1
|
Wu Y, Foollee A, Chan AY, Hille S, Hauke J, Challis MP, Johnson JL, Yaron TM, Mynard V, Aung OH, Cleofe MAS, Huang C, Lim Kam Sian TCC, Rahbari M, Gallage S, Heikenwalder M, Cantley LC, Schittenhelm RB, Formosa LE, Smith GC, Okun JG, Müller OJ, Rusu PM, Rose AJ. Phosphoproteomics-directed manipulation reveals SEC22B as a hepatocellular signaling node governing metabolic actions of glucagon. Nat Commun 2024; 15:8390. [PMID: 39333498 PMCID: PMC11436942 DOI: 10.1038/s41467-024-52703-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 09/29/2024] Open
Abstract
The peptide hormone glucagon is a fundamental metabolic regulator that is also being considered as a pharmacotherapeutic option for obesity and type 2 diabetes. Despite this, we know very little regarding how glucagon exerts its pleiotropic metabolic actions. Given that the liver is a chief site of action, we performed in situ time-resolved liver phosphoproteomics to reveal glucagon signaling nodes. Through pathway analysis of the thousands of phosphopeptides identified, we reveal "membrane trafficking" as a dominant signature with the vesicle trafficking protein SEC22 Homolog B (SEC22B) S137 phosphorylation being a top hit. Hepatocyte-specific loss- and gain-of-function experiments reveal that SEC22B was a key regulator of glycogen, lipid and amino acid metabolism, with SEC22B-S137 phosphorylation playing a major role in glucagon action. Mechanistically, we identify several protein binding partners of SEC22B affected by glucagon, some of which were differentially enriched with SEC22B-S137 phosphorylation. In summary, we demonstrate that phosphorylation of SEC22B is a hepatocellular signaling node mediating the metabolic actions of glucagon and provide a rich resource for future investigations on the biology of glucagon action.
Collapse
Affiliation(s)
- Yuqin Wu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Ashish Foollee
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Andrea Y Chan
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Susanne Hille
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Jana Hauke
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Matthew P Challis
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Jared L Johnson
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Tomer M Yaron
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, USA
- Columbia University Vagelos College of Physicians and Surgeons, New York, USA
| | - Victoria Mynard
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Okka H Aung
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Maria Almira S Cleofe
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Cheng Huang
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | | | - Mohammad Rahbari
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Hospital Mannheim, Medical Faculty Mannheim, University of Heidelberg, Department of Surgery, Theodor-Kutzer-Ufer 1-3, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Suchira Gallage
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
| | - Mathias Heikenwalder
- German Cancer Research Center (DKFZ), Division of Chronic Inflammation and Cancer, Im Neuenheimer Feld 280, Heidelberg, Germany
- University Tuebingen, Faculty of Medicine, Institute for Interdisciplinary Research on Cancer Metabolism and Chronic Inflammation, M3-Research Center for Malignome, Metabolome and Microbiome, Otfried-Müller-Straße 37, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard-Karls University, Tübingen, Germany
| | - Lewis C Cantley
- Meyer Cancer Center, Weill Cornell Medicine, New York, USA
- Department of Cell Biology, Harvard Medical School, Boston, USA
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Ralf B Schittenhelm
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, Victoria, Australia
| | - Luke E Formosa
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Greg C Smith
- School of Biomedical Sciences, University of New South Wales, Sydney, Australia
| | - Jürgen G Okun
- Division of Inherited Metabolic Diseases, University Children's Hospital, Heidelberg, Germany
| | - Oliver J Müller
- Department of Internal Medicine V, University Hospital of Schleswig-Holstein, Campus Kiel, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Patricia M Rusu
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia
| | - Adam J Rose
- Nutrient Metabolism & Signalling Laboratory, Metabolism, Diabetes and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Faculty of Medicine, Nursing & Health Sciences, Monash University, Victoria, Australia.
