1
|
Huang CY, Tsai YH, Cheng YF, Wu PY, Chuang YC, Huang PY, Liu JS, Wu CC, Cheng YF. CRISPR/Cas9-mediated exon skipping to restore premature translation termination in a DFNB4 mouse model. Gene Ther 2024; 31:531-540. [PMID: 39232211 DOI: 10.1038/s41434-024-00483-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/06/2024]
Abstract
SLC26A4 encodes pendrin, a crucial anion exchanger essential for maintaining hearing function. Mutations in SLC26A4, including the prevalent c.919-2 A > G splice-site mutation among East Asian individuals, can disrupt inner ear electrolyte balance, leading to syndromic and non-syndromic hearing loss, such as Pendred syndrome and DFNB4. To explore potential therapeutic strategies, we utilized CRISPR/Cas9-mediated exon skipping to create a Slc26a4∆E8+E9/∆E8+E9 mouse model. We assessed pendrin expression in the inner ear and evaluated vestibular and auditory functions. The Slc26a4∆E8+E9/∆E8+E9 mice demonstrated reframed pendrin in the inner ear and normal vestibular functions, contrasting with severely abnormal vestibular functions observed in the Slc26a4 c.919-2 A > G splicing mutation mouse model. However, despite these molecular achievements, hearing function did not show the expected improvement, consistent with observed pathology, including cochlear hair cell loss and elevated hearing thresholds. Consequently, our findings highlight the necessity for alternative genetic editing strategies to address hearing loss caused by the SLC26A4 c.919-2 A > G mutation.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsiu Tsai
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Fen Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Peng-Yu Wu
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Chi Chuang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Po-Yuan Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jai-Shin Liu
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu City, Taiwan.
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Jung J, Joo SY, Min H, Roh JW, Kim KA, Ma JH, Rim JH, Kim JA, Kim SJ, Jang SH, Koh YI, Kim HY, Lee H, Kim BC, Gee HY, Bok J, Choi JY, Seong JK. MYH1 deficiency disrupts outer hair cell electromotility, resulting in hearing loss. Exp Mol Med 2024; 56:2423-2435. [PMID: 39482536 PMCID: PMC11612406 DOI: 10.1038/s12276-024-01338-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/23/2024] [Accepted: 08/05/2024] [Indexed: 11/03/2024] Open
Abstract
Myh1 is a mouse deafness gene with an unknown function in the auditory system. Hearing loss in Myh1-knockout mice is characterized by an elevated threshold for the auditory brainstem response and the absence of a threshold for distortion product otoacoustic emission. Here, we investigated the role of MYH1 in outer hair cells (OHCs), crucial structures in the organ of Corti responsible for regulating cochlear amplification. Direct whole-cell voltage-clamp recordings of OHCs revealed that prestin activity was lower in Myh1-knockout mice than in wild-type mice, indicating abnormal OHC electromotility. We analyzed whole-exome sequencing data from 437 patients with hearing loss of unknown genetic causes and identified biallelic missense variants of MYH1 in five unrelated families. Hearing loss in individuals harboring biallelic MYH1 variants was non-progressive, with an onset ranging from congenital to childhood. Three of five individuals with MYH1 variants displayed osteopenia. Structural prediction by AlphaFold2 followed by molecular dynamic simulations revealed that the identified variants presented structural abnormalities compared with wild-type MYH1. In a heterogeneous overexpression system, MYH1 variants, particularly those in the head domain, abolished MYH1 functions, such as by increasing prestin activity and modulating the membrane traction force. Overall, our findings suggest an essential function of MYH1 in OHCs, as observed in Myh1-deficient mice, and provide genetic evidence linking biallelic MYH1 variants to autosomal recessive hearing loss in humans.
Collapse
Affiliation(s)
- Jinsei Jung
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
| | - Sun Young Joo
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyehyun Min
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae Won Roh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Kyung Ah Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - John Hoon Rim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Ah Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Se Jin Kim
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyun Jang
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young Ik Koh
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Hye-Youn Kim
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea
| | - Ho Lee
- Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Republic of Korea
| | - Byoung Choul Kim
- Department of Nanobioengineering, Incheon National University, Incheon, Korea
| | - Heon Yung Gee
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Woo Choo Lee Institute for Precision Drug Development, Seoul, Republic of Korea.
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
- Department of Anatomy, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Jae Young Choi
- Department of Otorhinolaryngology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute for Lee Won Sang Yonsei Ear Science, Seoul, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, Republic of Korea.
