid development of artificial intelligence and its great success in monomer protein structure prediction, deep learning has widely been applied to modeling protein-protein complex structures through inter-protein contact prediction and end-to-end approaches in the past few years. This article reviews the recent advances of deep-learning-based approaches in modeling protein-protein complex structures as well as their advantages and limitations. Challenges and possible future directions are also briefly discussed in applying deep learning for the prediction of protein complex structures.
Collapse
Affiliation(s)
- Peicong Lin
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Hao Li
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Sheng-You Huang
- School of Physics, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China.
| |
Collapse
|
11
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
12
|
Xing H, Cai P, Liu D, Han M, Liu J, Le Y, Zhang D, Hu QN. High-throughput prediction of enzyme promiscuity based on substrate-product pairs. Brief Bioinform 2024; 25:bbae089. [PMID: 38487850 PMCID: PMC10940840 DOI: 10.1093/bib/bbae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/03/2024] [Indexed: 03/18/2024] Open
Abstract
The screening of enzymes for catalyzing specific substrate-product pairs is often constrained in the realms of metabolic engineering and synthetic biology. Existing tools based on substrate and reaction similarity predominantly rely on prior knowledge, demonstrating limited extrapolative capabilities and an inability to incorporate custom candidate-enzyme libraries. Addressing these limitations, we have developed the Substrate-product Pair-based Enzyme Promiscuity Prediction (SPEPP) model. This innovative approach utilizes transfer learning and transformer architecture to predict enzyme promiscuity, thereby elucidating the intricate interplay between enzymes and substrate-product pairs. SPEPP exhibited robust predictive ability, eliminating the need for prior knowledge of reactions and allowing users to define their own candidate-enzyme libraries. It can be seamlessly integrated into various applications, including metabolic engineering, de novo pathway design, and hazardous material degradation. To better assist metabolic engineers in designing and refining biochemical pathways, particularly those without programming skills, we also designed EnzyPick, an easy-to-use web server for enzyme screening based on SPEPP. EnzyPick is accessible at http://www.biosynther.com/enzypick/.
Collapse
Affiliation(s)
- Huadong Xing
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Pengli Cai
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Juan Liu
- Institute of Artificial Intelligence, School of Computer Science, Wuhan University, Wuhan 430072, China
| | - Yingying Le
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dachuan Zhang
- Institute of Environmental Engineering, ETH Zurich, Laura-Hezner-Weg 7, 8093 Zurich, Switzerland
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
13
|
Mardikoraem M, Woldring D. Protein Fitness Prediction Is Impacted by the Interplay of Language Models, Ensemble Learning, and Sampling Methods. Pharmaceutics 2023; 15:1337. [PMID: 37242577 PMCID: PMC10224321 DOI: 10.3390/pharmaceutics15051337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Advances in machine learning (ML) and the availability of protein sequences via high-throughput sequencing techniques have transformed the ability to design novel diagnostic and therapeutic proteins. ML allows protein engineers to capture complex trends hidden within protein sequences that would otherwise be difficult to identify in the context of the immense and rugged protein fitness landscape. Despite this potential, there persists a need for guidance during the training and evaluation of ML methods over sequencing data. Two key challenges for training discriminative models and evaluating their performance include handling severely imbalanced datasets (e.g., few high-fitness proteins among an abundance of non-functional proteins) and selecting appropriate protein sequence representations (numerical encodings). Here, we present a framework for applying ML over assay-labeled datasets to elucidate the capacity of sampling techniques and protein encoding methods to improve binding affinity and thermal stability prediction tasks. For protein sequence representations, we incorporate two widely used methods (One-Hot encoding and physiochemical encoding) and two language-based methods (next-token prediction, UniRep; masked-token prediction, ESM). Elaboration on performance is provided over protein fitness, protein size, and sampling techniques. In addition, an ensemble of protein representation methods is generated to discover the contribution of distinct representations and improve the final prediction score. We then implement multiple criteria decision analysis (MCDA; TOPSIS with entropy weighting), using multiple metrics well-suited for imbalanced data, to ensure statistical rigor in ranking our methods. Within the context of these datasets, the synthetic minority oversampling technique (SMOTE) outperformed undersampling while encoding sequences with One-Hot, UniRep, and ESM representations. Moreover, ensemble learning increased the predictive performance of the affinity-based dataset by 4% compared to the best single-encoding candidate (F1-score = 97%), while ESM alone was rigorous enough in stability prediction (F1-score = 92%).