| |
Collapse
|
2
|
Nian Z, Deng M, Ye L, Tong X, Xu Y, Xu Y, Chen R, Wang Y, Mao F, Xu C, Lu R, Mao Y, Xu H, Shen X, Xue X, Guo G. RNA epigenetic modifications in digestive tract cancers: Friends or foes. Pharmacol Res 2024; 206:107280. [PMID: 38914382 DOI: 10.1016/j.phrs.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Digestive tract cancers are among the most common malignancies worldwide and have high incidence and mortality rates. Thus, the discovery of more effective diagnostic and therapeutic targets is urgently required. The development of technologies to accurately detect RNA modification has led to the identification of numerous RNA chemical modifications in humans (epitranscriptomics) that are involved in the occurrence and development of digestive tract cancers. RNA modifications can cooperatively regulate gene expression to facilitate normal physiological functions of the digestive system. However, the dysfunction of relevant RNA-modifying enzymes ("writers," "erasers," and "readers") can lead to the development of digestive tract cancers. Consequently, targeting dysregulated enzyme activity could represent a potent therapeutic strategy for the treatment of digestive tract cancers. In this review, we summarize the most widely studied roles and mechanisms of RNA modifications (m6A, m1A, m5C, m7G, A-to-I editing, pseudouridine [Ψ]) in relation to digestive tract cancers, highlight the crosstalk between RNA modifications, and discuss their roles in the interactions between the digestive system and microbiota during carcinogenesis. The clinical significance of novel therapeutic methods based on RNA-modifying enzymes is also discussed. This review will help guide future research into digestive tract cancers that are resistant to current therapeutics.
Collapse
Affiliation(s)
- Zekai Nian
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Ming Deng
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Lele Ye
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinya Tong
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yixi Xu
- School of public administration, Hangzhou Normal University, Hangzhou, China
| | - Yiliu Xu
- Research Center of Fluid Machinery Engineering & Technology, Jiangsu University, Zhenjiang, China
| | - Ruoyao Chen
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yulin Wang
- School of Public Health, Wenzhou Medical University, Wenzhou, China
| | - Feiyang Mao
- Second Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Chenyv Xu
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ruonan Lu
- First Clinical College, Wenzhou Medical University, Wenzhou, China
| | - Yicheng Mao
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Hanlu Xu
- Ophthalmology College, Wenzhou Medical University, Wenzhou, China
| | - Xian Shen
- Department of General Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiangyang Xue
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| | - Gangqiang Guo
- Wenzhou Collaborative Innovation Center of Gastrointestinal Cancer in Basic Research and Precision Medicine, Wenzhou Key Laboratory of Cancer-related Pathogens and Immunity, Department of Microbiology and Immunology, Institute of Molecular Virology and Immunology, Institute of Tropical Medicine, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Li Y, Jin H, Li Q, Shi L, Mao Y, Zhao L. The role of RNA methylation in tumor immunity and its potential in immunotherapy. Mol Cancer 2024; 23:130. [PMID: 38902779 PMCID: PMC11188252 DOI: 10.1186/s12943-024-02041-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
RNA methylation, a prevalent post-transcriptional modification, has garnered considerable attention in research circles. It exerts regulatory control over diverse biological functions by modulating RNA splicing, translation, transport, and stability. Notably, studies have illuminated the substantial impact of RNA methylation on tumor immunity. The primary types of RNA methylation encompass N6-methyladenosine (m6A), 5-methylcytosine (m5C), N1-methyladenosine (m1A), and N7-methylguanosine (m7G), and 3-methylcytidine (m3C). Compelling evidence underscores the involvement of RNA methylation in regulating the tumor microenvironment (TME). By affecting RNA translation and stability through the "writers", "erasers" and "readers", RNA methylation exerts influence over the dysregulation of immune cells and immune factors. Consequently, RNA methylation plays a pivotal role in modulating tumor immunity and mediating various biological behaviors, encompassing proliferation, invasion, metastasis, etc. In this review, we discussed the mechanisms and functions of several RNA methylations, providing a comprehensive overview of their biological roles and underlying mechanisms within the tumor microenvironment and among immunocytes. By exploring how these RNA modifications mediate tumor immune evasion, we also examine their potential applications in immunotherapy. This review aims to provide novel insights and strategies for identifying novel targets in RNA methylation and advancing cancer immunotherapy efficacy.