- Laboratory of Developmental Biology and Genomics, BK21 Program Plus for Advanced Veterinary Science, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Cai W, Grosh K. Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation. Biophys J 2024; 123:3421-3432. [PMID: 39148291 PMCID: PMC11480764 DOI: 10.1016/j.bpj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/04/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
The outer hair cells (OHCs) of the mammalian cochlea are the mediators of an active, nonlinear electromechanical process necessary for sensitive, frequency-specific hearing. The membrane protein prestin conveys to the OHC a piezoelectric-like behavior hypothesized to actuate a high frequency, cycle-by-cycle conversion of electrical to mechanical energy to boost cochlear responses to low-level sound. This hypothesis has been debated for decades, with two key remaining issues: the influence of the rate dependence of conformal changes in prestin and the OHC transmembrane impedance. In this paper, we mainly focus on the rate dependence of the conformal change in prestin. A theoretical electromechanical model of the OHC that explicitly includes rate dependence of conformal transitions, viscoelasticity, and piezoelectricity. Using this theory, we show the influence of rate dependence and viscoelasticity on electromechanical force generation and transmembrane impedance. Furthermore, we stress the importance of using the correct mechanical boundary conditions when estimating the transmembrane capacitance. Finally, a set of experiments is described to uniquely estimate the constitutive properties of the OHC from whole-cell measurements.
Collapse
Affiliation(s)
- Wen Cai
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Karl Grosh
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan; Kresge Hearing Research Institute, University of Michigan, 4605 Medical Science Unit II, Ann Arbor, Michigan.
| |
Collapse
|
4
|
Brown CM, Marrink SJ. Modeling membranes in situ. Curr Opin Struct Biol 2024; 87:102837. [PMID: 38744147 DOI: 10.1016/j.sbi.2024.102837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/26/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Molecular dynamics simulations of cellular membranes have come a long way-from simple model lipid bilayers to multicomponent systems capturing the crowded and complex nature of real cell membranes. In this opinionated minireview, we discuss the current challenge to simulate the dynamics of membranes in their native environment, in situ, with the prospect of reaching the level of whole cells and cell organelles using an integrative modeling framework.
Collapse
Affiliation(s)
- Chelsea M Brown
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands. https://twitter.com/chelseabrowncg
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands. s.j.marrinkrug.nl
| |
Collapse
|
5
|
Arango AS, Park H, Tajkhorshid E. Topological Learning Approach to Characterizing Biological Membranes. J Chem Inf Model 2024; 64:5242-5252. [PMID: 38912752 DOI: 10.1021/acs.jcim.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here, we present a persistent homology (PH)-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information on lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of dipalmitoyl-phosphatidylcholine membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by PH filtration, in which interaction spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a simplicial complex that captures enduring key topological features of the configuration landscape using homology, yielding persistence data. Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g., sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.
Collapse
Affiliation(s)
- Andres S Arango
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyun Park
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Peluso P, Chankvetadze B. Recent developments in molecular modeling tools and applications related to pharmaceutical and biomedical research. J Pharm Biomed Anal 2024; 238:115836. [PMID: 37939549 DOI: 10.1016/j.jpba.2023.115836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/21/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
In modern pharmaceutical and biomedical research, molecular modeling represents a useful tool to explore processes and their mechanistic bases at the molecular level. Integrating experimental and virtual analysis is a fruitful approach to study ligand-receptor interaction in chemical, biochemical and biological environments. In these fields, molecular docking and molecular dynamics are considered privileged techniques for modeling (bio)macromolecules and related complexes. This review aims to present the current landscape of molecular modeling in pharmaceutical and biomedical research by examining selected representative applications published in the last years and highlighting current topics and trends of this field. Thus, a systematic compilation of all published literature has not been attempted herein. After a brief overview of the main theoretical and computational tools used to investigate mechanisms at molecular level, recent applications of molecular modeling in drug discovery, ligand binding and for studying protein conformation and function will be discussed. Furthermore, specific sections will be devoted to the application of molecular modeling for unravelling enantioselective mechanisms underlying the enantioseparation of chiral compounds of pharmaceutical and biomedical interest as well as for studying new forms of noncovalent interactivity identified in biochemical and biological environments. The general aim of this review is to provide the reader with a modern overview of the topic, highlighting advancements and outlooks as well as drawbacks and pitfalls still affecting the applicability of theoretical and computational methods in the field of pharmaceutical and biomedical research.