Collapse
Affiliation(s)
- Mehrsa Mardikoraem
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Daniel Woldring
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
14
|
Sgarbossa D, Lupo U, Bitbol AF. Generative power of a protein language model trained on multiple sequence alignments. eLife 2023; 12:e79854. [PMID: 36734516 PMCID: PMC10038667 DOI: 10.7554/elife.79854] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 02/02/2023] [Indexed: 02/04/2023] Open
Abstract
Computational models starting from large ensembles of evolutionarily related protein sequences capture a representation of protein families and learn constraints associated to protein structure and function. They thus open the possibility for generating novel sequences belonging to protein families. Protein language models trained on multiple sequence alignments, such as MSA Transformer, are highly attractive candidates to this end. We propose and test an iterative method that directly employs the masked language modeling objective to generate sequences using MSA Transformer. We demonstrate that the resulting sequences score as well as natural sequences, for homology, coevolution, and structure-based measures. For large protein families, our synthetic sequences have similar or better properties compared to sequences generated by Potts models, including experimentally validated ones. Moreover, for small protein families, our generation method based on MSA Transformer outperforms Potts models. Our method also more accurately reproduces the higher-order statistics and the distribution of sequences in sequence space of natural data than Potts models. MSA Transformer is thus a strong candidate for protein sequence generation and protein design.
Collapse
Affiliation(s)
- Damiano Sgarbossa
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Umberto Lupo
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| |
Collapse
|
15
|
Dietler N, Lupo U, Bitbol AF. Impact of phylogeny on structural contact inference from protein sequence data. J R Soc Interface 2023; 20:20220707. [PMID: 36751926 PMCID: PMC9905998 DOI: 10.1098/rsif.2022.0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/09/2023] [Indexed: 02/09/2023] Open
Abstract
Local and global inference methods have been developed to infer structural contacts from multiple sequence alignments of homologous proteins. They rely on correlations in amino acid usage at contacting sites. Because homologous proteins share a common ancestry, their sequences also feature phylogenetic correlations, which can impair contact inference. We investigate this effect by generating controlled synthetic data from a minimal model where the importance of contacts and of phylogeny can be tuned. We demonstrate that global inference methods, specifically Potts models, are more resilient to phylogenetic correlations than local methods, based on covariance or mutual information. This holds whether or not phylogenetic corrections are used, and may explain the success of global methods. We analyse the roles of selection strength and of phylogenetic relatedness. We show that sites that mutate early in the phylogeny yield false positive contacts. We consider natural data and realistic synthetic data, and our findings generalize to these cases. Our results highlight the impact of phylogeny on contact prediction from protein sequences and illustrate the interplay between the rich structure of biological data and inference.
Collapse
Affiliation(s)
- Nicola Dietler
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Umberto Lupo
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Zeng W, Gautam A, Huson DH. MuLan-Methyl-multiple transformer-based language models for accurate DNA methylation prediction. Gigascience 2022; 12:giad054. [PMID: 37489753 PMCID: PMC10367125 DOI: 10.1093/gigascience/giad054] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Transformer-based language models are successfully used to address massive text-related tasks. DNA methylation is an important epigenetic mechanism, and its analysis provides valuable insights into gene regulation and biomarker identification. Several deep learning-based methods have been proposed to identify DNA methylation, and each seeks to strike a balance between computational effort and accuracy. Here, we introduce MuLan-Methyl, a deep learning framework for predicting DNA methylation sites, which is based on 5 popular transformer-based language models. The framework identifies methylation sites for 3 different types of DNA methylation: N6-adenine, N4-cytosine, and 5-hydroxymethylcytosine. Each of the employed language models is adapted to the task using the "pretrain and fine-tune" paradigm. Pretraining is performed on a custom corpus of DNA fragments and taxonomy lineages using self-supervised learning. Fine-tuning aims at predicting the DNA methylation status of each type. The 5 models are used to collectively predict the DNA methylation status. We report excellent performance of MuLan-Methyl on a benchmark dataset. Moreover, we argue that the model captures characteristic differences between different species that are relevant for methylation. This work demonstrates that language models can be successfully adapted to applications in biological sequence analysis and that joint utilization of different language models improves model performance. Mulan-Methyl is open source, and we provide a web server that implements the approach.
Collapse
Affiliation(s)
- Wenhuan Zeng
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|