Collapse
Affiliation(s)
- Yan Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Liangrong Shi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
4
|
Wu X, Liu H, Wang J, Zhang S, Hu Q, Wang T, Cui W, Shi Y, Bai H, Zhou J, Han L, Li L, Zhao T, Wu Y, Luo J, Feng D, Guo W, Ge S, Qu Y. The m 6A methyltransferase METTL3 drives neuroinflammation and neurotoxicity through stabilizing BATF mRNA in microglia. Cell Death Differ 2024:10.1038/s41418-024-01329-y. [PMID: 38902548 DOI: 10.1038/s41418-024-01329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Persistent neuroinflammation and progressive neuronal loss are defining features of acute brain injury including traumatic brain injury (TBI) and cerebral stroke. Microglia, the most abundant type of brain-resident immune cells, continuously surveil the environment and play a central role in shaping the inflammatory state of the central nervous system (CNS). In the study, we discovered that the protein expression of METTL3 (a m6A methyltransferase) was upregulated in inflammatory microglia independent of increased Mettl3 gene transcription following TBI in both human and mouse subjects. Subsequently, we identified TRIP12, a HECT-domain E3 ubiquitin ligase, as a negative regulator of METTL3 protein expression by facilitating METTL3 K48-linked polyubiquitination. Importantly, selective ablation of Mettl3 inhibited microglial pathogenic activities, diminished neutrophil infiltration, rescued neuronal loss and facilitated functional recovery post-TBI. Using MeRIP-seq and CUT&Tag sequencing, we identified that METTL3 promoted the expression of Basic Leucine Zipper Transcriptional Factor ATF-Like (BATF), which in turn directly bound to a cohort of characteristic inflammatory cytokines and chemokine genes. Enhanced activities of BATF in microglia elicited TNF-dependent neurotoxicity and can also promote neutrophil recruitment through releasing CXCL2. Pharmacological inhibition of METTL3 using a BBB-penetrating drug-loaded nano-system showed satisfactory therapeutic effects in both TBI and stroke mouse models. Collectively, our findings identified METTL3-m6A-BATF axis as a potential therapeutic target for terminating detrimental neuroinflammation and progressive neuronal loss following acute brain injury. METTL3 protein is significantly up-regulated in inflammatory microglia due to the decreased proteasomal degradation mediated by TRIP12 and ERK-USP5 pathways. METTL3 stabilized BATF mRNA stability and promoted BATF expression through the m6A-IGF2BP2-dependent mechanism. Elevated expression of BATF elicits a pro-inflammatory gene program in microglia, and aggravates neuroinflammatory response including local immune responses and peripheral immune cell infiltration. Genetic deletion or pharmaceutically targeting METTL3-BATF axis suppressed microglial pro-inflammatory activities and promoted neurological recovery following TBI and stroke.
Collapse
Affiliation(s)
- Xun Wu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Haixiao Liu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jin Wang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Hangzhou, 310000, Zhejiang, China
| | - Shenghao Zhang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Qing Hu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tinghao Wang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wenxing Cui
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yingwu Shi
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hao Bai
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Jinpeng Zhou
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Liying Han
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Leiyang Li
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Tianzhi Zhao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jianing Luo
- Department of Neurosurgery, West Theater General Hospital, Chengdu, 610083, Sichuan, China
| | - Dayun Feng
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Wei Guo
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Shunnan Ge
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
5
|
Huang S, Li Y, Wang B, Zhou Z, Li Y, Shen L, Cong J, Han L, Xiang X, Xia J, He D, Zhao Z, Zhou Y, Li Q, Dai G, Shen H, Lin T, Wu A, Jia J, Xiao D, Li J, Zhao W, Lin X. Hepatocyte-specific METTL3 ablation by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and postnatal lethality. Aging (Albany NY) 2024; 16:7217-7248. [PMID: 38656880 PMCID: PMC11087113 DOI: 10.18632/aging.205753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
AIM In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.