Collapse
Affiliation(s)
- Paola Peluso
- Istituto di Chimica Biomolecolare ICB-CNR, Sede secondaria di Sassari, Traversa La Crucca 3, Regione Baldinca, Li Punti, 07100 Sassari, Italy.
| | - Bezhan Chankvetadze
- Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia
| |
Collapse
|
7
|
Wang HC, Phan TN, Kao CL, Yeh CK, Lin YC. Genetically encoded mediators for sonogenetics and their applications in neuromodulation. Front Cell Neurosci 2023; 17:1326279. [PMID: 38188668 PMCID: PMC10766825 DOI: 10.3389/fncel.2023.1326279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/05/2023] [Indexed: 01/09/2024] Open
Abstract
Sonogenetics is an emerging approach that harnesses ultrasound for the manipulation of genetically modified cells. The great penetrability of ultrasound waves enables the non-invasive application of external stimuli to deep tissues, particularly advantageous for brain stimulation. Genetically encoded ultrasound mediators, a set of proteins that respond to ultrasound-induced bio-effects, play a critical role in determining the effectiveness and applications of sonogenetics. In this context, we will provide an overview of these ultrasound-responsive mediators, delve into the molecular mechanisms governing their response to ultrasound stimulation, and summarize their applications in neuromodulation.
Collapse
Affiliation(s)
- Hsien-Chu Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Ling Kao
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
8
|
Cai W, Grosh K. Rate Dependent Cochlear Outer Hair Cell Force Generation: Models and Parameter Estimation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.13.571371. [PMID: 38168239 PMCID: PMC10760109 DOI: 10.1101/2023.12.13.571371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The outer hair cells (OHCs) of the mammalian cochlea are the mediators of an active, nonlinear electromechanical process necessary for sensitive, frequency specific hearing. The membrane protein prestin conveys to the OHC a piezoelectric-like behavior hypothesized to actuate a high frequency, cycle-by-cycle conversion of electrical to mechanical energy to boost cochlear responses to low-level sound. This hypothesis has been debated for decades, and we address two key remaining issues: the influence of the rate dependence of conformal changes in prestin and the OHC transmembrane impedance. We develop a theoretical electromechanical model of the OHC that explicitly includes rate dependence of conformal transitions, viscoelasticity, and piezoelectricity. Using this theory, we show the influence of rate dependence and viscoelasticity on electromechanical force generation. Further, we stress the importance of using the correct mechanical boundary conditions when estimating the transmembrane capacitance. Finally, a set of experiments is described to uniquely estimate the constitutive properties of the OHC from whole-cell measurements.
Collapse
|
9
|
Arango AS, Park H, Tajkhorshid E. Topological Learning Approach to Characterizing Biological Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569053. [PMID: 38076911 PMCID: PMC10705453 DOI: 10.1101/2023.11.28.569053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Biological membranes play key roles in cellular compartmentalization, structure, and its signaling pathways. At varying temperatures, individual membrane lipids sample from different configurations, a process that frequently leads to higher-order phase behavior and phenomena. Here we present a persistent homology-based method for quantifying the structural features of individual and bulk lipids, providing local and contextual information on lipid tail organization. Our method leverages the mathematical machinery of algebraic topology and machine learning to infer temperature-dependent structural information of lipids from static coordinates. To train our model, we generated multiple molecular dynamics trajectories of DPPC membranes at varying temperatures. A fingerprint was then constructed for each set of lipid coordinates by a persistent homology filtration, in which interactions spheres were grown around the lipid atoms while tracking their intersections. The sphere filtration formed a simplicial complex that captures enduring key topological features of the configuration landscape, using homology, yielding persistence data. Following fingerprint extraction for physiologically relevant temperatures, the persistence data were used to train an attention-based neural network for assignment of effective temperature values to selected membrane regions. Our persistence homology-based method captures the local structural effects, via effective temperature, of lipids adjacent to other membrane constituents, e.g. sterols and proteins. This topological learning approach can predict lipid effective temperatures from static coordinates across multiple spatial resolutions. The tool, called MembTDA, can be accessed at https://github.com/hyunp2/Memb-TDA.
Collapse
Affiliation(s)
- Andres S Arango
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hyun Park
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Resource Center for Macromolecular Modeling and Visualization, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
10
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|