Collapse
Affiliation(s)
- Shihao Huang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingchun Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingjie Wang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yonglong Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Lingjun Shen
- Department of Tuberculosis, Yunnan Clinical Medical Center for Infectious Diseases, The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jinge Cong
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Liuxin Han
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Jiawei Xia
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Danhua He
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhanlin Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Ying Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiwen Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanqi Dai
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanzhang Shen
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Taoyan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aibing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Junshuang Jia
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, the First People’s Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Wentao Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Xiaolin Lin
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
6
|
Yang ZJ, Huang SY, Zhong KY, Huang WG, Huang ZH, He TT, Yang MT, Wusiman M, Zhou DD, Chen S, Huang BX, Luo XL, Li HB, Zhu HL. Betaine alleviates cognitive impairment induced by homocysteine through attenuating NLRP3-mediated microglial pyroptosis in an m 6A-YTHDF2-dependent manner. Redox Biol 2024; 69:103026. [PMID: 38184996 PMCID: PMC10808937 DOI: 10.1016/j.redox.2024.103026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 01/01/2024] [Indexed: 01/09/2024] Open
Abstract
Dementia, with homocysteine (Hcy) as an important risk factor, is a severe public health problem in the aging society. Betaine serves as a methyl donor and plays an important role in reducing Hcy. However, the effects and mechanisms of betaine on Hcy-induced cognitive impairment remain unclear. Firstly, SD rats were injected with Hcy (400 μg/kg) through vena caudalis, and betaine (2.5 % w/v) was supplemented via drinking water for 14 days. Betaine supplementation could attenuate Hcy-induced cognitive impairment in the Y maze and novel object recognition tests by repairing brain injury. Meanwhile, microglial activation was observed to be inhibited by betaine supplementation using immunofluorescence and sholl analysis. Secondly, HMC3 cells were treated with betaine, which was found to decrease the ROS level, ameliorate cell membrane rupture, reduce the release of LDH, IL-18 and IL-1β, and attenuate the damage of microglia to neurons. Mechanistically, betaine alleviates cognitive impairment by inhibiting microglial pyroptosis via reducing the expressions of NLRP3, ASC, pro-caspase-1, cleaved-caspase-1, GSDMD, GSDMD-N, IL-18 and IL-1β. Betaine treatment can increase SAM/SAH ratio, confirming its enhancement on methylation capacity. Furthermore, betaine treatment was found to enhance N6-methyladenosine (m6A) modification of NLRP3 mRNA, and reduced the NLRP3 mRNA stability through increasing the expression of the m6A reader YTH N6-methyladenosine RNA binding protein 2 (YTHDF2). Finally, silencing YTHDF2 could reverse the inhibitory effect of betaine on pyroptosis. Our data demonstrated that betaine attenuated Hcy-induced cognitive impairment by suppressing microglia pyroptosis via inhibiting the NLRP3/caspase-1/GSDMD pathway in an m6A-YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Zhi-Jun Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Kai-Yi Zhong
- Department of Neurology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Ge Huang
- Center of Experimental Animals, Sun Yat-sen University, Guangzhou, 510080, China
| | - Zi-Hui Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Tong-Tong He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Meng-Tao Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Maierhaba Wusiman
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Si Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Bi-Xia Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Lin Luo
- Experimental and Teaching Center for Public Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui-Lian Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
7
|
Tsuno S, Harada K, Horikoshi M, Mita M, Kitaguchi T, Hirai MY, Matsumoto M, Tsuboi T. Mitochondrial ATP concentration decreases immediately after glucose administration to glucose-deprived hepatocytes. FEBS Open Bio 2024; 14:79-95. [PMID: 38049196 PMCID: PMC10761928 DOI: 10.1002/2211-5463.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/15/2023] [Accepted: 12/01/2023] [Indexed: 12/06/2023] Open
Abstract
Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.
Collapse
Affiliation(s)
- Saki Tsuno
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Dairy Science and Technology InstituteKyodo Milk Industry Co., Ltd.TokyoJapan
| | - Kazuki Harada
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
| | - Mina Horikoshi
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| | - Marie Mita
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Present address:
Biomedical Research InstituteNational Institute of Advanced Industrial Science and TechnologyOsakaJapan
| | - Tetsuya Kitaguchi
- Laboratory for Chemistry and Life Science, Institute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | | | - Mitsuharu Matsumoto
- Dairy Science and Technology InstituteKyodo Milk Industry Co., Ltd.TokyoJapan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and SciencesThe University of TokyoTokyoJapan
- Department of Biological Sciences, Graduate School of ScienceThe University of TokyoTokyoJapan
| |
Collapse
|
8
|
Sun YH, Zhao TJ, Li LH, Wang Z, Li HB. Emerging role of N6-methyladenosine in the homeostasis of glucose metabolism. Am J Physiol Endocrinol Metab 2024; 326:E1-E13. [PMID: 37938178 DOI: 10.1152/ajpendo.00225.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional internal RNA modification, which is involved in the regulation of diverse physiological processes. Dynamic and reversible m6A modification has been shown to regulate glucose metabolism, and dysregulation of m6A modification contributes to glucose metabolic disorders in multiple organs and tissues including the pancreas, liver, adipose tissue, skeletal muscle, kidney, blood vessels, and so forth. In this review, the role and molecular mechanism of m6A modification in the regulation of glucose metabolism were summarized, the potential therapeutic strategies that improve glucose metabolism by targeting m6A modifiers were outlined, and feasible directions of future research in this field were discussed as well, providing clues for translational research on combating metabolic diseases based on m6A modification in the future.
Collapse
Affiliation(s)
- Yuan-Hai Sun
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Teng-Jiao Zhao
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
| | - Ling-Huan Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Zhen Wang
- Center for Laboratory Medicine, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, People's Republic of China
| | - Han-Bing Li
- Institute of Pharmacology, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, People's Republic of China
- Section of Endocrinology, School of Medicine, Yale University, New Haven, Connecticut, United States
| |
Collapse
|
9
|
Shen Q, Gong W, Pan X, Cai J, Jiang Y, He M, Zhao S, Li Y, Yuan X, Li J. Comprehensive Analysis of CircRNA Expression Profiles in Multiple Tissues of Pigs. Int J Mol Sci 2023; 24:16205. [PMID: 38003395 PMCID: PMC10671760 DOI: 10.3390/ijms242216205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/01/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of non-coding RNAs with diverse functions, and previous studies have reported that circRNAs are involved in the growth and development of pigs. However, studies about porcine circRNAs over the past few years have focused on a limited number of tissues. Based on 215 publicly available RNA sequencing (RNA-seq) samples, we conducted a comprehensive analysis of circRNAs in nine pig tissues, namely, the gallbladder, heart, liver, longissimus dorsi, lung, ovary, pituitary, skeletal muscle, and spleen. Here, we identified a total of 82,528 circRNAs and discovered 3818 novel circRNAs that were not reported in the CircAtlas database. Moreover, we obtained 492 housekeeping circRNAs and 3489 tissue-specific circRNAs. The housekeeping circRNAs were enriched in signaling pathways regulating basic biological tissue activities, such as chromatin remodeling, nuclear-transcribed mRNA catabolic process, and protein methylation. The tissue-specific circRNAs were enriched in signaling pathways related to tissue-specific functions, such as muscle system process in skeletal muscle, cilium organization in pituitary, and cortical cytoskeleton in ovary. Through weighted gene co-expression network analysis, we identified 14 modules comprising 1377 hub circRNAs. Additionally, we explored circRNA-miRNA-mRNA networks to elucidate the interaction relationships between tissue-specific circRNAs and tissue-specific genes. Furthermore, our conservation analysis revealed that 19.29% of circRNAs in pigs shared homologous positions with their counterparts in humans. In summary, this extensive profiling of housekeeping, tissue-specific, and co-expressed circRNAs provides valuable insights into understanding the molecular mechanisms of pig transcriptional expression, ultimately deepening our understanding of genetic and biological processes.
Collapse
Affiliation(s)
- Qingpeng Shen
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Wentao Gong
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiangchun Pan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiali Cai
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yao Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA 6149, Australia
| | - Mingran He
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Shanghui Zhao
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Yipeng Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Xiaolong Yuan
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| | - Jiaqi Li
- Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.S.); (W.G.); (X.P.); (J.C.); (Y.J.); (M.H.); (S.Z.); (Y.L.)
| |
Collapse
|
10
|
Ma E, Li J, Shen C, Gu Y, Zhang X, Li L, Zhao J, Wang Z. The m 6A-related gene signature stratifies poor prognosis patients and characterizes immunosuppressive microenvironment in hepatocellular carcinoma. Front Immunol 2023; 14:1227593. [PMID: 37691948 PMCID: PMC10485364 DOI: 10.3389/fimmu.2023.1227593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Background N6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of RNA, which can affect RNA metabolism and protein translation. The m6A modification plays a critical role in cancer development, including hepatocellular carcinoma (HCC). Despite several m6A-related signatures in HCC, most of them lack the necessary validation and the reliability is still elusive. Methods Differentially expressed genes (DEGs) in the Cancer Genome Atlas were comprehensively analyzed to identify m6A signature associated with HCC prognosis. Gene set enrichment analysis, tumor mutation burden (TMB), immune infiltration, and therapeutic response were evaluated. Importantly, mass spectrometry proteomics and multiplex immunofluorescence assays were performed for validation. Results The m6A-related protein-coding gene signature was established, which can divide HCC into high-/low-risk subgroups with markedly different overall survival (OS) and clinical stages. Furthermore, we validated its reliability and robustness in our 101 independent HCC specimens using proteomic detection and confirmed that our signature readily identified high-risk HCC patients with 3-year survival rates of 44.1% vs. 71.8% in the low-risk group. Functional analysis indicated that the high-risk group might stimulate the cell cycle and activate oncogenic pathways such as MAPK, mTOR, and VEGF, whereas the low-risk group mainly regulated amino acid, fatty acid, and drug metabolism. Additionally, the high-risk group had more TMB, upregulated immune checkpoint molecule expression, including PD-1, CTLA4, TIM3, and LAG3, and preferentially formed an immunosuppressive microenvironment. Accordingly, potential therapeutic responses showed that high-risk patients were potentially sensitive to inhibitors targeting the cell cycle and MAPK signaling, with patients possibly benefiting from immunotherapy. Moreover, multiplex immunofluorescence assays indicated that high-risk HCC samples displayed distinct immunosuppressive features, with abundant M2-polarized macrophages and T-regulatory cell infiltration. Conclusion The m6A signature had a prominent capacity to evaluate OS and characterize the tumor immune microenvironment of HCC, which may serve as a useful approach for risk stratification management and provide a valuable clue to choosing rational therapeutic strategies.
Collapse
Affiliation(s)
- Ensi Ma
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jianhua Li
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Conghuan Shen
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Yange Gu
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Xinju Zhang
- Central Laboratory, Huashan Hospital, Fudan University, Shanghai, China
| | - Li Li
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jing Zhao
- Hepatobiliary Surgery, Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai, China
| | - Zhengxin Wang
- Liver Transplantation Center, General Surgery, Huashan Hospital, Fudan University, Shanghai, China
- Institute of Organ Transplantation, Fudan University, Shanghai, China
| |
Collapse
|
11
|
Petri BJ, Cave MC, Klinge CM. Changes in m6A in Steatotic Liver Disease. Genes (Basel) 2023; 14:1653. [PMID: 37628704 PMCID: PMC10454815 DOI: 10.3390/genes14081653] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Fatty liver disease is one of the major causes of morbidity and mortality worldwide. Fatty liver includes non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH), now replaced by a consensus group as metabolic dysfunction-associated steatotic liver disease (MASLD). While excess nutrition and obesity are major contributors to fatty liver, the underlying mechanisms remain largely unknown and therapeutic interventions are limited. Reversible chemical modifications in RNA are newly recognized critical regulators controlling post-transcriptional gene expression. Among these modifications, N6-methyladenosine (m6A) is the most abundant and regulates transcript abundance in fatty liver disease. Modulation of m6A by readers, writers, and erasers (RWE) impacts mRNA processing, translation, nuclear export, localization, and degradation. While many studies focus on m6A RWE expression in human liver pathologies, limitations of technology and bioinformatic methods to detect m6A present challenges in understanding the epitranscriptomic mechanisms driving fatty liver disease progression. In this review, we summarize the RWE of m6A and current methods of detecting m6A in specific genes associated with fatty liver disease.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
| | - Matthew C. Cave
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
- Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY 40292, USA
- Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Carolyn M. Klinge
- Department of Biochemistry, University of Louisville School of Medicine, Louisville, KY 40292, USA;
- Center for Integrative Environmental Health Sciences (CIEHS), University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
12
|
Al-Zahrani MH, Balgoon MJ, El-Sawi NM, Alshubaily FA, Jambi EJ, Khojah SM, Baljoon RS, Alkhattabi NA, Baz LA, Alharbi AA, Ahmed AM, Abo elkhair AM, Ismael M, Gebril SM. A biochemical, theoretical and immunohistochemical study comparing the therapeutic efficacy of curcumin and taurine on T-2 toxin induced hepatotoxicity in rats. Front Mol Biosci 2023; 10:1172403. [PMID: 37214337 PMCID: PMC10192634 DOI: 10.3389/fmolb.2023.1172403] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction: Foodborne trichothecene T-2 Toxin, is a highly toxic metabolite produced by Fusarium species contaminating animal and human food, causing multiple organ failure and health hazards. T-2 toxins induce hepatotoxicity via oxidative stress causing hepatocytes cytotoxicity and genotoxicity. In this study, curcumin and taurine were investigated and compared as antioxidants against T-2-provoked hepatotoxicity. Methods: Wistar rats were administrated T-2 toxin sublethal oral dose (0.1 mg/kg) for 2 months, followed by curcumin (80 mg/kg) and taurine (50 mg/kg) for 3 weeks. Biochemical assessment of liver enzymes, lipid profiles, thiobarbituric acid reactive substances (TBARs), AFU, TNF-α, total glutathione, molecular docking, histological and immunohistochemical markers for anti-transforming growth factor-β1 (TGFβ1), double-strand DNA damage (H2AX), regeneration (KI67) and apoptosis (Active caspase3) were done. Results and Discussion: Compared to T-2 toxin, curcumin and taurine treatment significantly ameliorated hepatoxicity as; hemoglobin, hematocrit and glutathione, hepatic glycogen, and KI-67 immune-reactive hepatocytes were significantly increased. Although, liver enzymes, inflammation, fibrosis, TGFβ1 immunoexpressing and H2AX and active caspase 3 positive hepatocytes were significantly decreased. Noteworthy, curcumin's therapeutic effect was superior to taurine by histomorphometry parameters. Furthermore, molecular docking of the structural influence of curcumin and taurine on the DNA sequence showed curcumin's higher binding affinity than taurine. Conclusion: Both curcumin and taurine ameliorated T-2 induced hepatotoxicity as strong antioxidative agents with more effectiveness for curcumin.
Collapse
Affiliation(s)
- Maryam H. Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Maha J. Balgoon
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nagwa M. El-Sawi
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Fawzia A. Alshubaily
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ebtihaj J. Jambi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sohair M. Khojah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Nuha A. Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Lina A. Baz
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asmaa A. Alharbi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amira M. Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Ayat M. Abo elkhair
- Biochemistry Department, Faculty of Pharmacy, Beni Suef University, Beni Suef, Egypt
| | - Mohamed Ismael
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, Egypt
| | - Sahar M. Gebril
- Histology and Cell biology Department, Faculty of Medicine, Sohag University, Sohag, Egypt
| |
Collapse
|